28.02.2015 Views

Chapter 3 - Experimental Error - WH Freeman

Chapter 3 - Experimental Error - WH Freeman

Chapter 3 - Experimental Error - WH Freeman

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

56<br />

3 <strong>Experimental</strong> <strong>Error</strong><br />

Table 3-1<br />

Summary of rules for propagation of uncertainty<br />

Function Uncertainty Function Uncertainty<br />

y x 1 x 2 e y 2e 2 x y x a<br />

1<br />

e 2 x 2<br />

%e y a %e x<br />

1 e x<br />

e x<br />

y x 1 x 2 e y 2e 2 x 1<br />

e 2 x 2<br />

y log x e y 0.434 29<br />

ln 10 x<br />

x<br />

e x<br />

y x 1 x 2 %e y 2%e 2 x 1<br />

%e 2 x 2<br />

y ln x e y <br />

x<br />

x 1<br />

e y<br />

y %e y 2%e 2 x y 10 x<br />

1<br />

%e 2 x 2<br />

(ln 10) e x 2.302 6 e<br />

x y<br />

x<br />

2<br />

e y<br />

y e x e<br />

y x<br />

NOTE: x represents a variable and a represents a constant that has no uncertainty. e x /x is the relative error in x<br />

and %e x is 100 e x /x.<br />

The natural logarithm (ln) of x is the number y, whose value is such that x e y ,<br />

where e ( 2.718 28 ...) is called the base of the natural logarithm. The absolute<br />

uncertainty in y is equal to the relative uncertainty in x.<br />

Uncertainty for<br />

natural logarithm:<br />

y ln x1 e y e x<br />

x<br />

(3-9)<br />

Now consider y antilog x, which is the same as saying y 10 x . In this case, the<br />

relative uncertainty in y is proportional to the absolute uncertainty in x.<br />

Uncertainty<br />

for 10 x :<br />

y 10 x 1 e y<br />

y (ln 10) e x 2.302 6 e x<br />

(3-10)<br />

If y e x , the relative uncertainty in y equals the absolute uncertainty in x.<br />

Uncertainty<br />

for e x :<br />

y e x 1 e y<br />

y e x<br />

(3-11)<br />

Appendix C gives a general rule for<br />

propagation of uncertainty for any<br />

function.<br />

Table 3-1 summarizes rules for propagation of uncertainty. You need not memorize the<br />

rules for exponents, logs, and antilogs, but you should be able to use them.<br />

Example<br />

Uncertainty in H Concentration<br />

Consider the function pH log[H ], where [H ] is the molarity of H . For<br />

pH 5.21 0.03, find [H ] and its uncertainty.<br />

SOLUTION First solve the equation pH log[H ] for [H ]: Whenever a b, then<br />

10 a 10 b . If pH log[H ], then log[H ] pH and 10 log[H ]<br />

10 pH . But<br />

10 log[H ]<br />

[H ]. We therefore need to find the uncertainty in the equation<br />

[H ] 10 pH 10(5.21 0.03)<br />

In Table 3-1, the relevant function is y 10 x , in which y [H ] and x (5.21 0.03).<br />

For y 10 x , the table tells us that e y /y 2.302 6 e x .<br />

e y<br />

y 2.302 6 e x (2.302 6)(0.03) 0.069 1<br />

(3-12)<br />

The relative uncertainty in y ( e y /y) is 0.069 1. Inserting the value y 10 5.21 <br />

6.17 10 6 into Equation 3-12 gives the answer:<br />

e y<br />

y <br />

e y<br />

6.17 10 0.069 11 e 6 y 4.26 10 7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!