06.03.2015 Views

Homework 4 Solution (pdf)

Homework 4 Solution (pdf)

Homework 4 Solution (pdf)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Solution</strong> to <strong>Homework</strong> 4. AGEC 840<br />

Hecksher-Olhin model with fixed factor requirements: general equilibrium<br />

a. By definition<br />

c ( w,<br />

r)<br />

min wL rK subject to f ( L , K ) ≥ 1.<br />

i<br />

=<br />

Li , Ki<br />

i<br />

+<br />

i<br />

i<br />

, K<br />

i<br />

) = min[ Li<br />

/ aiL<br />

, K<br />

i<br />

/ aiK<br />

Note that f ( L<br />

] ≥ 1 implies that L ≥ a and K ≥ a . And<br />

i<br />

so, wL<br />

i<br />

+ rK i<br />

is minimized when L<br />

i<br />

= aiL<br />

and K<br />

i<br />

= aiK<br />

. Hence, the unit-cost functions<br />

are<br />

c<br />

i<br />

( w,<br />

r)<br />

= waiL<br />

+ raiK<br />

, i = 1, 2 .<br />

The aggregate demands for goods i = 1, 2 are<br />

D<br />

1<br />

= θ ( wL + rK)<br />

/ p1<br />

and D<br />

2<br />

= ( 1−θ )( wL + rK)<br />

/ p2<br />

,<br />

where θ is the share of income spent on good 1.<br />

b. Equilibrium conditions are<br />

(1) p1 = wa1L<br />

+ ra1K<br />

(zero-profits)<br />

(2) p2 = wa2L<br />

+ ra2K<br />

(3) L = a1L y1<br />

+ a2L<br />

y2<br />

(the resources are fully employed)<br />

(4) K = a1K y1<br />

+ a2K<br />

y2<br />

(5) y<br />

1<br />

= θ ( wL + rK)<br />

/ p1<br />

(markets clear)<br />

(6) y<br />

2<br />

= ( 1−θ<br />

)( wL + rK)<br />

/ p2<br />

c. Dividing (5) by (6) yields<br />

y1 / y2<br />

= θ /(1 −θ)[<br />

p2<br />

/ p1]<br />

, or<br />

(7) p1 / p2<br />

= θ /(1 −θ<br />

)[ y2<br />

/ y1]<br />

.<br />

Dividing (3) by (4) yields<br />

L / K = ( a1L y1<br />

+ a2L<br />

y2<br />

) /( a1K<br />

y1<br />

+ a2K<br />

y2<br />

) , or<br />

L / K = ( a1L<br />

y1<br />

/ y2<br />

+ a2L<br />

) /( a1K<br />

y1<br />

/ y2<br />

+ a2K<br />

) , or<br />

(8) y1 / y2<br />

= ( a2K<br />

/ a1K<br />

)( L / K − a2L<br />

/ a2K<br />

) /( a1L<br />

/ a1K<br />

− L / K)<br />

.<br />

Substituting (8) in (7) yields<br />

(9) p<br />

1<br />

/ p2<br />

= θ /(1 −θ)<br />

( a1K<br />

/ a2K<br />

)( a1L<br />

/ a1K<br />

− L / K) /( L / K − a2L<br />

/ a2K<br />

) .<br />

Differentiating yields<br />

(10) d ( p1 / p2<br />

) / dθ > 0 and<br />

(11) d p / p ) / d(<br />

L / K)<br />

0 .<br />

(<br />

1 2<br />

<<br />

As the share of income spent on good 1 increases, its relative price increases. By the<br />

Rybczynski theorem, as the endowment of labor becomes more plentiful relative to<br />

capital, the output of labor-intensive good 1 increases by more than the output of good 2<br />

decreases. And so, good 1 becomes less scarce relative to good 2, and the relative price<br />

of good 1 falls.<br />

i<br />

i<br />

i<br />

i<br />

iL<br />

i<br />

iK


d. From (1)<br />

1 = [ w/<br />

p1 ] a1L<br />

+ [ r / p1]<br />

a1K<br />

.<br />

From (2)<br />

p2 / p1<br />

= [ w/<br />

p1<br />

] a2L<br />

+ [ r / p1]<br />

a2K<br />

,<br />

where p / p 2 1<br />

is given by (9). Solving these system of equations yields<br />

⎛ w/<br />

p1<br />

⎞ 1 ⎛a2K<br />

− a1K<br />

[ p2<br />

/ p1]<br />

⎞<br />

(12) ⎜ ⎟ =<br />

⎜<br />

⎟<br />

⎝ r / p1<br />

⎠ a1La2<br />

K<br />

− a2La1K<br />

⎝ a1L[<br />

p2<br />

/ p1<br />

] − a2L<br />

⎠<br />

1<br />

⎛a2K<br />

− a1K<br />

[ p2<br />

/ p1]<br />

⎞<br />

=<br />

⎜<br />

⎟ ,<br />

a1 K<br />

a2K<br />

( a1L<br />

/ a1K<br />

− a2L<br />

/ a2K<br />

) ⎝ a1L[<br />

p2<br />

/ p1]<br />

− a2L<br />

⎠<br />

where we assume that a2 L<br />

/ a1L<br />

< [ p2<br />

/ p1]<br />

< a2K<br />

/ a1K<br />

. Differentiating and using (10) and<br />

(11) yields<br />

−2<br />

a1K<br />

( p1<br />

/ p2<br />

) d(<br />

p1<br />

/ p2<br />

)<br />

(13) d ( w/<br />

p1)<br />

/ dθ =<br />

> 0 ,<br />

a a ( a / a − a / a ) dθ<br />

1K<br />

2K<br />

1L<br />

1K<br />

2L<br />

2K<br />

−2<br />

1K<br />

( p1<br />

/ p2<br />

) d(<br />

p1<br />

/ p2<br />

a<br />

)<br />

(14) d( w/<br />

p1) / d(<br />

L / K)<br />

=<br />

< 0 ,<br />

a a ( a / a − a / a ) d(<br />

L / K)<br />

1K<br />

2K<br />

−2<br />

a1L<br />

( p1<br />

/ p2<br />

) d(<br />

p1<br />

/ p2<br />

)<br />

(15) d ( r / p1)<br />

/ dθ = −<br />

< 0 ,<br />

a a ( a / a − a / a ) dθ<br />

1K<br />

2K<br />

1L<br />

1L<br />

1K<br />

2L<br />

2K<br />

1K<br />

2L<br />

2K<br />

−2<br />

1L<br />

( p1<br />

/ p2<br />

) d(<br />

p1<br />

/ p2<br />

a<br />

)<br />

(16) d( r / p1) / d(<br />

L / K)<br />

= −<br />

> 0 .<br />

a a ( a / a − a / a ) d(<br />

L / K)<br />

1K<br />

2K<br />

1L<br />

By the Stolper-Samuelson theorem, the real income of a factor increases (decreases) as<br />

the relative price of the good that uses that factor intensively increases (decreases).<br />

Having pointed this out, we can apply the reasoning from (c).<br />

e. Dividing equations in (12) yields<br />

w a2K<br />

− a1K<br />

[ p2<br />

/ p1<br />

]<br />

= .<br />

r a1L[<br />

p2<br />

/ p1<br />

] − a2L<br />

Differentiating and using (10) and (11) yields<br />

d ( w / r) / dθ > 0 and d ( w / r) / d(<br />

L / K ) < 0 .<br />

Note that the derivatives can also be determined from (13)-(16) because<br />

d w/<br />

r)<br />

= d([<br />

w/<br />

p ]/[ r / ]) .<br />

(<br />

1<br />

p1<br />

f. By (12), w > 0 and r > 0 if and only if a2 L<br />

/ a1L<br />

< [ p2<br />

/ p1]<br />

< a2K<br />

/ a1K<br />

. Susbtituting<br />

(9) yields<br />

a2 L<br />

/ a1L<br />

< [( 1− θ ) / θ ] ( a2K<br />

/ a1K<br />

)( L / K − a2L<br />

/ a2K<br />

) /( a1L<br />

/ a1K<br />

− L / K)<br />

< a2 K<br />

/ a1K<br />

,<br />

or<br />

a2L<br />

/ a2K<br />

L / K − a2L<br />

/ a2K<br />

< [ 1/ θ −1]<br />

< 1, or<br />

a / a<br />

a / a − L / K<br />

1L<br />

1K<br />

1L<br />

1K<br />

1K<br />

2L<br />

2K


1−<br />

L / K /( a1L<br />

/ a1K<br />

)<br />

a1L<br />

/ a1K<br />

− L / K<br />

< 1/<br />

θ −1<br />

< .<br />

L / K /( a / a ) −1<br />

L / K − a / a<br />

2L<br />

2K<br />

g. Equilibrium conditions under free trade are<br />

T T T<br />

(1T) = w a r a (zero-profits)<br />

(2T)<br />

p1 1L<br />

+<br />

1K<br />

2L<br />

2K<br />

T T<br />

T<br />

p2 = w a2L<br />

+ r a2K<br />

L = a1L y1<br />

+ a2L<br />

y2<br />

K = a1K y1<br />

+ a2K<br />

y<br />

* T * T<br />

* T<br />

y1 + y1<br />

= θ ( w ( L + L ) + r ( K + K )) / p1<br />

*<br />

T * T<br />

* T<br />

y2 + y2<br />

= ( 1−θ<br />

)( w ( L + L ) + r ( K + K )) / p2<br />

(3T)<br />

(4T)<br />

2<br />

(5T)<br />

(6T)<br />

(the resources are fully employed)<br />

(markets clear)<br />

Note that FPE obtains if both factors are fully employed in both countries (we need<br />

* *<br />

a2 L<br />

/ a2K<br />

< L / K < a1L<br />

/ a1K<br />

). In what follows I drop the superscript “T” (free trade) on<br />

the endogenous variables, but remember that equilibrium output prices, wages, and rents<br />

are different in autarky and under free trade (we know that outputs are the same in<br />

autarky and free trade because we assumed that both factors are fully employed, and<br />

there is only one point on the PPF where this is possible). Using (1T) and (5T) we can<br />

determine the real wage and rental rate under free trade:<br />

1 = [ w/<br />

p1 ] a1L<br />

+ [ r / p1]<br />

a1K<br />

*<br />

*<br />

*<br />

( y + y ) / θ = [ w / p ]( L + L ) + [ r / p ]( K + ), or<br />

1 1<br />

1<br />

1<br />

K<br />

⎛ a1L<br />

a1K<br />

⎞⎛<br />

w/<br />

p1<br />

⎞ ⎛ 1 ⎞<br />

⎜<br />

⎟⎜<br />

⎟ = ⎜ ⎟<br />

*<br />

*<br />

*<br />

⎝ L + L K + K ⎠⎝<br />

r / p1<br />

⎠ ⎝(<br />

y1<br />

+ y1<br />

) / θ ⎠<br />

Solving these system of equations yields<br />

w<br />

*<br />

⎛ w/<br />

p1<br />

⎞ 1 ⎛ K − a + ⎞<br />

1K<br />

( y1<br />

y1<br />

) / θ<br />

⎜ ⎟ =<br />

⎜<br />

⎟<br />

w<br />

w<br />

−<br />

*<br />

w<br />

⎝ r / p1<br />

⎠ a1L<br />

K a1K<br />

L ⎝ a1L<br />

( y1<br />

+ y1<br />

) / θ − L ⎠<br />

And so, demand for good 1 in the home country is<br />

D<br />

1<br />

= θ ( wL + rK)<br />

/ p1<br />

θ<br />

w<br />

*<br />

*<br />

= [( K − a1K<br />

( y1<br />

+ y1<br />

) / θ ) L + ( a1L<br />

( y1<br />

+ y1<br />

) / θ − L<br />

w<br />

w<br />

a1L<br />

K − a1K<br />

L<br />

The excess supply is<br />

w<br />

*<br />

* w<br />

[( θK<br />

− a1K<br />

( y1<br />

+ y1<br />

)) L + ( a1L<br />

( y1<br />

+ y1<br />

) −θL<br />

) K]<br />

y1<br />

−<br />

w<br />

w<br />

a K − a L<br />

=<br />

=<br />

y<br />

y<br />

1L<br />

1K<br />

w<br />

w<br />

w<br />

*<br />

* w<br />

1<br />

( a1L<br />

K − a1K<br />

L ) −[(<br />

θK<br />

− a1K<br />

( y1<br />

+ y1<br />

)) L + ( a1L<br />

( y1<br />

+ y1<br />

) −θL<br />

) K]<br />

w<br />

w<br />

a1L<br />

K − a1K<br />

L<br />

w<br />

w<br />

*<br />

w w<br />

1<br />

( a1L<br />

K − a1K<br />

L ) + ( a1K<br />

L − a1L<br />

K)(<br />

y1<br />

+ y1<br />

) −θ<br />

( K L − L K)<br />

w<br />

w<br />

a1L<br />

K − a1K<br />

L<br />

w<br />

) K]<br />

.


( a<br />

=<br />

2K<br />

L − a<br />

2L<br />

K)(<br />

a<br />

1L<br />

K<br />

w<br />

− a<br />

1K<br />

w<br />

L ) + ( a<br />

1K<br />

Δ(<br />

a<br />

1L<br />

L − a<br />

K<br />

w<br />

1L<br />

− a<br />

K)(<br />

a<br />

1K<br />

2K<br />

w<br />

L )<br />

L<br />

w<br />

− a<br />

2L<br />

K<br />

w<br />

) −θ<br />

( K<br />

w<br />

w<br />

L − L K)<br />

Δ<br />

( l − a<br />

=<br />

2L<br />

/ a<br />

2K<br />

)( a<br />

1L<br />

/ a<br />

1K<br />

− l<br />

w<br />

) + ( l − a<br />

1L<br />

(1/( a<br />

2K<br />

/ a<br />

1K<br />

)( l<br />

w<br />

K))<br />

Δ(<br />

a<br />

− a<br />

1L<br />

2L<br />

/ a<br />

1K<br />

/ a<br />

2K<br />

− l<br />

w<br />

) −θ<br />

( l − l<br />

)<br />

w<br />

)( a<br />

1L<br />

/ a<br />

1K<br />

− a<br />

2L<br />

/ a<br />

2K<br />

)<br />

( l − l<br />

)( a<br />

/ a1K<br />

− a2L<br />

/ a2K<br />

)(1 − θ )<br />

w<br />

> ( < )0 depending on whether l > ( l (because / a < L / K < a a ).<br />

1 L 2K<br />

2L<br />

1K<br />

><br />

1 L<br />

/<br />

1K<br />

a2 L 2K<br />

1L<br />

/<br />

1K<br />

The Hecksher-Olhin theorem predicts that the labor-abundant country will export the<br />

labor-intensive good, and this is exactly what we find.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!