06.03.2015 Views

Analytical expression for effective thermal conductivity of superlattices

Analytical expression for effective thermal conductivity of superlattices

Analytical expression for effective thermal conductivity of superlattices

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Analytical</strong> <strong>expression</strong> <strong>for</strong><br />

<strong>effective</strong> <strong>thermal</strong><br />

<strong>conductivity</strong> <strong>of</strong> <strong>superlattices</strong><br />

F. X. Alvarez, A. Lopeandia, J. Rodriguez-Viejo, D. Jou


Outline<br />

• Motivation<br />

• Introduction<br />

• Boundary resistance<br />

• Bulk <strong>conductivity</strong> modification<br />

• Results


Motivation<br />

Obtain an analytical and simple<br />

<strong>expression</strong> to predict <strong>thermal</strong><br />

<strong>conductivity</strong> <strong>for</strong> superlattice


Phonon<br />

• Mean free path<br />

• Coherence length<br />

• Wavelength<br />

l c<br />

l s<br />

l w


Phonon<br />

Boltzmann equation<br />

1/kBT<br />

Wave equation<br />

Wave equation


Large Phonons (Continuum/wave approx)


Small Phonons (Boltzmann eq approx)


Intermediate size Phonons (?)


Different behaviours<br />

• Ballistic - Diffusive<br />

• Coherent – Incoherent<br />

• Equilibrium – Non-equilibrium


Thermal <strong>conductivity</strong> <strong>of</strong> SL


Transmissivity<br />

( ) 2<br />

cos<br />

cos<br />

cos<br />

cos<br />

4<br />

j<br />

j<br />

j<br />

i<br />

i<br />

i<br />

j<br />

j<br />

j<br />

i<br />

i<br />

i<br />

S<br />

v<br />

v<br />

v<br />

v<br />

θ<br />

ρ<br />

θ<br />

ρ<br />

θ<br />

ρ<br />

θ<br />

ρ<br />

τ<br />

+<br />

=<br />

Specular<br />

Diffuse<br />

j<br />

j<br />

i<br />

i<br />

i<br />

i<br />

D<br />

v<br />

C<br />

C v<br />

C v<br />

+<br />

=<br />

τ


Transmission Coefficient<br />

Γ<br />

ijS<br />

/ D<br />

= ∫τ ( μ )<br />

ijS / D i<br />

μ<br />

i<br />

dμ<br />

i<br />

Γ = pΓ<br />

+ (1 − p)<br />

Γ<br />

ij<br />

ijS<br />

ijD


Mean Transmission Coefficient<br />

Γ =<br />

Γ + Γ<br />

12 21<br />

2<br />

Γ 12<br />

Γ 21


Transmission Coefficient


TBR<br />

R'<br />

=<br />

4<br />

π<br />

k<br />

4<br />

B<br />

2<br />

h<br />

ΓT<br />

3<br />

v<br />

2<br />

i<br />

3<br />

i<br />

∫<br />

0<br />

x Di<br />

x<br />

4<br />

e<br />

x<br />

1<br />

/( e<br />

x<br />

−1)<br />

2<br />

dx<br />

l l<br />

1<br />

R = R ' −<br />

1 −<br />

2<br />

κ<br />

01<br />

κ<br />

02<br />

l l<br />

2<br />

Can. J. Phys. 37, 334 (1959)


TBR


Boltzmann equation<br />

J. Appl. Phys. 107, 084303 (2010)<br />

Appl. Phys. Lett. 90, 083109 (2007)


Nonequilibrium effects on bulk<br />

κ<br />

2<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

L ⎛ 2πl<br />

⎞<br />

= κ<br />

eff<br />

1−<br />

⎜ ⎟ −1<br />

0<br />

2πl<br />

2<br />

⎝ Leff<br />

⎠<br />

2<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

J. Appl. Phys. 107, 084303 (2010)<br />

Appl. Phys. Lett. 90, 083109 (2007)


Effective length<br />

L<br />

N −2<br />

N −1<br />

eff<br />

= ( 1− Γ)<br />

L1<br />

+ (1 − Γ)<br />

ΓL2<br />

+ ... + (1 − Γ)<br />

Γ LN-1<br />

+ Γ LN<br />

J. Appl. Phys. 107, 084303 (2010)


Cross plane<br />

κ<br />

κ<br />

CP<br />

CP<br />

=<br />

L<br />

L<br />

κ<br />

1<br />

1<br />

1<br />

+<br />

+<br />

L<br />

L<br />

κ<br />

κ<br />

1<br />

2<br />

2<br />

2<br />

CP<br />

=<br />

+ R<br />

2κ<br />

1+<br />

L +<br />

CP R<br />

L<br />

2<br />

J. Appl. Phys. 107, 084303 (2010)


In plane<br />

κ<br />

IP<br />

=<br />

κ<br />

1<br />

L<br />

L<br />

1<br />

1<br />

+<br />

+<br />

κ<br />

L<br />

2<br />

2<br />

L<br />

2<br />

J. Appl. Phys. 107, 084303 (2010)


SL <strong>effective</strong> <strong>thermal</strong> <strong>conductivity</strong><br />

J. Appl. Phys. 107, 084303 (2010)


SL <strong>effective</strong> <strong>thermal</strong> <strong>conductivity</strong><br />

J. Appl. Phys. 107, 084303 (2010)


Conclusions<br />

• Non-Equilibrium Thermodynamics combined with<br />

TBR models gives a good approximation <strong>for</strong> <strong>thermal</strong><br />

<strong>conductivity</strong> <strong>of</strong> <strong>superlattices</strong><br />

• Obtained <strong>expression</strong>s are simple and analytical


Thank you

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!