09.03.2015 Views

Progress on the Pythia 8 event generator

Progress on the Pythia 8 event generator

Progress on the Pythia 8 event generator

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong><br />

Torbjörn Sjöstrand<br />

Department of Astr<strong>on</strong>omy and Theoretical Physics<br />

Lund University, Lund, Sweden<br />

PRISMA Colloquium and Seminar of <strong>the</strong> Graduate School<br />

Mainz, 23 January 2013


Introducti<strong>on</strong> – 1<br />

Modern <strong>event</strong> <strong>generator</strong>s were born at DESY,<br />

for <strong>the</strong> PETRA e + e − collider! (1978 − 86, 13 − 46 GeV)<br />

• Combine perturbative picture of hard processes,<br />

involving electroweak and str<strong>on</strong>g interacti<strong>on</strong>s,<br />

with n<strong>on</strong>perturbative picture of hadr<strong>on</strong>izati<strong>on</strong>.<br />

• Provide “complete” <strong>event</strong>s, with parameters to be tuned to data,<br />

and used to study and understand different kinds of physics.<br />

JETSET (PYTHIA predecessor): ∼1,000 lines of Fortran code in 1980<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 2/46


Introducti<strong>on</strong> – 2<br />

Events more messy at <strong>the</strong> LHC (even when simplified):<br />

General-purpose <strong>event</strong> <strong>generator</strong>s: PYTHIA, HERWIG, SHERPA<br />

PYTHIA size: ∼80,000 lines (Fortran in PYTHIA 6, C++ in PYTHIA 8)<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 3/46


Event Generator Reas<strong>on</strong>s<br />

Structure of LHC <strong>event</strong>s impossible to “solve”<br />

from first principles.<br />

Several competing mechanisms c<strong>on</strong>tribute,<br />

both perturbative and n<strong>on</strong>perturbative.<br />

Even if calculable somehow, need 1000-body expressi<strong>on</strong>s<br />

and phase space sampling.<br />

Immense variability, with “typical <strong>event</strong>s” and “rare corners”.<br />

An <strong>event</strong> <strong>generator</strong> is intended to simulate various <strong>event</strong> kinds,<br />

with random numbers providing quantum mechanical variability.<br />

It can be used to<br />

predict <strong>event</strong> rates and topologies ⇒ estimate feasibility<br />

simulate possible backgrounds ⇒ devise analysis strategies<br />

study detector requirements ⇒ optimize design and trigger<br />

study detector imperfecti<strong>on</strong>s ⇒ evaluate acceptance<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 4/46


<strong>Pythia</strong> 8 development overview<br />

Ambiti<strong>on</strong> (relative to <strong>Pythia</strong> 6)<br />

• Meet experimental request for C++ code.<br />

• Housecleaning ⇒ more homogeneous.<br />

• More user-friendly (e.g. settings names).<br />

• Better match to software frameworks<br />

(e.g. card files).<br />

• More space for growth.<br />

• Better interfaces to external standards.<br />

Reality<br />

• Work begun autumn 2004.<br />

• 3 years at CERN ⇒ good progress.<br />

• First release autumn 2007.<br />

• Since <strong>the</strong>n: slower progress,<br />

but gradually things get d<strong>on</strong>e.<br />

• Usage is taking off, at l<strong>on</strong>g last.<br />

Team members<br />

Jesper Christiansen<br />

Stephen Mrenna<br />

Stefan Prestel<br />

Peter Skands<br />

Former members<br />

Stefan Ask<br />

Richard Corke<br />

C<strong>on</strong>tributors<br />

Robert Ciesielski<br />

Nishita Desai<br />

Philip Ilten<br />

Tomas Kasemets<br />

Mikhail Kirsanov<br />

· · ·<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 5/46


Key differences between <strong>Pythia</strong> 6.4 and 8.1<br />

Old features definitely removed include, am<strong>on</strong>g o<strong>the</strong>rs:<br />

• independent fragmentati<strong>on</strong> (always n<strong>on</strong>-default opti<strong>on</strong>)<br />

• mass-ordered showers (original <strong>on</strong>es)<br />

Features omitted so far include, am<strong>on</strong>g o<strong>the</strong>rs:<br />

• ep, γp and γγ beam c<strong>on</strong>figurati<strong>on</strong>s<br />

• several processes, especially Technicolor, partly SUSY<br />

New features, not found in 6.4, include:<br />

⋆ CKKW-L and MLM merging, support POWHEG, more coming<br />

⋆ fully interleaved p ⊥ -ordered MPI + ISR + FSR evoluti<strong>on</strong><br />

⋆ richer mix of underlying-<strong>event</strong> processes (γ, J/ψ, DY, . . . )<br />

⋆ allow rescattering and x-dependent prot<strong>on</strong> size in MPI framework<br />

⋆ full hadr<strong>on</strong>–hadr<strong>on</strong> collisi<strong>on</strong> machinery for diffractive systems<br />

⋆ several new processes, within and bey<strong>on</strong>d SM<br />

⋆ τ lept<strong>on</strong> polarizati<strong>on</strong> in producti<strong>on</strong> and decay<br />

⋆ updated decay data and LO PDF sets<br />

⋆ · · ·<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 6/46


Interfaces<br />

<strong>Pythia</strong> intended to describe <strong>the</strong> complete structure of an <strong>event</strong>,<br />

but nobody can do everything – need to be open to <strong>the</strong> World.<br />

Les Houches Event Files or runtime LHA interface<br />

LHAPDF or o<strong>the</strong>r external PDF libraries<br />

SUSY LHA input<br />

External random number <strong>generator</strong><br />

External beam momentum and vertex spread<br />

Semi-internal matrix elements or res<strong>on</strong>ance widths<br />

(MadGraph 5 can generate code for inclusi<strong>on</strong> in <strong>Pythia</strong>)<br />

External part<strong>on</strong> showers (e.g. Vincia)<br />

External decay of selected particles (EvtGen?)<br />

User hooks: step into generati<strong>on</strong> process, e.g. to veto<br />

Particle/res<strong>on</strong>ance gun (e.g. decay Higgs in isolati<strong>on</strong>)<br />

HepMC output<br />

Combine with RIVET analyses<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 7/46


<strong>Pythia</strong> physics progress in recent years<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 8/46


The Part<strong>on</strong>-Shower Approach<br />

2 → n = (2 → 2) ⊕ ISR ⊕ FSR Iterative structure<br />

of emissi<strong>on</strong>s,<br />

with simple<br />

DGLAP<br />

splitting kernels<br />

FSR = Final-State Radiati<strong>on</strong> = timelike shower<br />

Qi<br />

2 ∼ m 2 > 0 decreasing<br />

ISR = Initial-State Radiati<strong>on</strong> = spacelike showers<br />

Qi<br />

2 ∼ −m 2 > 0 increasing<br />

Showers are unitary: do not (explicitly) change cross secti<strong>on</strong>s;<br />

emissi<strong>on</strong> probabilities do not exceed unity — Sudakov factor.<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 9/46


Matrix Elements vs. Part<strong>on</strong> Showers<br />

Matrix Elements vs. Part<strong>on</strong> Showers<br />

ME ME : : Matrix Elements<br />

+ + systematic expansi<strong>on</strong> in αα s (‘exact’) s + + powerful for multipart<strong>on</strong> Born Born level level<br />

+ + flexible phase space cuts<br />

− −loop loop calculati<strong>on</strong>s very tough<br />

−<br />

−<br />

negative cross secti<strong>on</strong> in<br />

incollinear regi<strong>on</strong>s<br />

regi<strong>on</strong>s<br />

⇒ unpredictive jet/<strong>event</strong> structure<br />

⇒ structure<br />

− no easy match to hadr<strong>on</strong>izati<strong>on</strong><br />

− no easy match to hadr<strong>on</strong>izati<strong>on</strong> p 2 ⊥ ,θ2 ,m<br />

virtual<br />

2<br />

PS PS : : Part<strong>on</strong> Showers<br />

−<br />

−<br />

approximate, to LL (or<br />

(or<br />

NLL)<br />

NLL)<br />

− main topology not predetermined<br />

− main ⇒ inefficient for exclusive states<br />

⇒ inefficient for exclusive states<br />

+ process-generic ⇒ simple multipart<strong>on</strong><br />

+ process-generic simple multipart<strong>on</strong><br />

+ Sudakov form factors/resummati<strong>on</strong><br />

+ Sudakov<br />

⇒ sensible<br />

formjet/<strong>event</strong> factors/resummati<strong>on</strong><br />

structure<br />

⇒ sensible structure<br />

+ easy to match to hadr<strong>on</strong>izati<strong>on</strong><br />

dσ<br />

dp 2 , dσ<br />

dθ 2, dσ<br />

dm<br />

⊥<br />

2<br />

real<br />

dσ<br />

dp 2 , dσ<br />

dθ 2, dσ<br />

dm<br />

⊥<br />

2<br />

real×Sudakov<br />

+ easy to match to hadr<strong>on</strong>izati<strong>on</strong> p 2 ⊥ ,θ2 ,m 2<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 10/46


Matrix Elements and Part<strong>on</strong> Showers<br />

Recall complementary strengths:<br />

• ME’s good for well separated jets<br />

• PS’s good for structure inside jets<br />

Marriage desirable! But how?<br />

Very active field of research; requires a lecture of its own<br />

Reweight first PS emissi<strong>on</strong> by ratio ME/PS (simple POWHEG)<br />

Combine several LO MEs, using showers for Sudakov weights<br />

CKKW: analytic Sudakov – not used any l<strong>on</strong>ger<br />

CKKW-L: trial showers gives sophisticated Sudakovs<br />

MLM: match of final part<strong>on</strong>ic jets to original <strong>on</strong>es<br />

Match to NLO precisi<strong>on</strong> of basic process<br />

MC@NLO: additive ⇒ LO normalizati<strong>on</strong> at high p ⊥<br />

POWHEG: multiplicative ⇒ NLO normalizati<strong>on</strong> at high p ⊥<br />

Combine several orders, as many as possible at NLO<br />

MENLOPS<br />

UNLOPS (U = unitarized = preserve normalizati<strong>on</strong>s)<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 11/46


Matching/merging with <strong>Pythia</strong><br />

Built-in NLO+PS for many res<strong>on</strong>ance decays<br />

(γ ∗ /Z 0 , W ± , t, H 0 , SUSY, . . . )<br />

Some few built-in +1 matching (γ ∗ /Z 0 /W ± + 1 jet)<br />

Default max scale gives fairly good QCD jet rates,<br />

also for gauge bos<strong>on</strong> pairs, top pairs (with damping), SUSY<br />

Accepts just about any valid Les Houches Event input<br />

(but matching at an ill–defined “scale”)<br />

POWHEG interface extends <strong>on</strong> “scale” matching to showers<br />

no MC@NLO interface, but Frixi<strong>on</strong>e et al working <strong>on</strong> it<br />

MLM matching code for ALPGEN input recently introduced,<br />

coming for MadGraph5<br />

CKKW-L LO matching (tested for MadGraph5 input)<br />

UNLOPS NLO matching coming<br />

Vincia: alternative antenna shower package,<br />

with ME matching <strong>on</strong> <strong>the</strong> way<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 12/46


Power vs. wimpy showers – 1<br />

Increased role of ME’s at expense of PS’s, but also<br />

desire for total increased precisi<strong>on</strong><br />

Shower PS’s usedmatching for virtual correcti<strong>on</strong>s to MEs: realistic (Sudakovs) QCD default<br />

fast first estimate for new physics<br />

Must Three avoid main doublecounting cases for starting for QCDscale jets: of hard process (mainly ISR):<br />

shower starting scale = p ⊥ of hard 2 → 2 process.<br />

I. QCD jets: must avoid doublecounting,<br />

Study<br />

shower<br />

how<br />

starting<br />

well <strong>the</strong><br />

scale<br />

part<strong>on</strong><br />

=<br />

shower<br />

p ⊥ of<br />

fills<br />

hard<br />

<strong>the</strong><br />

2<br />

phase<br />

→ 2<br />

space,<br />

process.<br />

as prelude to full matching to 2 → 3 real-emissi<strong>on</strong>:<br />

Generally gives surprisingly good agreement, e.g. for 2 → 3:<br />

(a) p ⊥3<br />

(b) p ⊥4<br />

(c) p ⊥5<br />

10 2 0 10 20 30 40 50<br />

10 2 0 10 20 30 40 50<br />

10 3 0 10 20 30 40 50<br />

dσ / dp ⊥ [nb / GeV]<br />

10 1<br />

10 0<br />

10 -1<br />

PS<br />

ME<br />

dσ / dp ⊥ [nb / GeV]<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

PS<br />

ME<br />

dσ / dp ⊥ [nb / GeV]<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

PS<br />

ME<br />

p ⊥ [GeV]<br />

p ⊥ [GeV]<br />

p ⊥ [GeV]<br />

=5.0 GeV, pmin ⊥4<br />

=5.0 GeV, Rsep =0.10<br />

II. Producti<strong>on</strong> of colour singlets in final state:<br />

Obtain no destructive good qualitative interference agreement, ⇒ showers best in soft full and blast collinear (”power regi<strong>on</strong>s, shower”)<br />

but large regi<strong>on</strong> of phase space well described, and <strong>on</strong>ly corners bad.<br />

p min<br />

⊥3<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 13/46


Power Shower vs. wimpy matching showers to– MEs: 2 realistic hard default<br />

Aim: III. provide Producti<strong>on</strong> better ofdefault coloured shower part<strong>on</strong>s behaviour in final atstate:<br />

large p ⊥ ,<br />

todestructive bridge gap between interference “power” between and “wimpy” ISR andshowers.<br />

(b)<br />

FSR ⇒ dampening<br />

10 -2 100 200 300 400 500 600 700 800 900 1000<br />

dP / dp ⊥ [GeV -1 ]<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

POWHEG<br />

<strong>Pythia</strong> Default (Power)<br />

<strong>Pythia</strong> Damp, k = 2<br />

<strong>Pythia</strong> Damp, k = 1<br />

<strong>Pythia</strong> Wimpy<br />

tt producti<strong>on</strong><br />

10 -7<br />

M 2 = m 2 ⊥t<br />

p ⊥ [GeV]<br />

= m 2 t + p2 ⊥t<br />

Typically dP correct ISR<br />

behaviour<br />

dp 2 ∝ 1 k 2 Minterpolates 2 between “power” and<br />

“wimpy” (stop at scale<br />

⊥ p 2 ⊥ k 2 of Mhard 2 + pprocess):<br />

2 for coloured final state<br />

⊥<br />

No dampening for uncoloured dP ISR final state (W + W − ,...,SUSY).<br />

R. Corke & TS, Eur. Phys. dpJ. 2 ∝ 1 k 2 M 2<br />

⊥C69 (2010) p⊥<br />

2 k 2 M1<br />

2 + p⊥<br />

2<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 14/46


Multipart<strong>on</strong> interacti<strong>on</strong>s (MPI’s)<br />

Many part<strong>on</strong>-part<strong>on</strong> interacti<strong>on</strong>s<br />

per pp <strong>event</strong>: MPI.<br />

Problem:<br />

∫∫∫<br />

σ int =<br />

Most have small p ⊥ , ∼ 2 GeV<br />

⇒ not visible as separate jets,<br />

but c<strong>on</strong>tribute to <strong>event</strong> activity.<br />

Solid evidence that MPIs play<br />

central role for <strong>event</strong> structure.<br />

dx 1 dx 2 dp 2 ⊥ f 1(x 1 , p 2 ⊥ ) f 2(x 2 , p 2 ⊥ ) dˆσ<br />

dp 2 ⊥<br />

= ∞<br />

since ∫ dx f (x, p 2 ⊥ ) = ∞ and dˆσ/dp2 ⊥ ≈ 1/p4 ⊥ → ∞ for p ⊥ → 0.<br />

Requires empirical dampening at small p ⊥ ,<br />

owing to colour screening (prot<strong>on</strong> finite size).<br />

Many aspects bey<strong>on</strong>d pure <strong>the</strong>ory ⇒ model building.<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 15/46


Multipart<strong>on</strong> interacti<strong>on</strong>s modelling<br />

Regularise cross secti<strong>on</strong> with p ⊥0 as free parameter<br />

dˆσ<br />

dp 2 ⊥<br />

∝ α2 s (p 2 ⊥ )<br />

p 4 ⊥<br />

→ α2 s (p 2 ⊥0 + p2 ⊥ )<br />

(p 2 ⊥0 + p2 ⊥ )2<br />

with energy dependence<br />

( ) ɛ<br />

p ⊥0 (E CM ) = p⊥0 ref × ECM<br />

ECM<br />

ref<br />

Matter profile in impact-parameter space<br />

gives time-integrated overlap which determines level of activity:<br />

simple Gaussian or more peaked variants<br />

ISR and MPI compete for beam momentum → PDF rescaling<br />

+ flavour effects (valence, qq pair compani<strong>on</strong>s, . . . )<br />

+ correlated primordial k ⊥ and colour in beam remnant<br />

Many part<strong>on</strong>s produced close in space–time<br />

⇒ colour rearrangement; reducti<strong>on</strong> of total string length<br />

⇒ steeper 〈p ⊥ 〉(n ch )<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 16/46


Interleaved evoluti<strong>on</strong><br />

• Transverse-momentum-ordered part<strong>on</strong> showers for ISR and FSR<br />

• MPI also ordered in p ⊥<br />

⇒ Allows interleaved evoluti<strong>on</strong> for ISR, FSR and MPI:<br />

(<br />

dPMPI<br />

dP<br />

=<br />

dp ⊥ dp ⊥<br />

(<br />

× exp −<br />

+ ∑ dP ISR<br />

dp ⊥<br />

∫ p⊥max<br />

(<br />

dPMPI<br />

p ⊥<br />

dp ′ ⊥<br />

+ ∑ )<br />

dP FSR<br />

dp ⊥<br />

+ ∑ dP ISR<br />

dp ′ ⊥<br />

Ordered in decreasing p ⊥ using “Sudakov” trick.<br />

Corresp<strong>on</strong>ds to increasing “resoluti<strong>on</strong>”:<br />

smaller p ⊥ fill in details of basic picture set at larger p ⊥ .<br />

Start from fixed hard interacti<strong>on</strong> ⇒ underlying <strong>event</strong><br />

No separate hard interacti<strong>on</strong> ⇒ minbias <strong>event</strong>s<br />

Possible to choose two hard interacti<strong>on</strong>s, e.g. W − W −<br />

+ ∑ ) )<br />

dP FSR<br />

dp<br />

⊥<br />

′ dp ⊥<br />

′<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 17/46


Rescattering<br />

Rescattering<br />

Often<br />

assume<br />

that<br />

MPI =<br />

...but<br />

should<br />

also<br />

include<br />

Same order in α s , ∼ same propagators, but<br />

• <strong>on</strong>e PDF weight less ⇒ smaller σ<br />

• <strong>on</strong>e jet less ⇒ QCD radiati<strong>on</strong> background 2 → 3 larger than 2 → 4<br />

⇒ will be tough to find direct evidence.<br />

Rescattering grows with number of “previous” scatterings:<br />

Tevatr<strong>on</strong><br />

LHC<br />

Min Bias QCD Jets Min Bias QCD Jets<br />

Normal scattering 2.81 5.09 5.19 12.19<br />

Single rescatterings 0.41 1.32 1.03 4.10<br />

Double rescatterings 0.01 0.04 0.03 0.15<br />

R. Corke & TS, JHEP 01 (2010) 035<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 18/46


An x-dependent prot<strong>on</strong> size – 1<br />

Normally assume that PDFs factorize in l<strong>on</strong>gitudinal and<br />

transverse space:<br />

f (x, r) = f (x) ρ(r)<br />

In c<strong>on</strong>tradicti<strong>on</strong> with<br />

• intuitive picture of part<strong>on</strong>s spreading out by cascade to lower x<br />

• Mueller’s dipole cascade<br />

• formally BFKL, Balitsky-JIMWLK, Colour Glass C<strong>on</strong>densate, . . .<br />

• Froissart-Martin σ tot ∝ ln 2 s<br />

by Gribov <strong>the</strong>ory related to r p ∝ ln(1/x)<br />

• generalized part<strong>on</strong> distributi<strong>on</strong>s, . . .<br />

For now address inelastic n<strong>on</strong>diffrative <strong>event</strong>s with ansatz:<br />

ρ(r, x) ∝ 1 (<br />

a 3 (x) exp − r 2 )<br />

(<br />

a 2 with a(x) = a 0 1 + a 1 ln 1 )<br />

(x)<br />

x<br />

a 1 ≈ 0.15 tuned to rise of σ ND<br />

a 0 tuned to value of σ ND , given PDF, p ⊥0 , . . . ]<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 19/46


An x-dependent prot<strong>on</strong> size – 2<br />

C<strong>on</strong>voluti<strong>on</strong> of two incoming prot<strong>on</strong>s gives impact parameter shape<br />

Õ(b; x 1 , x 2 ) = 1 (<br />

1<br />

π a 2 (x 1 ) + a 2 (x 2 ) exp b 2 )<br />

−<br />

a 2 (x 1 ) + a 2 (x 2 )<br />

b 2 eik [fm]<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

a1 = 0.00<br />

a1 = 0.15<br />

a1 = 1.00<br />

(b)<br />

0.7<br />

10 2 10 3 10 4 10 5<br />

E CM [GeV]<br />

norm<br />

(1 / N) dN / db MPI<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

(a)<br />

SG<br />

DY<br />

Z 0<br />

Z’<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

norm<br />

b MPI<br />

C<strong>on</strong>sequence: collisi<strong>on</strong>s at large x will have to happen at small b,<br />

and hence fur<strong>the</strong>r large-to-medium-x MPIs are enhanced,<br />

while low-x part<strong>on</strong>s are so spread out that it plays less role.<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 20/46


Diffracti<strong>on</strong> – 1<br />

Diffracti<strong>on</strong><br />

Ingelman-Schlein:<br />

Ingelman-Schlein:<br />

Pomer<strong>on</strong><br />

Pomer<strong>on</strong><br />

as<br />

as<br />

hadr<strong>on</strong><br />

hadr<strong>on</strong><br />

with<br />

with<br />

part<strong>on</strong>ic<br />

part<strong>on</strong>ic<br />

c<strong>on</strong>tent<br />

c<strong>on</strong>tent<br />

Diffractive Diffractive <strong>event</strong> <strong>event</strong> = (Pomer<strong>on</strong> = (Pomer<strong>on</strong> flux) flux) × (IPp × (IPp collisi<strong>on</strong>) collisi<strong>on</strong>)<br />

p<br />

p<br />

Used e.g. in<br />

POMPYT<br />

IP<br />

POMWIG<br />

p<br />

PHOJET<br />

1) σ SD 1) σand SD and σ DD σ DD taken taken from from existing parametrizati<strong>on</strong>or or set by user.<br />

2) Shape 2) f IP/p of(x Pomer<strong>on</strong> IP , t) ⇒ diffractive distributi<strong>on</strong> mass inside spectrum, a prot<strong>on</strong>, p ⊥ fof IP/p prot<strong>on</strong> (x IP ,t) out.<br />

gives3) diffractive Smooth transiti<strong>on</strong> mass spectrum from simple and scattering model low p ⊥ masses of prot<strong>on</strong>.<br />

IPp with<br />

3) Atfull lowpp masses machinery: retainmultiple old framework, interacti<strong>on</strong>s, withpart<strong>on</strong> l<strong>on</strong>gitudinal showers, string(s). etc.<br />

Above 4) 10 Choice GeVbetween begin smooth 5 Pomer<strong>on</strong> transiti<strong>on</strong> PDFs. to IPp handled with full pp<br />

machinery: 5) Free multiple parameter interacti<strong>on</strong>s, σ IPp neededpart<strong>on</strong> fix 〈n showers, interacti<strong>on</strong>s<br />

beam 〉 = σ jet<br />

remnants, /σ IPp . . . . .<br />

4) Choice between 5 Pomer<strong>on</strong> PDFs.<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 21/46


Diffracti<strong>on</strong> – 2<br />

Beate Heinemann, MB/UE Working Group (also Sparsh Navin)<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 22/46


The Lund String Model<br />

In QCD, for large charge separati<strong>on</strong>, field lines seem to be<br />

compressed to tubelike regi<strong>on</strong>(s) ⇒ string(s)<br />

by self-interacti<strong>on</strong>s am<strong>on</strong>g soft glu<strong>on</strong>s in <strong>the</strong> “vacuum”.<br />

Gives linear c<strong>on</strong>finement with string tensi<strong>on</strong>:<br />

F (r) ≈ c<strong>on</strong>st = κ ≈ 1 GeV/fm ⇐⇒ V (r) ≈ κr<br />

String breaks into hadr<strong>on</strong>s al<strong>on</strong>g its length,<br />

with roughly uniform probability in rapidity,<br />

by formati<strong>on</strong> of new qq pairs that screen endpoint colours.<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 23/46


The Lund Glu<strong>on</strong> Picture<br />

Glu<strong>on</strong> = kink <strong>on</strong> string<br />

Force ratio glu<strong>on</strong>/ quark = 2,<br />

cf. QCD N C /C F = 9/4, → 2 for N C → ∞<br />

No new parameters introduced for glu<strong>on</strong> jets!<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 24/46


Charged Multiplicity Distributi<strong>on</strong> – 1<br />

P n<br />

3<br />

(a)<br />

10 CMS NSD CMS Data<br />

4<br />

7 TeV (x10 )<br />

PYTHIA D6T<br />

2<br />

10<br />

PYTHIA 8<br />

PHOJET<br />

10<br />

1<br />

2<br />

2.36 TeV (x10 )<br />

P n<br />

3<br />

(b)<br />

10 CMS NSD CMS Data<br />

4<br />

7 TeV (x10 )<br />

PYTHIA D6T<br />

2<br />

10<br />

PYTHIA 8<br />

PHOJET<br />

10<br />

1<br />

2<br />

2.36 TeV (x10 )<br />

-1<br />

10<br />

0.9 TeV (x1)<br />

-1<br />

10<br />

0.9 TeV (x1)<br />

-2<br />

10<br />

-2<br />

10<br />

-3<br />

10<br />

-3<br />

10<br />

-4<br />

10<br />

-5<br />

10<br />

|η| < 2.4<br />

p > 0<br />

T<br />

-4<br />

10<br />

-5<br />

10<br />

|η| < 2.4<br />

p > 0.5 GeV/c<br />

T<br />

-6<br />

10<br />

0 20 40 60 80 100 120 140 160 180<br />

n<br />

-6<br />

10<br />

0 20 40 60 80 100<br />

n<br />

We need to understand both average and spread.<br />

“Ankle”: transiti<strong>on</strong> from <strong>on</strong>e to ≥ 2 interacti<strong>on</strong>s?<br />

High multiplicity tail driven by abundant MPI rate.<br />

Broad spectrum of tunes even within given model.<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 25/46


Charged Multiplicity Distributi<strong>on</strong> – 2<br />

“Ankle” also present in ALICE and ATLAS data.<br />

Benchmark comparis<strong>on</strong>s ALICE/ATLAS/CMS generally successful.<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 26/46


Charged Transverse Momentum Distributi<strong>on</strong><br />

〈p ⊥ 〉 sensitive to colour correlati<strong>on</strong>s between MPIs!<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 27/46


Some in-house tunes: “handmade”<br />

Parameter 2C 2M 4C 4Cx<br />

SigmaProcess:alphaSvalue 0.135 0.1265 0.135 0.135<br />

SpaceShower:rapidityOrder <strong>on</strong> <strong>on</strong> <strong>on</strong> <strong>on</strong><br />

SpaceShower:alphaSvalue 0.137 0.130 0.137 0.137<br />

SpaceShower:pT0Ref 2.0 2.0 2.0 2.0<br />

Multipart<strong>on</strong>Interacti<strong>on</strong>s:alphaSvalue 0.135 0.127 0.135 0.135<br />

Multipart<strong>on</strong>Interacti<strong>on</strong>s:pT0Ref 2.320 2.455 2.085 2.15<br />

Multipart<strong>on</strong>Interacti<strong>on</strong>s:ecmPow 0.21 0.26 0.19 0.19<br />

Multipart<strong>on</strong>Interacti<strong>on</strong>s:bProfile 3 3 3 4<br />

Multipart<strong>on</strong>Interacti<strong>on</strong>s:expPow 1.60 1.15 2.00 N/A<br />

Multipart<strong>on</strong>Interacti<strong>on</strong>s:a1 N/A N/A N/A 0.15<br />

BeamRemnants:rec<strong>on</strong>nectRange 3.0 3.0 1.5 1.5<br />

SigmaDiffractive:dampen off off <strong>on</strong> <strong>on</strong><br />

SigmaDiffractive:maxXB N/A N/A 65 65<br />

SigmaDiffractive:maxAX N/A N/A 65 65<br />

SigmaDiffractive:maxXX N/A N/A 65 65<br />

R. Corke & TS, JHEP 03 (2011) 032, JHEP 05 (2011) 009<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 28/46


Systematic tuning<br />

RIVET: collecti<strong>on</strong> of experimental data,<br />

toge<strong>the</strong>r with matching analysis routines.<br />

Can be applied to <strong>generator</strong> <strong>event</strong>s<br />

for comparis<strong>on</strong> with data.<br />

PROFESSOR: parameter tuning<br />

in multidimensi<strong>on</strong>al parameter space.<br />

Generate large <strong>event</strong> samples at O(n 2 ) random points<br />

in (reas<strong>on</strong>able) parameter space. Slow!<br />

Analyze <strong>event</strong>s and fill relevant histograms.<br />

For each bin of each histogram parametrize<br />

n∑<br />

X MC = A 0 + B i p i<br />

i=1<br />

n∑ ∑n−1<br />

n∑<br />

C i pi 2 + D ij p i p j<br />

i=1 i=1 j=i+1<br />

Do minimizati<strong>on</strong> of χ 2 to parametrized results. Fast!<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 29/46


Prepackaged tunes<br />

Tune:pp selects prepackaged set of parameter changes.<br />

1 original values before any tunes<br />

2 Tune 1<br />

3 Tune 2C (CTEQ 6L1)<br />

4 Tune 2M (MRST LO**)<br />

5 Tune 4C<br />

6 Tune 4Cx<br />

7 ATLAS MB tune A2-CTEQ6L1<br />

8 ATLAS MB tune A2-MSTW2008LO<br />

9 ATLAS UE tune AU2-CTEQ6L1<br />

10 ATLAS UE tune AU2-MSTW2008LO<br />

11 ATLAS UE tune AU2-CT10<br />

12 ATLAS UE tune AU2-MRST2007LO*<br />

13 ATLAS UE tune AU2-MRST2007LO**<br />

Tune:ee similar but less extensive for FSR and hadr<strong>on</strong>izati<strong>on</strong>.<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 30/46


MCnet review<br />

MCnet Marie Curie network 2007 – 2010 worked <strong>on</strong> <strong>generator</strong>s<br />

and produced review<br />

“General-purpose <strong>event</strong> <strong>generator</strong>s for LHC physics”,<br />

A. Buckley et al. (MCnet), Phys. Rep. 504 (2011) 145,<br />

which compares <strong>Pythia</strong> 8.145 tune 4C, Herwig++, Sherpa:<br />

Fracti<strong>on</strong> of <strong>event</strong>s<br />

MC/data<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

Pseudorapidity, η, of3rdjet<br />

CDF<br />

<strong>Pythia</strong> 8.145<br />

Sherpa 1.2.3<br />

Herwig++ 2.5.0<br />

-4 -3 -2 -1 0 1 2 3 4<br />

η3<br />

]<br />

-1<br />

[rad<br />

Δφ<br />

d σ σ 1 d<br />

10<br />

1<br />

-1<br />

10<br />

-2<br />

10<br />

-3<br />

10<br />

7000 GeV pp Jets<br />

Di-jet Δφ (200 < pTlead < 300)<br />

CMS<br />

<strong>Pythia</strong> 8<br />

<strong>Pythia</strong> 8 (Tune 2C)<br />

<strong>Pythia</strong> 8 (Tune 2M)<br />

<strong>Pythia</strong> 8 (Tune 4C)<br />

CMS_2011_S8950903<br />

<strong>Pythia</strong> 8.170<br />

2 2.5 3<br />

Δφ [rad]<br />

Ratio to CMS<br />

1.5<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 31/46<br />

mcplots.cern.ch Rivet 1.8.1, ≥ 300k <strong>event</strong>s


MCnet – sec<strong>on</strong>d round<br />

MARIE CURIE ACTIONS<br />

M<strong>on</strong>te Carlo<br />

training studentships<br />

Manchester<br />

L<strong>on</strong>d<strong>on</strong><br />

Durham<br />

Lund<br />

Louvain<br />

Göttingen<br />

CERN Karlsruhe<br />

MCnet funded 2013 – 2016<br />

Projects:<br />

<strong>Pythia</strong> (incl. Vincia)<br />

Herwig<br />

Sherpa<br />

MadGraph<br />

Ariadne (incl. HEJ)<br />

CEDAR (Rivet, Professor)<br />

3-6 m<strong>on</strong>th fully funded studentships for current PhD<br />

students at <strong>on</strong>e of <strong>the</strong> MCnet nodes. An excellent opportunity<br />

to really understand and improve <strong>the</strong> M<strong>on</strong>te Carlos you use!<br />

Applicati<strong>on</strong> rounds every 3 m<strong>on</strong>ths.<br />

funded by:<br />

for details go to:<br />

www.m<strong>on</strong>tecarl<strong>on</strong>et.org<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 32/46


MCPLOTS<br />

Repository of comparis<strong>on</strong>s between various tunes and data,<br />

mainly based <strong>on</strong> RIVET for data analysis,<br />

see http://mcplots.cern.ch/.<br />

Part of <strong>the</strong> LHC@home 2.0 platform for home computer<br />

participati<strong>on</strong>.<br />

dN ch /dη<br />

1/N ev<br />

8<br />

7<br />

7000 GeV pp Minimum Bias<br />

Charged Particle η Distributi<strong>on</strong> (N<br />

ch<br />

> 2, p<br />

T<br />

> 0.1 GeV/c)<br />

ATLAS<br />

<strong>Pythia</strong> 8<br />

<strong>Pythia</strong> 8 (Tune 2C)<br />

<strong>Pythia</strong> 8 (Tune 2M)<br />

<strong>Pythia</strong> 8 (Tune 4C)<br />

dN ch /dη<br />

1/N ev<br />

3.5<br />

3<br />

7000 GeV pp Minimum Bias<br />

Charged Particle η Distributi<strong>on</strong> (N<br />

ch<br />

> 1, p<br />

T<br />

> 0.5 GeV/c)<br />

ATLAS<br />

<strong>Pythia</strong> 8<br />

<strong>Pythia</strong> 8 (Tune 2C)<br />

<strong>Pythia</strong> 8 (Tune 2M)<br />

<strong>Pythia</strong> 8 (Tune 4C)<br />

6<br />

2.5<br />

5<br />

2<br />

4<br />

3<br />

2<br />

ATLAS_2010_S8918562<br />

<strong>Pythia</strong> 8.153<br />

-2 0 2<br />

η<br />

mcplots.cern.ch<br />

1.5<br />

1<br />

ATLAS_2010_S8918562<br />

<strong>Pythia</strong> 8.153<br />

-2 0 2<br />

η<br />

mcplots.cern.ch<br />

1.5<br />

Ratio to ATLAS<br />

1.5<br />

Ratio to ATLAS<br />

1<br />

1<br />

0.5<br />

-2 0 2<br />

0.5<br />

-2 0 2<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 33/46


BSM physics 1: R-parity violati<strong>on</strong><br />

BSM Physics 1: R-parity violati<strong>on</strong><br />

Encountered in R-parity violating SUSY decays ˜χ 0 1 → uds,<br />

or when 2 valence quarks kicked out of prot<strong>on</strong> beam<br />

d (g)<br />

juncti<strong>on</strong><br />

lab frame<br />

d (g)<br />

rest frame<br />

J<br />

x<br />

u (r)<br />

120 ◦<br />

120 ◦ J<br />

120 ◦<br />

u (r)<br />

s (b)<br />

z<br />

d<br />

s<br />

s (b)<br />

q 4 flavour space<br />

q 4<br />

More complicated<br />

(but ≈solved) with<br />

q 5<br />

q 3 q 3 q 2 q 2 qq 1 qq 1 u glu<strong>on</strong> emissi<strong>on</strong> and<br />

q 5<br />

massive quarks<br />

P. Skands & TS, Nucl. Phys. B659 (2003) 243<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 34/46


BSM physics 2: BSM R-hadr<strong>on</strong>s Physics 2: R-hadr<strong>on</strong>s<br />

What if coloured (SUSY) particle like ˜g or ˜t 1 is l<strong>on</strong>g-lived?<br />

⋆ Formati<strong>on</strong> of R-hadr<strong>on</strong>s<br />

˜g q q ˜t 1 q “mes<strong>on</strong>s”<br />

˜g q q q ˜t 1 qq “bary<strong>on</strong>s”<br />

˜g g<br />

“glueballs”<br />

⋆ C<strong>on</strong>versi<strong>on</strong> between R-hadr<strong>on</strong>s<br />

by “low-energy” interacti<strong>on</strong>s with matter:<br />

˜g u d+p→ ˜g u u d + π + irreversible<br />

⋆ Displaced vertices if finite lifetime, or else<br />

⋆ punch-through: σ ≈ σ had but<br />

∆E < ∼ 1GeV≪ E kin,R<br />

A.C. Kraan, Eur. Phys. J. C37 (2004) 91;<br />

M. Fairbairn et al., Phys. Rep. 438 (2007) 1<br />

CMS, arXiv:1101.1645<br />

Partly <strong>event</strong> generati<strong>on</strong>, partly detector simulati<strong>on</strong>.<br />

Public add-<strong>on</strong> in PYTHIA 6, now integrated part of PYTHIA 8.<br />

Can also be applied to n<strong>on</strong>-SUSY l<strong>on</strong>g-lived “hadr<strong>on</strong>s”.<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 35/46


BSM physics 3: Hidden Valley (Secluded Sector) – 1<br />

BSM Physics 3: Hidden Valley (Secluded Sector)<br />

What if new gauge groups at low energy scales, hidden by<br />

potential barrier or weak couplings? (M. Strassler & K. Zurek, . . . )<br />

Complete framework implemented in PYTHIA:<br />

⋆ New gauge group ei<strong>the</strong>r Abelian U(1) or n<strong>on</strong>-Abelian SU(N)<br />

⋆ 3 alternative producti<strong>on</strong> mechanisms<br />

1) massive Z ′ : qq → Z ′ → q v q v<br />

2) kinetic mixing: qq → γ → γ v → q v q v<br />

3) massive F v charged under both SM and hidden group<br />

⋆ Interleaved shower in<br />

QCD, QED and HV sectors:<br />

add q v → q v γ v (and F v )<br />

or q v → q v g v , g v → g v g v ,<br />

which gives recoil effects<br />

also in visible sector<br />

L. Carl<strong>on</strong>i & TS, JHEP 09 (2010) 105;<br />

L. Carl<strong>on</strong>i, J. Rathsman & TS, JHEP 04 (2011) 091<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 36/46


BSM physics 3: Hidden Valley (Secluded Sector) – 2<br />

⋆ Hidden Valley particles may remain invisible, or . . .<br />

⋆ Broken U(1): γ v acquire mass, radiated γ v sdecayback<br />

γ v → γ → ff with BRs as phot<strong>on</strong> (⇒ lept<strong>on</strong> pairs!)<br />

⋆ SU(N): hadr<strong>on</strong>izati<strong>on</strong>inhiddensector,withfullstringfragmentati<strong>on</strong>,<br />

permitting up to 8 different q v flavours and 64 q v q v mes<strong>on</strong>s,<br />

but for now assumed degenerate in mass, so <strong>on</strong>ly distinguish<br />

– off-diag<strong>on</strong>al, flavour-charged, stable & invisible<br />

–diag<strong>on</strong>al,candecaybackq v q v → ff<br />

Even when tuned to same average activity, hope to separate U(1) and SU(N):<br />

#(N v )<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

Ab<br />

n<strong>on</strong>-Ab.<br />

0 2 4 6 8 10<br />

N v<br />

#(cos θ)<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Ab.<br />

n<strong>on</strong>-Ab.<br />

0<br />

0 0.5 1 1.5 2 2.5 3<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 37/46<br />

cos θ


W/Z emissi<strong>on</strong> in showers: motivati<strong>on</strong> – 1<br />

While showers work for W/Z + 1 jet<br />

<strong>the</strong>y fail for W/Z + ≥ 2 jets:<br />

σ(W + ≥ Njet jets) [pb]<br />

MC/data<br />

10 3 Inclusive Jet Multiplicity<br />

10 2<br />

10 1<br />

1<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

ATLAS data<br />

<strong>Pythia</strong>8 default<br />

<strong>Pythia</strong>8 ME2PS<br />

<strong>Pythia</strong>8 ME3PS<br />

p jet<br />

⊥ > 20 GeV<br />

0 1 2 3 4 5<br />

N jet<br />

(CKKW-L merging by Stefan Prestel)<br />

dσ/dp ⊥ [pb/GeV]<br />

MC/data<br />

dσ/d∆φ [pb]<br />

MC/data<br />

10 −1 1<br />

10 −2<br />

Third Jet p ⊥<br />

ATLAS data<br />

<strong>Pythia</strong>8 default<br />

<strong>Pythia</strong>8 ME2PS<br />

<strong>Pythia</strong>8 ME3PS<br />

p jet<br />

⊥ > 20 GeV<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

20 40 60 80 100 120<br />

p ⊥ [GeV]<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

Azimuthal Distance of Leading Jets<br />

ATLAS data<br />

<strong>Pythia</strong>8 default<br />

<strong>Pythia</strong>8 ME2PS<br />

<strong>Pythia</strong>8 ME3PS<br />

p jet<br />

⊥ > 20 GeV<br />

0 0.5 1 1.5 2 2.5 3<br />

∆φ(First Jet, Sec<strong>on</strong>d Jet)<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 38/46


W/Z emissi<strong>on</strong> in showers: motivati<strong>on</strong> – 2<br />

Q: So what is unique about W/Z + 2 jets?<br />

A: First order in which core “hard process”<br />

cannot be chosen as W/Z producti<strong>on</strong>!<br />

u<br />

g<br />

c<br />

W −<br />

u<br />

W +<br />

c<br />

s<br />

u<br />

s<br />

u<br />

W −<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 39/46


dummy<br />

W/Z emissi<strong>on</strong> in showers: motivati<strong>on</strong> – 3<br />

Leading electroweak correcti<strong>on</strong>s of type α w ln 2 (Q 2 /M 2 W ):<br />

Bloch-Nordsieck violati<strong>on</strong>: real/virtual n<strong>on</strong>-cancellati<strong>on</strong><br />

W/Z in final state is ano<strong>the</strong>r class of <strong>event</strong>s<br />

⇒ large negative correcti<strong>on</strong> to no-W/Z cross secti<strong>on</strong>s!<br />

Figure S. 19: Moretti, The effects M.R. of <strong>the</strong> Nolten O(αSα 2 and W )correcti<strong>on</strong>s[bottom]relativeto<strong>the</strong>fullLOresults(i.e.,<br />

D.A. Ross, Nucl. Phys. B759 (2006) 50<br />

through O(αS 2 + α Sα EW + αEW 2 )) [top] for <strong>the</strong> case of LHC for three choices of PDFs. They<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 40/46


W/Z emissi<strong>on</strong> in showers: progress<br />

Need to start from QCD 2 → 2 and add shower emissi<strong>on</strong> of W/Z:<br />

• FSR: final-state radiati<strong>on</strong> q → q ′ W ± , q → q Z 0 .<br />

• ISR: partly already covered by W/Z producti<strong>on</strong> processes.<br />

Project at a primitive stage; for now <strong>on</strong>ly e + e − annihilati<strong>on</strong>.<br />

Formulated as dipole emissi<strong>on</strong>, interleaved with QCD emissi<strong>on</strong>s<br />

For W emissi<strong>on</strong> interference between two dipole ends<br />

is replaced by interference between two flavour topologies:<br />

u<br />

e −<br />

e + γ u<br />

u<br />

e −<br />

W − e + γ d<br />

d<br />

d<br />

u<br />

W −<br />

d<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 41/46


Cloud #1 : Bose-Einstein Effects<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 42/46


Cloud #2: Flavour Compositi<strong>on</strong><br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 43/46


Cloud #3: The Ridge<br />

(d) CMS N ≥ 110, 1.0GeV/c


Strengths and weaknesses<br />

(subjectively, absolute or compared with Herwig++ and Sherpa)<br />

+ fair selecti<strong>on</strong> og built-in processes ready to go<br />

− no built-in ME <strong>generator</strong> (need e.g. MadGraph)<br />

− matching/merging/NLO usually not automatic<br />

± part<strong>on</strong> showers of comparable quality<br />

+ most sophisticated & robust MPI framework<br />

+ models for diffractive <strong>event</strong>s<br />

+ most sophisticated & robust hadr<strong>on</strong>izati<strong>on</strong> framework<br />

− no QED in hadr<strong>on</strong>ic decays (need e.g. Photos)<br />

+ interfaces & many opti<strong>on</strong>s ⇒ flexible<br />

+ user-friendly, well documented, many examples<br />

+ generally comparing well with LHC data . . .<br />

− . . . but known discrepancies, e.g. flavour compositi<strong>on</strong><br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 45/46


Summary and outlook<br />

<strong>Pythia</strong> 6 is winding down<br />

currently supported but not developed<br />

not supported after l<strong>on</strong>g shutdown 2013–14<br />

<strong>Pythia</strong> 8 is <strong>the</strong> natural successor<br />

is (sadly!) not yet quite up to speed in all respects<br />

but for most physics clearly better than <strong>Pythia</strong> 6<br />

Advise/plea to experimentalists<br />

gradually step up <strong>Pythia</strong> 8 usage to gain experience<br />

if you want new features <strong>the</strong>n be prepared to use <strong>Pythia</strong> 8<br />

provide feedback, both what works and what does not<br />

make relevant data available in RIVET<br />

do your own tunes to data and tell outcome<br />

News list:<br />

http://www.hepforge.org/lists/listinfo/pythia8-announce<br />

The work is never d<strong>on</strong>e!<br />

Torbjörn Sjöstrand <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Pythia</strong> 8 <strong>event</strong> <strong>generator</strong> slide 46/46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!