12.03.2015 Views

Molecular phylogenetic analysis in ... - Prevenzione Oggi

Molecular phylogenetic analysis in ... - Prevenzione Oggi

Molecular phylogenetic analysis in ... - Prevenzione Oggi

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Vol. 1, no. 3-4, 69-77<br />

<strong>Molecular</strong> <strong>phylogenetic</strong> <strong>analysis</strong><br />

<strong>in</strong> ecogenotoxicological studies<br />

D. Davolos*,V. Iannilli**, E. De Matthaeis**, B. Pietrangeli*<br />

* ISPESL, Department of Production Plants and Environmental Interaction, Rome<br />

** University of Rome “La Sapienza”, Department of Animal and Human Biology<br />

ABSTRACT<br />

The usefulness of taxa belong<strong>in</strong>g to the Amphipoda (Crustacea) <strong>in</strong> environmental toxicology is welldocumented<br />

<strong>in</strong> literature and a grow<strong>in</strong>g number of studies are address<strong>in</strong>g this l<strong>in</strong>e of research. However, as<br />

with most ecotoxicology studies, this research is rarely supported by analyses of the genetic structure and<br />

evolutionary history of the taxa under exam<strong>in</strong>ation.The availability of such <strong>in</strong>formation becomes crucial<br />

when research is be<strong>in</strong>g carried out on the effects, such as genotoxic ones, of exposure to particular<br />

substances. In this work, two crustaceans (Orchestia garb<strong>in</strong>ii and Gammarus aequicauda;Amphipoda) from<br />

aquatic habitats and with different ecological characteristics were chosen as potential candidates for<br />

ecogenotoxicological assessment for water, as well as for sediments <strong>in</strong> toto. Data are presented on the<br />

genetic structure and on the relationships among populations of these Crustaceans, <strong>in</strong>ferred by us<strong>in</strong>g<br />

sequences of mitochondrial genes. Furthermore, various methods are discussed, which are helpful <strong>in</strong><br />

assess<strong>in</strong>g genotoxicity <strong>in</strong> tissues of organisms exposed <strong>in</strong> the laboratory and <strong>in</strong> populations taken from<br />

contam<strong>in</strong>ated sites.<br />

Prevention Today July - December 2005<br />

69<br />

(Key words: ecogenotoxicology, molecular phylogeny,Amphipoda)<br />

BOW PO/base <strong>in</strong>dex<strong>in</strong>g:<br />

EUOSHA - OSH: Genetic toxicology (26601D), Environmental pollution (05481D), Measurement and assessment<br />

(12561D)<br />

CIS: Ecogenetics (Wopg), Ecotoxicology (Sepe), Crustacea (Fidu),Water pollution (Bubue), Sampl<strong>in</strong>g and <strong>analysis</strong> (Qe)<br />

Reviewed and accepted: 20/02/2006 by Giovanni Alfredo Zapponi; 17/03/2006 by Laura Manc<strong>in</strong>i - National<br />

Institute of Health (ISS)


INTRODUCTION<br />

Prevention Today July - December 2005<br />

70<br />

The development of Community and national norms on the subject of water protection, geared <strong>in</strong>itially<br />

towards the protection of dr<strong>in</strong>k<strong>in</strong>g water, bath<strong>in</strong>g water and of the consumption of edible aquatic<br />

organisms, is currently geared towards an approach of <strong>in</strong>tegrated protection, tak<strong>in</strong>g <strong>in</strong>to account the<br />

necessity to safeguard the entire aquatic ecosystem. In fact, defence of the whole hydric environment from<br />

pollution caused by the <strong>in</strong>troduction of dangerous substances from specific and widespread sources is<br />

necessary <strong>in</strong> order to ensure the protection of human health (e.g. from risks deriv<strong>in</strong>g from the transfer of<br />

contam<strong>in</strong>ants through processes of bioaccumulation and biomagnification).<br />

Criteria for toxicity and ecotoxicity are therefore extremely useful for def<strong>in</strong><strong>in</strong>g environmental quality<br />

standards that are necessary to achieve a good chemical state <strong>in</strong> bodies of water 1-2 . The usefulness of<br />

determ<strong>in</strong>ed taxa <strong>in</strong> environmental toxicology is well-documented <strong>in</strong> scientific literature 3-5 . However,<br />

ecotoxicology studies are rarely supported by analyses of the genetic structure or the evolutionary history of<br />

the taxa under exam<strong>in</strong>ation.The availability of this <strong>in</strong>formation 6-14 turns out to be <strong>in</strong>dispensable when research<br />

is be<strong>in</strong>g carried out on the effects (e.g. the genotoxic effects) from exposure to particular substances 15-22 .<br />

Two Crustaceans belong<strong>in</strong>g to Amphipoda and l<strong>in</strong>ked to aquatic environments were chosen for this study,<br />

as potential candidates for ecogenotoxicological assessment (direct, <strong>in</strong>direct and long-term effects) both for<br />

water and for sediments <strong>in</strong> toto.Analyses were carried out on the talitrid, Orchestia garb<strong>in</strong>ii (Fig. 1), a semiterrestrial<br />

species found along the banks of lakes and rivers <strong>in</strong> Europe, and the gammarid, Gammarus<br />

aequicauda (Fig. 2), found <strong>in</strong> salt water and the lagoon systems of the Mediterranean.<br />

Figure 1 - Orchestia garb<strong>in</strong>ii (Crustacea,Amphipoda,Talitridae): adult male, 20 mm<br />

Figure 2 - Gammarus aequicauda (Crustacea,Amphipoda, Gammaridae): adult male, 15 mm<br />

In this paper, we present <strong>phylogenetic</strong> results on those crustaceans with the focus on gene sequences of<br />

mitochondrial DNA (mtDNA). We will also discuss various methods that are helpful for evaluat<strong>in</strong>g<br />

genotoxicity and mutagenesis <strong>in</strong> tissues of organisms exposed <strong>in</strong> the laboratory and <strong>in</strong> populations taken<br />

from contam<strong>in</strong>ated sites.


1. MATERIALS AND METHODS<br />

The sampl<strong>in</strong>g sites of O. garb<strong>in</strong>ii were: Lake Garda (Verona ) and Lake Bracciano (Rome) (Fig. 3a,b).The<br />

samples of G. aequicauda were taken from the follow<strong>in</strong>g sites: Lake Patria (Caserta); the mouth of the<br />

River Ombrone (Grosseto); the mouth of the River Mignone (Viterbo); the mouth of the River<br />

Candeloro, Manfredonia (Foggia).<br />

Figure 3 - Sampl<strong>in</strong>g sites of Orchestia garb<strong>in</strong>ii: (a) Lake Garda and (b) Lake Bracciano<br />

Lake Garda<br />

(a)<br />

Prevention Today July - December 2005<br />

71<br />

Lake Bolsena<br />

Lake Vico<br />

Lake Bracciano<br />

(b)


The methods used for amplification by Polymerase Cha<strong>in</strong> Reaction (PCR) and the sequenc<strong>in</strong>g of<br />

mitochondrial genes of the subunits I and II of the cytochrome oxidase (COI and COII) 23-5 and of 16S<br />

ribosomal RNA (16S rRNA) are shown <strong>in</strong> 14,26-27 . Homologous sequences of the mtDNA of talitrids 14 (one<br />

sequence is deposited <strong>in</strong> GenBank, NCBI, with access number AY555730), of gammarids 28,29 and of other<br />

Crustacea (extracted from GenBank) were used to carry out <strong>phylogenetic</strong> analyses by the Neighbour-<br />

Jo<strong>in</strong><strong>in</strong>g and Maximum Parsimony methods 14 . <strong>Molecular</strong> <strong>phylogenetic</strong> <strong>in</strong>ferences were carried out by us<strong>in</strong>g<br />

nucleotidic sequences (exam<strong>in</strong><strong>in</strong>g both transitions and transversions) and the deduced am<strong>in</strong>o acid<br />

sequences (with Poisson correction) 14 . From 500 to 1000 bootstrap replications were calculated for each<br />

<strong>phylogenetic</strong> reconstruction 10-14 .<br />

2. RESULTS<br />

Prevention Today July - December 2005<br />

72<br />

Mitochondrial regions encod<strong>in</strong>g prote<strong>in</strong> and ribosomal RNA of O. garb<strong>in</strong>ii and of G. aequicauda were<br />

amplified through the PCR method and then sequenced.The alignments with homologous sequences of<br />

Crustacea generally resulted as unambiguous.The gene tRNA LeuUUR was found between the genes for the<br />

subunits I and II of the cytochrome oxidase (COI and COII) <strong>in</strong> G. aequicauda, while COI-NC-COII 14<br />

rearrangement was found <strong>in</strong> O. garb<strong>in</strong>ii.<br />

Inferences on the evolutionary relationships of O. garb<strong>in</strong>ii and G. aequicauda (potential candidates for<br />

ecogenotoxicological assessment for water as well as for sediments) were obta<strong>in</strong>ed through <strong>phylogenetic</strong><br />

reconstruction us<strong>in</strong>g mitochondrial sequences. Figs. 4 and 5 show some results of a <strong>phylogenetic</strong> <strong>analysis</strong><br />

of the two Amphipods exam<strong>in</strong>ed and of other Crustacea, based on sequences of nucleotides and am<strong>in</strong>o<br />

acids encoded by the COI and COII genes. Fig. 6 shows a <strong>phylogenetic</strong> study of O. garb<strong>in</strong>ii and G. aequicauda<br />

based on nucleotide sequences of ribosomal RNA of the large subunit (16S rRNA).<br />

Figure 4 - <strong>Molecular</strong> phylogeny of O. garb<strong>in</strong>ii, talitrids and other Crustacea (sequences extracted from GenBank)<br />

obta<strong>in</strong>ed through (a) Neighbour-Jo<strong>in</strong><strong>in</strong>g on 121 am<strong>in</strong>o acids (Poisson correction) encoded by a region of the COI<br />

gene and (b) Maximum Parsimony (consensus tree) on 367 nucleotides of the COI gene<br />

56<br />

91<br />

64<br />

80 61<br />

56<br />

90<br />

92<br />

99<br />

99<br />

Panulirus japonicus<br />

Pagurus longicarpus<br />

Penaeus monodon<br />

Orchestia gammarellus (I. Cumbrae)<br />

Orchestia gammarellus (I.Wight)<br />

Orchestia mediterranea (I.Wight)<br />

Talorchestia deshayesii (I.Wight)<br />

Talitrus saltator (I.Wight)<br />

Talitrus ssltator (I. Cumbrae)<br />

Orchestia stephenseni<br />

Orchestia garb<strong>in</strong>ii (L. Garda)<br />

Orchestia garb<strong>in</strong>ii (L. Bracciano)<br />

Parhjale hawaiiensis<br />

Triops cancriformis<br />

Daphnia pulex<br />

Artemia francescana<br />

Tigriopus japonicus<br />

Hyalidae<br />

Talitridae<br />

Talitroidea<br />

0,05<br />

(a)


100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

66<br />

100<br />

100<br />

100<br />

Triops cancriformis<br />

Daphnia pulex<br />

Artemia francescana<br />

Panulirus japonicus<br />

Penaeus monodon<br />

Pagurus longicarpus<br />

Parhyale hawaiiensis Hyalidae<br />

Orchestia garb<strong>in</strong>ii (L. Garda)<br />

Orchestia garb<strong>in</strong>ii (L. Bracciano)<br />

Orchestia gammarellus (I. Cumbrae)<br />

Orchestia gammarellus (I.Wight)<br />

Orchestia mediterranea (I.Wight)<br />

Orchestia stephenseni (AY555730)<br />

Talitrus saltator (I.Wight)<br />

Talitrus saltator (I. Cumbrae)<br />

Talorchestia deshayesii (I.Wight)<br />

Talitridae<br />

Talitroidea<br />

(b)<br />

Figure 5 - <strong>Molecular</strong> phylogeny of O. garb<strong>in</strong>ii, of G. aequicauda and other Crustacea (sequences extracted from<br />

Genbank) obta<strong>in</strong>ed through Maximum Parsimony (consensus tree) on 114 am<strong>in</strong>o acids encoded by regions of the<br />

COI and COII genes<br />

100<br />

65<br />

89<br />

100<br />

74<br />

62<br />

73<br />

67<br />

66<br />

100<br />

99<br />

94<br />

Daphnia pulex<br />

Triops cancriformis<br />

Pagurus longicarpus<br />

Penaeus monodon<br />

Gammarus aequicauda (Mignone)<br />

Gammarus aequicauda (L. Patria)<br />

Gammarus aequicauda (Ombrone)<br />

Gammarus aequicauda (Candeloro)<br />

Parhyale hawaiiensis Hyalidae<br />

Orchestia garb<strong>in</strong>ii (L. Bracciano)<br />

Orchestia garb<strong>in</strong>ii (L. Garda)<br />

Talitrus saltator (I.Wight)<br />

Talitrus saltator (I. Cumbrae)<br />

Talorchestia deshayesii (I.Wight)<br />

Orchestia gammarellus (I.Wight)<br />

Orchestia gammarellus (I. Cumbrae)<br />

Orchestia mediterranea (I.Wight)<br />

Gammaridae<br />

Talitridae<br />

Talitroidea<br />

Prevention Today July - December 2005<br />

73<br />

Figure 6 - <strong>Molecular</strong> phylogeny of O. garb<strong>in</strong>ii, of G. aequicauda and of other Crustacea (sequences extracted from<br />

GenBank) obta<strong>in</strong>ed through Maximum Parsimony (consensus tree) on 246 nucleotides of the 16S rRNA gene (500<br />

bootstrap replications)<br />

98<br />

74<br />

99<br />

95<br />

100<br />

98<br />

77<br />

100<br />

88<br />

76<br />

Pagurus longicarpus<br />

Penaeus monodon<br />

Gammarus locusta<br />

Gammarus aequicauda (Black Sea)<br />

Gammarus aequicauda (L. Patria)<br />

Gammarus aequicauda (Mignone)<br />

Gammarus balcanicus<br />

Gammarus fasciatus<br />

Gammarus mucronatus<br />

Gammarus annulatus<br />

Gammarus oceanicus<br />

Gammarus elvirae<br />

Gammarus lacustris (L. Hovsgol)<br />

Chaetogammarus mar<strong>in</strong>us<br />

Orchestia garb<strong>in</strong>ii (L. Garda)<br />

Orchestia garb<strong>in</strong>ii (L. Bracciano)<br />

Orchestia “cavimana” (AY744911)<br />

Parhyale hawaiiensis Hyalidae<br />

Gammaridae<br />

Talitridae<br />

Talitroidea


3. DISCUSSION<br />

Prevention Today July - December 2005<br />

74<br />

Many human activities (<strong>in</strong> the <strong>in</strong>dustrial, urban, agricultural sectors, etc.) have caused an <strong>in</strong>crease <strong>in</strong> the<br />

environmental concentration of particular pollutants <strong>in</strong>clud<strong>in</strong>g heavy metals, mutagenic substances, etc.The<br />

negative effects (direct and <strong>in</strong>direct) of xenobiotic agents can be significant <strong>in</strong> natural populations 12-30 , with<br />

a potential risk of exposure and repercussions on human health 31 .<br />

In recent years, many research projects have focussed attention on the identification of species that are<br />

useful <strong>in</strong> ecogenotoxicological assessments on different types of matrices. However, the lack of<br />

<strong>phylogenetic</strong> analyses of the taxa under exam<strong>in</strong>ation may entail a marg<strong>in</strong> of error <strong>in</strong> the <strong>in</strong>terpretation of<br />

the research results, e.g. environmental-genotoxicological 16,17,21,22 .<br />

Low levels of genetic divergence found among the populations of O. garb<strong>in</strong>ii 33-34 validate this organism as a<br />

suitable subject for ecotoxicological <strong>in</strong>vestigation on various geographical scales 21-22-35 . It should be noted<br />

that our research group is <strong>in</strong>volved <strong>in</strong> further molecular studies to exam<strong>in</strong>e populations of O. garb<strong>in</strong>ii and<br />

G. aequicauda sampled <strong>in</strong> other geographical areas, analys<strong>in</strong>g especially the control region of mtDNA<br />

which generally presents hypervariable portions 36 and non-cod<strong>in</strong>g mitochondrial segments 14,37,38 .<br />

Furthermore, studies <strong>in</strong>to genotoxicology 39 and mutagenesis (Fig. 7) are underway on organisms exposed<br />

<strong>in</strong> the laboratory.<br />

Figure 7 - Nucleotidic mutation <strong>in</strong> the COI gene highlighted by sequenc<strong>in</strong>g of mtDNA. (Davolos, study pend<strong>in</strong>g).The<br />

chromatograms are visualized with Chromas software version 1.41<br />

870 880 890 900 910<br />

950 960 970 980


4. CONCLUSIONS<br />

Due to their biological characteristics and the ease with which they may be grown <strong>in</strong> the laboratory 22,40 ,<br />

the O. garb<strong>in</strong>ii and G. aequicauda species analyzed here are particularly suited to experiments on<br />

genotoxicological exposures.<br />

In literature, we can f<strong>in</strong>d various molecular protocols that are used to assess the levels of genotoxicity 18,31,41 .<br />

Among these, the electrophoretic <strong>analysis</strong> of DNA samples <strong>in</strong> agarose gel is useful for the identification and<br />

quantification of the k<strong>in</strong>d of damage caused at DNA level 39,42-45 . In addition, us<strong>in</strong>g <strong>in</strong> vivo and <strong>in</strong> vitro methods<br />

followed <strong>in</strong> DNA sequenc<strong>in</strong>g <strong>analysis</strong>, it is possible to identify any nucleotidic mutations <strong>in</strong>duced 21,22,45 .<br />

Nevertheless, the <strong>in</strong>formation on the genetic structure of the populations exam<strong>in</strong>ed is absolutely<br />

necessary for the <strong>in</strong>terpretation of the results of environmental-genotoxicological studies 15-22 .<br />

REFERENCES<br />

1. Italia. Decreto Legislativo 11 maggio 1999, n. 152.Testo aggiornato del decreto legislativo 11 maggio<br />

1999, n. 152, recante:“Disposizioni sulla tutela delle acque dall’<strong>in</strong>qu<strong>in</strong>amento e recepimento della<br />

direttiva 91/271/CEE concernente il trattamento delle acque reflue urbane e della direttiva<br />

91/676/CEE relativa alla protezione delle acque dall’<strong>in</strong>qu<strong>in</strong>amento provocato dai nitrati provenienti da<br />

fonti agricole”, a seguito delle disposizioni correttive ed <strong>in</strong>tegrative di cui al decreto legislativo18<br />

agosto 2000, n. 258”. Gazzetta Ufficiale n. 246, Supplemento Ord<strong>in</strong>ario n. 172, 20 ottobre 2000.<br />

2. Unione Europea. Direttiva 2000/60/CE del Parlamento Europeo e del Consiglio del 23 ottobre 2000<br />

che istituisce un quadro per l’azione comunitaria <strong>in</strong> materia di acque. Gazzetta ufficiale delle Comunità<br />

europee L327/1-72, 22 dicembre 2000.<br />

3. Schulz R. Us<strong>in</strong>g a freshwater amphipod <strong>in</strong> situ bioassay as a sensitive tool to detect pesticide effects <strong>in</strong><br />

the field. Environ Toxicol Chem 2003;22:1172-6.<br />

4. Schill RO, Kohler HR. Does the environment or the source of the population def<strong>in</strong>e stress status and<br />

energy supply <strong>in</strong> the freshwater amphipod Gammarus fossarum? Ecotoxicology 2004;13:683-95.<br />

5. Borgmann U, Couillard Y, Doyle P, Dixon DG.Toxicity of sixty-three metals and metalloids to Hyalella<br />

azteca at two levels of water hardness. Environ Toxicol Chem 2005;24:641-52.<br />

6. Meyran JC, Monnerot M,Taberlet P.Taxonomic status and <strong>phylogenetic</strong> relationships of some species<br />

of the genus Gammarus (Amphipoda) from mtDNA sequences. Mol Phylogenet Evol 1997;8:1-10.<br />

7. Meyran JC, Gielly L,Taberlet P. Environmental Ca and mtDNA polymorphism among populations of<br />

Gammarus fossarum (Amphipoda). Mol Ecol 1998;7:1391-400.<br />

8. Meyran JC, Taberlet P. mtDNA polymorphism among alp<strong>in</strong>e populations of Gammarus lacustris<br />

(Amphipoda). Freshw Biol 1998;39:259-65.<br />

9. Müller J. Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum<br />

types. Mol Phylogenet Evol 2000;15:260-8.<br />

10. De Matthaeis E, Davolos D, Cobolli M 1998. Genetic divergence between populations and species of<br />

talitrids from Aegean islands. J Hered 2000;89:37-43.<br />

11. De Matthaeis E, Davolos D, Cobolli M, Ketmaier V. Isolation by distance <strong>in</strong> equilibrium and non<br />

equilibrium populations of four talitrid amphipod species <strong>in</strong> the Mediterranean sea. Evolution<br />

2000;54:1606-13.<br />

12. Davolos D, Ketmaier V, Cobolli M, De Matthaeis E. Struttura genetica e livelli di differenziamento tra<br />

popolazioni e specie di Orchestia (Amphipoda, Talitridae) del Mediterraneo. Biogeographia<br />

2002;23:23-34.<br />

Prevention Today July - December 2005<br />

75


Prevention Today July - December 2005<br />

76<br />

13. Iannilli V, Ketmaier V, Ruffo S, De Matthaeis E. Multidiscipl<strong>in</strong>ary approach to the systematics of the Italian<br />

freshwater Gammarus (Amphipoda). In: Proceed<strong>in</strong>gs of the 4th European Crustacean Conference.<br />

Lodz (Poland); 2002.Abstracts, p. 46.<br />

14. Davolos D, Maclean N. Mitochondrial COI-NC-COII sequences of talitrid amphipods (Crustacea).<br />

Heredity 2005;94:81-6.<br />

15. Hogg ID, Larose C, de Lafonta<strong>in</strong>e Y, Doe KG. Genetic evidence for a Hyalella species complex with<strong>in</strong><br />

the Great Lakes - St. Lawrence River dra<strong>in</strong>age bas<strong>in</strong>: implications for ecotoxicology and conservation<br />

biology. Can J Zool 1998;76:1134-40.<br />

16. Stanton JL, Schizas NV, Chandler GT, Coull BC, Quattro JM. Ecotoxicology and population genetics: the<br />

emergence of phylogepgraphic and evolutionary ecotoxicology. Ecotoxicology 2001;10:217-22.<br />

17. Theodorakis CW. Integration of genotoxic and population genetic endpo<strong>in</strong>ts <strong>in</strong> biomonitor<strong>in</strong>g and<br />

risk assessment. Ecotoxicology 2001;10:245-56.<br />

18. Perk<strong>in</strong>s EJ, Lotufo GR. Play<strong>in</strong>g <strong>in</strong> the mud-us<strong>in</strong>g gene expression to assess contam<strong>in</strong>ant effects on<br />

sediment dwell<strong>in</strong>g <strong>in</strong>vertebrates. Ecotoxicology 2003;12:453-6.<br />

19. Whitehead A, Anderson SL, Kuivila KM, Roach JL, May B. Genetic variation among <strong>in</strong>terconnected<br />

populations of Catostomus occidentalis: implications for dist<strong>in</strong>guish<strong>in</strong>g impacts of contam<strong>in</strong>ants from<br />

biogeographical structur<strong>in</strong>g. Mol Ecol 2003;12:2817-33.<br />

20. Snape JR, Maund SJ, Pickford DB, Hutch<strong>in</strong>son TH. Ecotoxicogenomics: the challenge of <strong>in</strong>tegrat<strong>in</strong>g<br />

genomics <strong>in</strong>to aquatic and terrestrial ecotoxicology.Aquat Toxicol 2004;67:143-54.<br />

21. Davolos D, Pietrangeli B, Maclean N. Mitochondrial DNA sequence <strong>analysis</strong> and molecular phylogeny<br />

of Orchestia cavimana (Crustacea) <strong>in</strong> freshwater genotoxicological studies. In: Proceed<strong>in</strong>gs of the 34th<br />

Annual Meet<strong>in</strong>g of the European Environmental Mutagen society (EEMS 2004). Maastricht, the<br />

Netherlands: University of Maastricht; 2004.Abstracts PW2016.<br />

22. Davolos D, Maclean N, Pietrangeli B. A molecular <strong>phylogenetic</strong> study of the freshwater Orchestia<br />

cavimana (Crustacea). Riv Biol 2004;97:161-8.<br />

23. Capaldi RA.The complexity of a respiratory complex. Nature Struct Biol 1996;3:570-4.<br />

24. Saraste M. Oxidative Phosphorylation at the f<strong>in</strong> de siècle. Science 1999;283:1488-93.<br />

25. Tsukihara T,Aoyama H,Yamashita E,Tomizaki T,Yamaguchi H, Sh<strong>in</strong>zawa-Itoh, et al. Structures of metal<br />

sites of oxidized bov<strong>in</strong>e heart cytochrome c oxidase at 2.8 Å. Science 1995;269:1069-74.<br />

26. Davolos D, Maclean N. Evolutionary relationships among supralittoral talitrid amphipods (Crustacea)<br />

<strong>in</strong>ferred from mitochondrial sequence <strong>analysis</strong>. In: Proceed<strong>in</strong>gs of the “XXI Giornata dell’Ambiente.<br />

Aree costiere”. Roma, Italy:Accademia Nazionale dei L<strong>in</strong>cei. [2004];205:233-42.<br />

27. Müller JC, Schramm S, Seitz A. Genetic and morphological differentiation of Dikerogammarus <strong>in</strong>vaders<br />

and their <strong>in</strong>vasion history <strong>in</strong> Central Europe. Fresh Biol 2002;47:2039-48.<br />

28. Macdonald KS III,Yampolsky L Duffy JE. <strong>Molecular</strong> and morphological evolution of the amphipod<br />

radiation of Lake Baikal. Mol Phylogenet Evol 2005;35:323-43.<br />

29. Iannilli V, De Matthaeis E. Genetic divergence with<strong>in</strong> Gammarus aequicauda (Martynov, 1931) based<br />

on 16S mitochondrial DNA. In: Proceed<strong>in</strong>gs of The Sixth International Crustacean Congress.<br />

Glasgow, Scotland UK: University of Glasgow; 2005.<br />

30. Wurgler FE, Kramers PG. Environmental effects of genotox<strong>in</strong>s (eco-genotoxicology). Mutagenesis<br />

1992;7:321-7.<br />

31. Jha AN. Genotoxicological studies <strong>in</strong> aquatic organisms: an overview. Mutat Res 2004;552:1-17.<br />

32. Sato H, Aoki Y. Mutagenesis by environmental pollutants and bio-monitor<strong>in</strong>g of environmental<br />

mutagens. Curr Drug Metab 2002;3:311-9.


33. De Matthaeis E, Ketmaier V, Latella L, Ruffo S, Scap<strong>in</strong>i F,Tarocco M. Multidiscipl<strong>in</strong>ary approach to the<br />

study of a terrestrial Amphipod: the case of Orchestia cavimana. In: Proceed<strong>in</strong>gs of the IV European<br />

Crustacean Conference. Lodz, Poland; 2002.Abstracts 36.<br />

34. Ketmaier V,Amendola D, Scap<strong>in</strong>i F, De Matthaeis E. Large scale phylogeography of the landhopper<br />

Orchestia cavimana: comb<strong>in</strong><strong>in</strong>g allozymes and mtDNA. In: Proceed<strong>in</strong>gs of the XIth International<br />

Colloquium on Amphipoda.Tunis; 2003.<br />

35. Fialkowski W, Ra<strong>in</strong>bow PS, Smith BD, Zmudz<strong>in</strong>ski L. Seasonal variation <strong>in</strong> trace metal concentrations <strong>in</strong><br />

three talitrid amphipods from the Gulf of Gdansk, Poland. J Exp Mar Biol Ecol 2003;288:81-93.<br />

36. Chu KH, Li CP,Tam YK, Lavery S.Application of mitochondrial control region <strong>in</strong> population genetic<br />

studies of the shrimp Penaeus. Mol Ecol Notes 2003;3:120-2.<br />

37. Davolos D, Iannilli V, De Matthaeis E.Analysis on the mitochondrial region between the COI and COII<br />

genes <strong>in</strong> Crustacea. In: Proceed<strong>in</strong>gs of The Sixth International Crustacean Congress. Glasgow,<br />

Scotland UK: University of Glasgow; 2005.<br />

38. Davolos D, Iannilli V, De Matthaeis E. <strong>Molecular</strong> <strong>analysis</strong> on the mitochondrial COI-tRNALeuUUR-<br />

COII region <strong>in</strong> Gammarus aequicauda (Amphipoda, Gammaridae). In: Proceed<strong>in</strong>gs of the First<br />

Congress of Italian Evolutionary Biologists. Ferrara, Italy: University of Ferrara; 2005.<br />

39. Set<strong>in</strong>i A, Iannilli V. DNA strand breakage come biomarker di esposizione ai metalli. In: Proceed<strong>in</strong>gs of<br />

the 66th Annual Congress of the U.Z.I. 19-22 Sept 2005. Roma, Italy: 2005.<br />

40. Hecker A, Quennedey B,Testeniere O, Quennedey A, Graf F, Luquet G. Orchest<strong>in</strong>, a calcium-b<strong>in</strong>d<strong>in</strong>g<br />

phosphoprote<strong>in</strong>, is a matrix component of two successive transitory calcified biom<strong>in</strong>eralizations<br />

elaborated by a terrestrial crustacean. J Struct Biol 2004;146:310-24.<br />

41. Lee RF, Ste<strong>in</strong>ert S. Use of the s<strong>in</strong>gle cell gel electrophoresis/comet assay for detect<strong>in</strong>g DNA damage <strong>in</strong><br />

aquatic (mar<strong>in</strong>e and freshwater) animals. Mutat Res 2003;544:43-64.<br />

42. Costa FO, Neuparth T, Costa MH,Theodorakis CW, Shugart LR. Detection of DNA strand breakage<br />

<strong>in</strong> a mar<strong>in</strong>e amphipod by agarose gel electrophoresis: exposure to X-rays and copper. Biomarkers<br />

2002;7:451-63.<br />

43. Dixon DR, Pruski AM, Dixon LR, Jha AN. Mar<strong>in</strong>e <strong>in</strong>vertebrate eco-genotoxicology: a methodological<br />

overview. Mutagenesis 2002;17:495-507.<br />

44. Park S, Imlay JA. High levels of <strong>in</strong>tracellular cyste<strong>in</strong>e promote oxidative DNA damage by driv<strong>in</strong>g the<br />

fenton reaction. J Bacteriol 2003;185:1942-50.<br />

45. Braman J (ed.). In Vitro Mutagenesis Protocols. 2nd Edn.Totowa NJ: Humana Press; 2002.<br />

Prevention Today July - December 2005<br />

77

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!