11.03.2015 Views

Analysis of diode lasers by nearfield scanning optical ... - brighter.eu

Analysis of diode lasers by nearfield scanning optical ... - brighter.eu

Analysis of diode lasers by nearfield scanning optical ... - brighter.eu

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

WWW.BRIGHTER.EU Tutorial<br />

Breaking the diffraction limit: <strong>Analysis</strong> <strong>of</strong><br />

<strong>diode</strong> <strong>lasers</strong> <strong>by</strong> <strong>nearfield</strong> <strong>scanning</strong><br />

<strong>optical</strong> microscopy (NSOM)<br />

Jens W. Tomm a and Christoph Lienau b<br />

a<br />

b<br />

Max­Born­Institut für Nichtlineare Optik und Kurzzeitspektroskopie<br />

Berlin, Max­Born­Str. 2 A, D­12489 Berlin, Germany<br />

Institut für Physik, Fk. V, Carl von Ossietzky Universität Oldenburg<br />

Ammerländer Heerstraße 114­118, D­26129 Oldenburg, Germany<br />

christoph.lienau@uni­oldenburg.de<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

1


Outline<br />

1. Introduction<br />

NSOM = Nearfield Scanning Optical Microscopy<br />

Principles and opportunities<br />

Spatial resolution<br />

2. Methodology<br />

Laser emission, spontaneous emission and PL<br />

3. NOBIC = Nearfield Optical Beam Induced Current<br />

4. Experimental setups and equipment<br />

5. <strong>Analysis</strong> <strong>of</strong> waveguides and determination <strong>of</strong> mode pr<strong>of</strong>iles<br />

6. VCSEL<br />

7. Surface recombination velocity at facets<br />

8. Defect creation during device operation<br />

9. Summary<br />

10. Acknowledgement<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

2


Introduction<br />

Nanostructures and Nanoanalytical Tools<br />

Optoelectronic devices<br />

Semiconductor Nanostructures<br />

10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm<br />

Far­field Optical Microscopy<br />

Near­Field Nano­Optics<br />

...<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

3


Introduction<br />

Scanning probe microscopy<br />

Compare: If 1 atom had the size <strong>of</strong> an orange,<br />

the cantilever would be 100 km long<br />

Disc players for atoms<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

4


Introduction<br />

Space<br />

100 pm<br />

1 nm<br />

10 nm<br />

100 nm<br />

1 µm<br />

10 µm<br />

100 µm<br />

Nuclear Electronic motion motion<br />

in molecules in atoms + molecules<br />

Energy transport in<br />

polymers<br />

Electronic<br />

+ large biomolecules<br />

motion in<br />

semiconductor nanostructures<br />

Quantum transport<br />

Surface plasmon dynamics<br />

in metallic nanostructures<br />

1ns<br />

100ps 10ps 1ps 100fs 10fs 1fs Time<br />

Physical phenomena happen on ultrashort length and time scales<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

5


Introduction<br />

Space<br />

100 pm<br />

1 nm<br />

Ultrafast nano­optics<br />

10 nm<br />

100 nm<br />

1 µm<br />

Electron microscopy<br />

Cathodoluminescence<br />

10 µm<br />

Ultrafast far­field<br />

100 µm <strong>optical</strong> microscopy<br />

Ultrafast nano­scale<br />

physics: Imaging tools<br />

1ns<br />

100ps 10ps 1ps 100fs 10fs 1fs Time<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

6


Introduction<br />

Rayleigh limit:<br />

D x » 0.61 l / N.A.<br />

Sum<br />

Intensity<br />

Spot 1<br />

Spot 2<br />

The resolution in <strong>optical</strong> microscopy is limited<br />

<strong>by</strong> the wavelength <strong>of</strong> light<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

7


Introduction<br />

Rayleigh limit:<br />

D x » 0.61 l / N.A.<br />

Sum<br />

Intensity<br />

Spot 1<br />

Spot 2<br />

The resolution in <strong>optical</strong> microscopy is limited<br />

<strong>by</strong> the wavelength <strong>of</strong> light<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

8


Introduction<br />

Breaking the resolution limit in microscopy<br />

Near­field <strong>scanning</strong> <strong>optical</strong> microscopy<br />

Diffraction­unlimited resolution<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

9


Introduction<br />

Spatial resolution in near­field microscopy<br />

Electromagnetic­field distribution: superposition <strong>of</strong> monochromatic plane waves:<br />

r r<br />

E = E exp( ik )exp(-<br />

i w t ) = E exp( ( i k x + k y )exp( ik z )exp(-<br />

i w t )<br />

0 0<br />

0<br />

r<br />

k = k = k + k + k<br />

0 0<br />

for given k , k : two solutions:<br />

x<br />

y<br />

(a) propagating waves:<br />

(b) evanescent waves:<br />

2 2 2<br />

x y z<br />

x y z<br />

2 2<br />

k lat = k x + k y < k 0<br />

k z real .<br />

2 2<br />

k = k + k > k<br />

k z imaginary .<br />

lat x y<br />

Consequence: Intensity <strong>of</strong> evanescent waves decreases exponentially with increasing z<br />

0<br />

How to get <strong>optical</strong> super­resolution ?:<br />

D k x D x ³ 1<br />

Use evanescent modes!<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

10


Introduction<br />

Diffraction Diffraction <strong>by</strong> 1­dimensinal <strong>by</strong> 1­dimensional slit (Kirchh<strong>of</strong>f Approximation)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

11


Introduction<br />

Diffraction <strong>by</strong> 1­Dimensional Slit (Kirchh<strong>of</strong>f Approximation)<br />

Diffraction <strong>by</strong> 1­dimensinal slit (Kirchh<strong>of</strong>f Approximation)<br />

Monochromatic plane wave (k 0<br />

= 2pn r<br />

/l ­ l = 800 nm) incident on slit (width d = 50 nm)<br />

1.0<br />

0<br />

Power Spectrum (a.u.)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

z =0 nm<br />

z = 10 nm<br />

z = 20 nm<br />

z = 40 nm<br />

z = 80 nm<br />

z = 160 nm<br />

l = 800 nm<br />

d = 50 nm<br />

n r<br />

= 3.4<br />

20<br />

40<br />

60<br />

80<br />

z Position (nm)<br />

0.0<br />

0 50 100 150 200<br />

Lateral Wavevector k lat<br />

(1/µm)<br />

100<br />

­200 ­100 0 100 200<br />

Lateral Position (nm)<br />

Evanescent waves: k lat<br />

> k 0<br />

= 2pn r<br />

/l ­ k z<br />

2<br />

= (k 0<br />

2<br />

­ k lat<br />

2<br />

) < 0 ­ k z<br />

imaginary<br />

Propagating waves: k lat<br />

< k 0<br />

= 2pn r<br />

/l ­ k z<br />

2<br />

= (k 0<br />

2<br />

­ k lat<br />

2<br />

) > 0 ­ k z<br />

real<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

12


Two­dimensional<br />

field distribution E x<br />

(x,y)<br />

behind a r=30 nm aperture<br />

in a perfect metal film<br />

Introduction<br />

40 z = 0 nm<br />

|E x<br />

(x,y,z)/E 0<br />

|<br />

40<br />

20<br />

20<br />

0 0<br />

z = 1 nm<br />

­20<br />

­40<br />

­20<br />

­40<br />

40<br />

­40 ­20 0 20 40<br />

z = 2 nm<br />

­40 ­20 0 20 40<br />

40 z = 5 nm<br />

y (nm)<br />

20<br />

20<br />

0 0<br />

­20<br />

­20<br />

­40<br />

­40<br />

20<br />

0<br />

­40 ­20 0 20 40<br />

40 z = 10 nm<br />

­20<br />

­40<br />

­40 ­20 0 20 40<br />

40 z = 40 nm<br />

20<br />

0<br />

­20<br />

­40<br />

­40 ­20 0 20 40<br />

x (nm)<br />

­40 ­20 0 20 40<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

13


Introduction<br />

Aperture­based near­field microscopy<br />

+ excellent rejection <strong>of</strong> propagating waves<br />

­ low transmission efficiency (10 ­4 ­ 10 ­3 for 100 nm apertures)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

14


Introduction<br />

Aperture­based near­field microscopy<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

15


Introduction<br />

Near­field Reflectance Spectroscopy<br />

with Uncoated Fiber Probes<br />

Illumination/Collection Mode<br />

Transmission efficiency close to 1<br />

Extremely high collection efficiency<br />

Sensitive probing <strong>of</strong> near­field reflectance<br />

1.0<br />

Reflectance (a.u.)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1000 500 0<br />

Distance (nm)<br />

Resolution down to l/5 (150 nm)<br />

Experiment: F. Intonti et al, PRL 87, 076801 (2001), PRB 63, 075313 (2001)<br />

Theory: R. Müller and C. Lienau, Appl. Phys. Lett. 76, 3367 (2000).<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

16


Pulse propagation<br />

through uncoated<br />

fiber probes<br />

2D modelling<br />

color­code<br />

represents<br />

│E│ 2 A 0<br />

2<br />

R. Müller Appl. Phys. Lett. 76, 3367<br />

(2000)<br />

and J. Microscopy 202, 339 (2001).<br />

Introduction<br />

Propagation through Uncoated Fiber Probes<br />

Z(µm)<br />

2<br />

z exit<br />

0<br />

x | 2 /A<br />

|Ê<br />

6<br />

4<br />

2<br />

6<br />

4<br />

6<br />

4<br />

2<br />

1.0<br />

0.5<br />

0.0<br />

40fs<br />

52fs<br />

2<br />

­2 ­1 0 1 2<br />

Y (µm)<br />

z = z exit<br />

260nm<br />

z = z exit<br />

+25nm<br />

285nm<br />

0<br />

­2 ­1 0 1<br />

­1 0 1 2<br />

Y (µm)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

17


Introduction<br />

Pulse propagation<br />

through metal­coated<br />

fiber probes<br />

R. Müller and C.<br />

Lienau<br />

Appl. Phys. Lett.<br />

76, 3367 (2000)<br />

J. Microscopy 202,<br />

339 (2001).<br />

Z(µm)<br />

2<br />

10 4 |Ê<br />

x | 2 /A<br />

0<br />

Power Density (norm.)<br />

Z exit<br />

2<br />

1<br />

1.0<br />

0.5<br />

0.0<br />

1.0<br />

0.5<br />

0.0<br />

(a)<br />

0<br />

­0.50 ­0.25 0.00 0.25 0.50<br />

Y(µm)<br />

(b)<br />

2<br />

0<br />

x | 2 /A<br />

10 4 |Ê<br />

z =z exit<br />

z=z exit<br />

+25nm<br />

30 40 50 60 70 80<br />

Delay Time (fs)<br />

(c)<br />

4<br />

2<br />

0<br />

­0.1 0.1<br />

Y (µm)<br />

10<br />

0.1<br />

0.001<br />

­0.1 0.1<br />

Y (µm)<br />

720 760 800 840 880<br />

Wavelength(nm)<br />

2D modelling<br />

color­code represents<br />

│E│ 2 A 0<br />

2<br />

│E│ 2 A 0<br />

2<br />

<strong>of</strong> a<br />

10 fs Gaussian pulse<br />

at the 100 nm aperture<br />

____ input pulse<br />

____ output pulse<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

18


Introduction<br />

Application: Raman spectroscopy <strong>of</strong> Carbon Nanotubes<br />

A. Hartschuh et al., Phys. Rev. Lett. (2003)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

19


Introduction<br />

Nanophotoluminescence <strong>of</strong> single localized excitons<br />

T = 15 K<br />

500 nm<br />

1.0<br />

F. Intonti et al., Phys. Rev. Lett. 87, 076801 (2001).<br />

Intensity (a.u.)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

790 792 794 796 798 800<br />

Wavelength (nm)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

20


Introduction<br />

Apertureless Near­field Scanning Optical Microscopy<br />

+ Strong field enhancement (10 x) at ultrasharp metal tips<br />

+ Spatial resolution limited <strong>by</strong> radius <strong>of</strong> curvature <strong>of</strong> the tip<br />

+ Spatial resolution down to 10 nm (and beyond?)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

21


Outline<br />

1. Introduction<br />

NSOM = Nearfield Scanning Optical Microscopy<br />

Principles and opportunities<br />

Spatial resolution<br />

2. Methodology, Laser emission, spontaneous emission and PL<br />

3. NOBIC = Nearfield Optical Beam Induced Current<br />

4. Experimental setups and equipment<br />

5. <strong>Analysis</strong> <strong>of</strong> waveguides and determination <strong>of</strong> mode pr<strong>of</strong>iles<br />

6. VCSEL<br />

7. Surface recombination velocity at facets<br />

8. Defect creation during device operation<br />

9. Summary<br />

10. Acknowledgement<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

22


<strong>Analysis</strong> <strong>of</strong> laser emission<br />

RW laser<br />

~10 nm 1 µm<br />

2 µm 3 µm 4 µm<br />

5 µm 6 µm 7 µm<br />

W. D. Herzog, M. S. Ünlü, B. B. Goldberg, G. H. Rhodes, and C. Harder, Appl. Phys. Lett. 65 688 (1997).<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

23


<strong>Analysis</strong> <strong>of</strong> laser emission<br />

VCSEL<br />

Emission intensity (color)<br />

Van der Rhodes et al.<br />

Appl. Phys. Lett. 72,1811 (1998)<br />

VCSEL aperture (blue)<br />

I=7 mA I=10 mA I=15 mA<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

24


<strong>Analysis</strong> <strong>of</strong> laser emission<br />

Such work at devices is extremely useful,<br />

1. if confocal microscopy<br />

fails<br />

if not, you waste<br />

your resources<br />

2. if the fiber tip does not<br />

influence the emission<br />

unfortunately, this is the<br />

case when investigating<br />

lasing devices<br />

These statements hold in general for the<br />

application <strong>of</strong> NSOM !<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

25


What is better?<br />

­ Spontaneous emission<br />

­ Photoluminescence<br />

­ Absorption (Photocurrent)<br />

Substrate<br />

AR­coating<br />

cladding<br />

fiber tip<br />

lock­in<br />

amplifier<br />

DQW<br />

waveguide<br />

cladding<br />

heat sink<br />

heat sink<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

26


What is better?<br />

­ Spontaneous emission<br />

­ Photoluminescence<br />

­ Absorption (Photocurrent)<br />

Substrate<br />

AR­coating<br />

cladding<br />

fiber tip<br />

lock­in<br />

amplifier<br />

DQW<br />

waveguide<br />

cladding<br />

heat sink<br />

heat sink<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

27


What is better?<br />

­ Spontaneous emission<br />

­ Photoluminescence<br />

­ Absorption (Photocurrent) NOBIC<br />

Substrate<br />

AR­coating<br />

cladding<br />

fiber tip<br />

lock­in<br />

amplifier<br />

DQW<br />

waveguide<br />

cladding<br />

heat sink<br />

heat sink<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

28


NOBIC<br />

NOBIC = Nearfield Optical Beam Induced Current<br />

Buratto et al. (AT&T Bell Lab.)<br />

Appl. Phys. Lett. 65, 2654 (1994)<br />

Excitation at 633 nm<br />

(2 mW in, ~2 nW out)<br />

NOBIC<br />

NOBIC signal (a.u.)<br />

A<br />

B<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

29


Outline<br />

1. Introduction<br />

NSOM = Nearfield Scanning Optical Microscopy<br />

Principles and opportunities<br />

Spatial resolution<br />

2. Methodology<br />

Laser emission, spontaneous emission and PL<br />

3. NOBIC = Nearfield Optical Beam Induced Current<br />

4. Experimental setups and equipment<br />

5. <strong>Analysis</strong> <strong>of</strong> waveguides and determination <strong>of</strong> mode pr<strong>of</strong>iles<br />

6. VCSEL<br />

7. Surface recombination velocity at facets<br />

8. Defect creation during device operation<br />

9. Summary<br />

10. Acknowledgement<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

30


Experimental setups and equipment<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

31


Experimental setups and equipment<br />

Fiber­tip distance control<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

32


Experimental setups and equipment<br />

Fiber­tip distance control<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

33


Experimental setups and equipment<br />

Home­built Scanning Near­field Optical Microscopes<br />

Set­up with cryostat for<br />

Measurements at 10 ­ 300 Kelvin<br />

G. Behme et al., Rev. Sci. Instrum.<br />

68, 3458 (1997)<br />

"Customers:"<br />

Uni Magdeburg, D<br />

KTH Stockholm, Sweden<br />

Forschungszentrum Jülich, D<br />

University <strong>of</strong> Arkansas, USA<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

34


Experimental setups and equipment<br />

NSOM data<br />

PC­signal (R)<br />

topography<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

35


Outline<br />

1. Introduction<br />

NSOM = Nearfield Scanning Optical Microscopy<br />

Principles and opportunities<br />

Spatial resolution<br />

2. Methodology<br />

Laser emission, spontaneous emission and PL<br />

3. NOBIC = Nearfield Optical Beam Induced Current<br />

4. Experimental setups and equipment<br />

5. <strong>Analysis</strong> <strong>of</strong> waveguides and determination <strong>of</strong> mode pr<strong>of</strong>iles<br />

6. VCSEL<br />

7. Surface recombination velocity at facets<br />

8. Defect creation during device operation<br />

9. Summary<br />

10. Acknowledgement<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

36


PC<br />

<strong>Analysis</strong> <strong>of</strong> waveguides<br />

Lock­in<br />

amplifier<br />

Lock­in<br />

amplifier<br />

Setup<br />

Excitation laser<br />

Modulator<br />

(1.2 kHz)<br />

AR coating<br />

Heat sink<br />

LOC waveguide<br />

Substrate<br />

Cladding layer<br />

Double quantum well<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

37


<strong>Analysis</strong> <strong>of</strong> waveguides<br />

Results obtained at single symmetric and<br />

asymmetric waveguides<br />

Step INdex<br />

SIN<br />

Large Optical Cavity<br />

LOC symmetric waveguide<br />

Large Optical Cavity<br />

LOC asymmetric waveguide<br />

potential<br />

potential<br />

potential<br />

0 1 2 3 4 5<br />

x (µm)<br />

0 1 2 3 4 5<br />

x (µm)<br />

0 1 2 3 4 5<br />

x (µm)<br />

resonant NSOM Photocurrent (Absorption)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

38


<strong>Analysis</strong> <strong>of</strong> waveguides<br />

Step INdex<br />

SIN<br />

Large Optical Cavity<br />

LOC symmetric waveguide<br />

Large Optical Cavity<br />

LOC asymmetric waveguide<br />

PC Signal (a.u.)<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

­1 0 1<br />

Tip Position (µm)<br />

PC Signal (a.u.)<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

­1 0 1<br />

Tip Position (µm)<br />

PC Signal (a.u.)<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

­1 0 1<br />

Tip Position (µm)<br />

m=2<br />

m=2<br />

m=1<br />

m=1<br />

m=0<br />

m=0<br />

­1 0 1<br />

Position (µm)<br />

­1 0 1<br />

Position (µm)<br />

­1 0 1<br />

Position (µm)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

39


<strong>Analysis</strong> <strong>of</strong> waveguides<br />

Comparison <strong>of</strong> the guided modes in a waveguide<br />

and the wavefunctions in a quantum well<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

40


<strong>Analysis</strong> <strong>of</strong> waveguides<br />

Step INdex<br />

SIN<br />

PC Signal (a.u.)<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

Large Optical Cavity<br />

LOC symmetric waveguide<br />

PC Signal (a.u.)<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Large Optical Cavity<br />

LOC asymmetric waveguide<br />

PC Signal (a.u.)<br />

1.0<br />

0.5<br />

0.0<br />

­1 0 1<br />

Tip Position (µm)<br />

0.0<br />

­1 0 1<br />

Tip Position (µm)<br />

0.0<br />

­1 0 1<br />

Tip Position (µm)<br />

­ NSOM Photocurrent reveals mode structure <strong>of</strong> waveguides<br />

­ asymmetric waveguides have a specific NSOM Photocurrent signature<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

41


<strong>Analysis</strong> <strong>of</strong> waveguides<br />

NOBIC contrast from the photocurrent phase for nonresonant<br />

(surface) excitation<br />

NOBIC line scans from the symmetric<br />

LOC structure<br />

NOBIC line scans from the asymmetric<br />

LOC structure<br />

Absolute Value,F, and E<br />

g<br />

(a.u., °, and eV)<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

excitation photon<br />

energy: 2.8 eV<br />

absolute value<br />

phase<br />

Absolute value,F, and E<br />

g<br />

(a.u., °, and eV)<br />

3,0<br />

2,0<br />

1,0<br />

excitation photon<br />

energy: 2.8 eV<br />

absolute value<br />

phase<br />

(117+­24) nm<br />

0,0<br />

­2 ­1 0 1 2<br />

x (µm)<br />

0,0<br />

­2 ­1 0 1 2<br />

x (µm)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

42


<strong>Analysis</strong> <strong>of</strong> waveguides<br />

Single waveguides<br />

­ Resonant excitation (coupling into the<br />

waveguide modes)<br />

­ NOBIC reveals mode structure <strong>of</strong> waveguides<br />

­ asymmetric waveguides have a specific NOBIC<br />

signature<br />

­ Non­resonant excitation (pure carrier­pair creation)<br />

­ detection <strong>of</strong> the QW within the waveguide<br />

T. Guenther et al.<br />

„Near­Field Photocurrent Imaging <strong>of</strong> the Optical Mode<br />

Pr<strong>of</strong>iles <strong>of</strong> Semiconductor Laser Diodes“<br />

Appl. Phys. Lett. 78 1463­1465 (2001).<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

43


‘regular’ high­power<br />

<strong>diode</strong> laser array<br />

Nanostack Ò<br />

<strong>Analysis</strong> <strong>of</strong> waveguides<br />

Nanostacks Ò ­ interband cascade <strong>diode</strong> laser<br />

Energy gap (eV)<br />

­ +<br />

J.<br />

2.2<br />

n<br />

p<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

­2 0 2 4 6 8 10<br />

Local position in growth direction (µm)<br />

n<br />

p<br />

P. van der Ziel and W. T. Tsang, Appl. Phys.<br />

Lett. 41, 499­501 (1982).<br />

J. Ch. Garcia, E. Rosencher, Ph. Collot, N.<br />

Laurent, J. L. Guyaux, B. Vinter, and J. Nagle,<br />

Appl. Phys. Lett. 71, 3752­3754 (1997).<br />

S. G. Patterson, G. S. Petrich, R. J. Ram, and L. A.<br />

Kolodziejski, Electron Lett. 35, 395 (1999).<br />

C. Hanke, L. Korte, B. D. Acklin, M. Behringer, G.<br />

Herrmann, J. Luft, B. De Odorico, M. Marchiano, J.<br />

Wilhelmi, Proc. SPIE 3947, 50­57(2000).<br />

http://www.osram­os.com/news/news_power.html<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

44


<strong>Analysis</strong> <strong>of</strong> waveguides<br />

Detailed analysis <strong>of</strong> Nanostacks<br />

Ò <strong>by</strong> NSOM­based<br />

spectroscopy<br />

­ Photoluminescence<br />

­ Photocurrent (Absorption)<br />

­ Device emission<br />

x (µm)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

1 2 3 4 5 6 7 8<br />

y (µm)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

45


Results from NanostacksÒ with two vertically stacked<br />

asymmetric waveguides<br />

NSOM Device Emission<br />

<strong>Analysis</strong> <strong>of</strong> waveguides<br />

1.0<br />

1.0<br />

Electroluminescence (a. u.)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Laser signal (a.u.)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.0<br />

0 2 4 6 8 10<br />

0 2 4 6 8 10<br />

x (µm)<br />

x (µm)<br />

Substrate<br />

duty cycle: 2x10 ­5<br />

no thermal load<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

46


<strong>Analysis</strong> <strong>of</strong> waveguides<br />

NSOM PL Emission<br />

1.00<br />

0.75<br />

1.0<br />

0.8<br />

11 µW<br />

160 nW<br />

16 nW<br />

PL signal (a. u.)<br />

0.50<br />

0.25<br />

PL signal (a. u.)<br />

0.6<br />

0.4<br />

0.2<br />

0.00<br />

0 2 4 6 8 10<br />

x (µm)<br />

excitation photon energy: 2.8 eV<br />

detection photon energy: 1.5 eV<br />

0.0<br />

0 2 4 6 8 10<br />

x (µm)<br />

excitation photon energy: 1.69 eV<br />

detection photon energy: 1.5 eV<br />

PL­signal ~ dn<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

47


<strong>Analysis</strong> <strong>of</strong> waveguides<br />

resonant and non­resonant NSOM Photocurrent (Absorption)<br />

1.0<br />

1.0<br />

0.8<br />

0.8<br />

PC signal (a. u.)<br />

0.6<br />

0.4<br />

0.2<br />

PC Signal (a. u.)<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 2 4 6 8 10<br />

x (µm)<br />

0.0<br />

0 2 4 6 8 10<br />

x (µm)<br />

excitation photon energy: 1.69 eV<br />

excitation photon energy: 2.8 eV<br />

Photocurrent­signal ~ dn´grad(V)<br />

V. Malyarchuk et al. "Uniformity tests <strong>of</strong> individual segments <strong>of</strong> interband<br />

cascade <strong>diode</strong> laser nanostacks Ò " J. Appl. Phys. 92, 2729­2733 (2002).<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

48


NOBIC at VCSELS<br />

Photocurrent (a.u.)<br />

VCSEL emission energy 'barrier<br />

10 0 absorption'<br />

due to<br />

the Al 0.25<br />

Ga 0.75<br />

As<br />

barriers<br />

'defect region'<br />

'QW region'<br />

onset <strong>of</strong> the Bragg­mirror<br />

absorption at about 1.62 eV<br />

10 ­1<br />

10 ­2<br />

10 ­3<br />

10 ­4<br />

10 ­5<br />

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8<br />

Photon energy (eV)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

49


Outline<br />

1. Introduction<br />

NSOM = Nearfield Scanning Optical Microscopy<br />

Principles and opportunities<br />

Spatial resolution<br />

2. Methodology<br />

Laser emission, spontaneous emission and PL<br />

3. NOBIC = Nearfield Optical Beam Induced Current<br />

4. Experimental setups and equipment<br />

5. <strong>Analysis</strong> <strong>of</strong> waveguides and determination <strong>of</strong> mode pr<strong>of</strong>iles<br />

6. VCSEL<br />

7. Surface recombination velocity at facets<br />

8. Defect creation during device operation<br />

9. Summary<br />

10. Acknowledgement<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

50


Surface Recombination Velocity<br />

v s<br />

Reflection PL experiment<br />

­ uncoated fiber tip<br />

­ spatial resolution: 150 nm<br />

L D<br />

51<br />

V. Malyarchuk, J. W. Tomm, V. Talalaev, Ch. Lienau,<br />

F. Rinner, and M. Ba<strong>eu</strong>mler Appl. Phys. Lett. 81 346 (2002).<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008


Surface Recombination Velocity<br />

P = 10 µW P = 300 µW<br />

QW PL collected<br />

through the fiber<br />

and detected <strong>by</strong><br />

a single photon<br />

counting system<br />

y (µm)<br />

2<br />

1<br />

0<br />

PL<br />

0 0.5 1.0<br />

­1 0 1 2 3<br />

x (µm)<br />

y (µm)<br />

2<br />

1<br />

0<br />

PL<br />

0 0.5 1.0<br />

­1 0 1 2 3<br />

x (µm)<br />

­0.06 0 0.06<br />

DPL<br />

­0.06 0 0.06<br />

DPL<br />

Line­leveled<br />

images<br />

y (µm)<br />

2<br />

1<br />

y (µm)<br />

2<br />

1<br />

0<br />

­1 0 1 2 3<br />

x (µm)<br />

0<br />

­1 0 1 2 3<br />

x (µm)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

52


Surface Recombination Velocity<br />

1.0<br />

Signal (a.u.)<br />

0.5<br />

300 µW<br />

100 µW<br />

30 µW<br />

R<br />

0.0<br />

0.0 1.0 2.0<br />

x (µm)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

53


Surface Recombination Velocity<br />

2 2<br />

n<br />

D( + ) n - + n g( x , y ) = 0<br />

L =<br />

D<br />

2 2<br />

x y t<br />

rec<br />

D t<br />

rec<br />

2 2<br />

0 y 0 y<br />

2<br />

( - x x ) + ( - )<br />

-<br />

2<br />

1<br />

s<br />

g( 0<br />

x, 0<br />

y)<br />

= e<br />

2 ps<br />

x=0:<br />

n<br />

D = v s<br />

× n<br />

x =<br />

x 0<br />

a<br />

0 0<br />

diffusion length L D and the product<br />

(v × t ) can be deduced<br />

s<br />

rec<br />

PL (a.u.)<br />

1.0<br />

0.5<br />

0.0<br />

PL<br />

v s<br />

= 0.5 x 10 6 cm/s<br />

v s<br />

= 1.0 x 10 6 cm/s<br />

v s<br />

= 3.0 x 10 6 cm/s<br />

0.0 1.0 2.0<br />

x (µm)<br />

Example calculated for:<br />

D = 15 cm 2 /s t = 1.7 ns<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

54


Surface Recombination Velocity<br />

1.0<br />

Signal (a.u.)<br />

0.5<br />

L D<br />

300 µW<br />

100 µW<br />

30 µW<br />

R<br />

0.0<br />

v s *J<br />

0.0 1.0 2.0<br />

x (µm)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

55


Surface Recombination Velocity<br />

3.0<br />

2.5<br />

Additional 2.5 ps­<br />

PL­experiment<br />

provides t<br />

2.0<br />

L<br />

D (µm)<br />

2.0<br />

1.5<br />

1.5<br />

1.0<br />

QW (ns)<br />

t<br />

1.0<br />

0.5<br />

0.5<br />

0.0<br />

1 10 100 1000<br />

Power (µW)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

56


Surface Recombination Velocity<br />

8.0<br />

30<br />

v<br />

s (10 6 cm/s)<br />

6.0<br />

4.0<br />

2.0<br />

20<br />

10<br />

D (cm 2 /s)<br />

0.0<br />

0<br />

1 10 100 1000<br />

Power (µW)<br />

V. Malyarchuk, J. W. Tomm, V. Talalaev, Ch. Lienau, F. Rinner, and M.Ba<strong>eu</strong>mler<br />

Appl. Phys. Lett. 81 346 (2002).<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

57


Outline<br />

1. Introduction<br />

NSOM = Nearfield Scanning Optical Microscopy<br />

Principles and opportunities<br />

Spatial resolution<br />

2. Methodology<br />

Laser emission, spontaneous emission and PL<br />

3. NOBIC = Nearfield Optical Beam Induced Current<br />

4. Experimental setups and equipment<br />

5. <strong>Analysis</strong> <strong>of</strong> waveguides and determination <strong>of</strong> mode pr<strong>of</strong>iles<br />

6. VCSEL<br />

7. Surface recombination velocity at facets<br />

8. Defect creation during device operation<br />

9. Summary<br />

10. Acknowledgement<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

58


Defect creation during device operation<br />

Result from the BRIGHT project<br />

200<br />

180<br />

160<br />

Osram (BRIGHT) 510­11+3<br />

2.5<br />

2.0<br />

10 4 PC FTIR Spectra<br />

Red LD OSRAM 510­3­11<br />

10 3<br />

Power (mW)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

0h<br />

0.5h<br />

1.5h<br />

3h<br />

9h<br />

15h<br />

31h<br />

55h<br />

1.5<br />

1.0<br />

0.5<br />

Voltage (V)<br />

PC signal (a.u.)<br />

10 2<br />

10 1<br />

10 0<br />

10 ­1<br />

Before Aging<br />

9h Aging<br />

30h Aging<br />

55h Aging<br />

20<br />

10 ­2<br />

0<br />

0.0 0.2 0.4 0.6 0.8<br />

Current (A)<br />

0.0<br />

1.0 1.5 2.0 2.5 3.0<br />

Energy (eV)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

59


Defect creation during device operation<br />

PC signal (a.u.)<br />

10 0 PC FTIR Spectra<br />

Red LD OSRAM 510­3­11<br />

10 ­1<br />

Before Aging<br />

9h Aging<br />

30h Aging<br />

55h Aging<br />

Defect­to­Band­<br />

Transitions?<br />

At 1.7 eV (730 nm), there is<br />

a threefold increase <strong>of</strong> the<br />

signal within 55 h <strong>of</strong> aging.<br />

10 ­2<br />

Where are the<br />

‘defects’ located?<br />

1.0 1.2 1.4 1.6 1.8<br />

Energy (eV)<br />

Active region???<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

60


Defect creation during device operation<br />

1. Laterally, i.e., where along the device…<br />

Osram (BRIGHT) 510­11+3<br />

LBIC signal (a.u.)<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

pristine device<br />

3h<br />

9h<br />

Front view <strong>of</strong> the laser structure<br />

substrate<br />

active region<br />

epi­layer sequence<br />

0.00<br />

0.0 0.2 0.4 0.6<br />

y (mm)<br />

LBIC (Laser Beam Induced Current) excited resonantly to the defects reveals<br />

them to be underneath the metalized emitter stripe.<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

61


Defect creation during device operation<br />

2. Vertically, i.e., where along the layer sequence …<br />

Front view <strong>of</strong> the laser structure<br />

substrate<br />

aged area<br />

‘Pristine’ reference<br />

area<br />

~ 1.5 µm<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

62


Defect creation during device operation<br />

NOBIC­Data:<br />

(Nearfield Optical Beam Induced Current)<br />

1000 nm 1000 nm 1000 nm<br />

633 nm 730 nm topography<br />

pristine device region<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

63


Defect creation during device operation<br />

1000 nm 1000 nm 1000 nm<br />

633 nm 730 nm topography<br />

aged device region<br />

Signal (a.u.)<br />

10 1 633 nm<br />

730 nm<br />

10 0<br />

10 ­1<br />

10 ­2<br />

aged region<br />

0.0 0.5 1.0 1.5 2.0<br />

x (µm)<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

64


Defect creation during device operation<br />

10 1 633 nm<br />

730 nm<br />

10 0<br />

10 1 633 nm<br />

730 nm<br />

10 0<br />

Signal (a.u.)<br />

10 ­1<br />

pristine region<br />

Signal (a.u.)<br />

10 ­1<br />

aged region<br />

10 ­2<br />

10 ­2<br />

0.0 0.5 1.0 1.5 2.0<br />

x (µm)<br />

0.0 0.5 1.0 1.5 2.0<br />

1.5 µm 1.5 µm<br />

x (µm)<br />

There is a threefold increase <strong>of</strong> the 730 nm­ signal with respect to the 633 nm­signal<br />

1.5 µm away from the active region (towards the heat sink), there is no photosensitivity.<br />

The creation <strong>of</strong> deep levels takes place at a location that allows interaction with the<br />

laser emission.<br />

There are additional 3 sets <strong>of</strong> data couples from different regions, which confirm the result.<br />

Claus Ropers et al. Appl. Phys. Lett. 88, 133513 (2006).<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

65


Summary<br />

NSOM = Nearfield Scanning Optical Microscopy<br />

Principles and opportunities<br />

Spatial resolution<br />

Methodology, Laser emission, spontaneous emission and PL<br />

NOBIC = Nearfield Optical Beam Induced Current<br />

Experimental setups and equipment<br />

<strong>Analysis</strong> <strong>of</strong> waveguides and determination <strong>of</strong> mode pr<strong>of</strong>iles<br />

VCSEL<br />

Surface recombination velocity at facets<br />

Defect creation during device operation<br />

NSOM is extremely useful if you need a spatial resolution beyond the<br />

diffraction limit.<br />

NOBIC allows <strong>optical</strong> analysis at devices along growth direction.<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

66


Acknowledgement<br />

• Christoph Lienau<br />

• Alexander Richter, Tobias Günther, Viktor Malyarchuk,<br />

Roland Müller, Claus Ropers, Thomas Elsässer<br />

• Martin Behringer, Johannes Luft, Peter Brick, Norbert<br />

Linder, Bernd Mayer, Martin Müller, Sönke Tautz,<br />

Wolfgang Schmid, Götz Erbert, Jürgen Sebastian,<br />

Siegfried Gramlich, Eberhard Richter, Heiko Kissel, Frank<br />

Brunner, Markus Weyers, Günter Tränkle<br />

WWW.BRIGHTER.EU Plenary Meeting at Tyndall, Cork 2008<br />

67

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!