02.03.2015 Views

Bjorken Sum Rule and Deep Inelastic Scattering on Polarized ... - JINR

Bjorken Sum Rule and Deep Inelastic Scattering on Polarized ... - JINR

Bjorken Sum Rule and Deep Inelastic Scattering on Polarized ... - JINR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

where T = p, n, A...; a runs over sorts of part<strong>on</strong>s.<br />

Applying the c<strong>on</strong>voluti<strong>on</strong> model to the nuclei, we get for Gf(x) [5,6]:<br />

reversed, with J = 112. For the mirror nuclei we have<br />

SPA* SO that:<br />

= snA*, SnA =<br />

0<br />

1<br />

d~ 1 a8<br />

- x - ( x ) )<br />

= - . ( ) . (1 - -) =<br />

6<br />

AA'<br />

X<br />

where t is a virtual hadr<strong>on</strong> c<strong>on</strong>stituent of the nucleus A with SF Gi(x) (2).<br />

In the present work we shall be interested <strong>on</strong>ly in the nucle<strong>on</strong> structure<br />

of nuclei, therefore in what follows t = p, n. Besides, we neglected the<br />

nucle<strong>on</strong> off-mass effects such as the EMC-effect since in the case of the<br />

lightest nuclei the off-mass correcti<strong>on</strong>s to the typical integral values [such<br />

as (I)] are insignificant [8]. Then, the integrati<strong>on</strong> of eq. (3) gives:<br />

where PtTIAT resp. PtlIAT 5s the probability to find, in the ground state of<br />

the nucleus A, a c<strong>on</strong>stituent t with spin parallel, resp., antiparallel to the<br />

target <strong>on</strong>e. Withie the framework of the c<strong>on</strong>venti<strong>on</strong>al nuclear physics,<br />

the quantity [PtTIAT - PtlIAT] can be calculated as a matrix element of<br />

the operator Ciu',(i) (the sum is carried over the type t nucle<strong>on</strong>s) over<br />

the nucleus wave functi<strong>on</strong> (WF) I A):<br />

where = (A 1 Cp(,,) u$") I A) are the nuclear spin structure fat-<br />

. .<br />

tors. Equati<strong>on</strong> (5) is a straightforward c<strong>on</strong>sequence of the c<strong>on</strong>voluti<strong>on</strong> approach<br />

usually applying to the investigati<strong>on</strong>s of the DIS <strong>on</strong> nuclei. However,<br />

to interpret this relati<strong>on</strong>, <strong>on</strong>e should be extremely careful in view<br />

of (i) the eventual changes of the nucle<strong>on</strong> properties in nucleus, <str<strong>on</strong>g>and</str<strong>on</strong>g> in<br />

view of that (ii) the simplified c<strong>on</strong>siderati<strong>on</strong> of the nuclear structure may<br />

lead to incorrect results. It is appropriate now to remember the less<strong>on</strong>s<br />

of the EMC-effect which give rise to a number of explanati<strong>on</strong>s using both<br />

the nucle<strong>on</strong> properties modificati<strong>on</strong> (Q2-resealing, "swelling". ..) <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

nuclear structure effects (binding effects, mes<strong>on</strong>s...).<br />

The authors of ref. [5] applied BSR (1) <str<strong>on</strong>g>and</str<strong>on</strong>g> relati<strong>on</strong>s like (5) to determine<br />

gAlgv for bound nucle<strong>on</strong>s using the SF Gf <str<strong>on</strong>g>and</str<strong>on</strong>g> Gf' of the mirror<br />

nuclei i.e., of A <str<strong>on</strong>g>and</str<strong>on</strong>g> A', where the numbers of prot<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> neutr<strong>on</strong>s are<br />

Following to logic of the c<strong>on</strong>voluti<strong>on</strong> approach we must assume that<br />

(see ref. [5]): (gA/gv)bd. nucl. = g~/gv. In the c<strong>on</strong>text of our c<strong>on</strong>siderati<strong>on</strong><br />

this implies the coincidence of the first moments of the free <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

bound nucle<strong>on</strong> SF Gl(x). However, the ratio gA/gV is known to be<br />

"renormalized" in nuclei to the effective value (gA/gV)bd. nucl.[9] which<br />

can be determined from the 0-decay <str<strong>on</strong>g>and</str<strong>on</strong>g> Gamov-Teller transiti<strong>on</strong>s of<br />

nuclei. This discrepancy arises from the limitati<strong>on</strong> of the c<strong>on</strong>voluti<strong>on</strong> approach<br />

which operates <strong>on</strong>ly with the nucle<strong>on</strong> degrees of freedom, whereas<br />

the mes<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> other n<strong>on</strong>-nucle<strong>on</strong> c<strong>on</strong>stituents (A-isobars, multiquarks ...)<br />

also c<strong>on</strong>tribute to the nuclear SF. If <strong>on</strong>ly nucle<strong>on</strong>s are c<strong>on</strong>cerned, <strong>on</strong>e<br />

should clearly use the effective c<strong>on</strong>stant; the <strong>on</strong>ly excepti<strong>on</strong> is probably<br />

the case of lightest nuclei where the n<strong>on</strong>-nucleorr c<strong>on</strong>tributioes seem to<br />

be insignificant.<br />

Next, [SPA- SnA] is the matrix element of the operator u373 over<br />

the nucleus A WF. Just this matrix element appears in the nuclear 0-<br />

decay processes. The weak decay experiments with the mirror nuclei[9]<br />

give the empirical value (gA/gV)AA* which allows <strong>on</strong>e to determine the<br />

renormalized ratio gA/gv for bound nucle<strong>on</strong>s:<br />

(:)AA.<br />

= (E)<br />

A<br />

bd. nucl. (A I i=l Cujrj 1 A) bd. nucl.<br />

Equati<strong>on</strong>s (6) <str<strong>on</strong>g>and</str<strong>on</strong>g> (7) illustrate the relati<strong>on</strong>ship between DIS <str<strong>on</strong>g>and</str<strong>on</strong>g> weak<br />

processes. Using this relati<strong>on</strong>ship, the experimental 0-decay informati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> computing the nuclear spin structure factors, we are able to obtain<br />

the neutr<strong>on</strong> SF <str<strong>on</strong>g>and</str<strong>on</strong>g> the ratio gA/gv from the DIS <strong>on</strong> nuclei.<br />

2. The deuter<strong>on</strong> (D). It seems evidently that the nucle<strong>on</strong> properties<br />

in a deuter<strong>on</strong> least of all deviate from free <strong>on</strong>es. Therefore it is just<br />

the deuter<strong>on</strong> that is to be c<strong>on</strong>sidered as a more c<strong>on</strong>venient source of the<br />

polarized neutr<strong>on</strong> data like the unpolarized case[lO]. The main problem<br />

in the extracti<strong>on</strong> of the "nearly free" neutr<strong>on</strong> SF from the deuter<strong>on</strong> <strong>on</strong>e is<br />

the determinati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> exclusi<strong>on</strong> of the nucle<strong>on</strong> (unpolarized or polarized)<br />

Fermi-smearing in the deuter<strong>on</strong>. If we bear in mind to operate with the<br />

integral values (1) <str<strong>on</strong>g>and</str<strong>on</strong>g> (5), the deuter<strong>on</strong> structure influence comes to

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!