15.03.2015 Views

Description of the 16-QAM simulation.

Description of the 16-QAM simulation.

Description of the 16-QAM simulation.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>QAM</strong><br />

Quadrature amplitude modulation (<strong>QAM</strong>) is a modulation scheme in which two sinusoidal carriers,<br />

one exactly 90 degrees out <strong>of</strong> phase with respect to <strong>the</strong> o<strong>the</strong>r, are used to transmit data over<br />

a given physical channel. One signal is called <strong>the</strong> I signal, and <strong>the</strong> o<strong>the</strong>r is called <strong>the</strong> Q signal.<br />

Because <strong>the</strong> orthogonal carriers occupy <strong>the</strong> same frequency band and differ by a 90 degree phase<br />

shift, each can be modulated independently, transmitted over <strong>the</strong> same frequency band, and<br />

separated by demodulation at <strong>the</strong> receiver. For a given available bandwidth, <strong>QAM</strong> enables data<br />

transmission at twice <strong>the</strong> rate <strong>of</strong> standard pulse amplitude modulation (PAM) without any degradation<br />

in <strong>the</strong> bit error ratio (BER).<br />

Ma<strong>the</strong>matically two independent signals x I () t and x Q () t , each bandlimited by ω g are transmitted.<br />

One signal is modulated by a cosine <strong>the</strong> o<strong>the</strong>r signal by a sinus carrier. Thus <strong>the</strong> signal<br />

x I () t ⋅ cos( ω 0 t)<br />

– x Q () t ⋅ sin( ω 0 t)<br />

(1)<br />

is transmitted. For simplicity back to back transmission is concerned. Thus <strong>the</strong> received signal<br />

is equal to (1). The in-phase part x I<br />

() t <strong>of</strong> <strong>the</strong> signal can be demodulated by multiplication <strong>of</strong><br />

cos( ω 0<br />

t)<br />

[ x I<br />

() t ⋅ cos( ω 0<br />

t)<br />

– x Q<br />

() t ⋅ sin( ω 0<br />

t)<br />

] ⋅ cos( ω 0<br />

t)<br />

= x I () t ⋅ cos 2 ( ω 0 t)<br />

– x Q () t ⋅ sin( ω 0 t)<br />

⋅ cos( ω 0 t)<br />

(2)<br />

=<br />

x I<br />

() t<br />

x<br />

---------- Q<br />

() t<br />

[ 1 + cos( 2ω<br />

2<br />

0<br />

t)<br />

] – ------------ ⋅ sin( 2ω<br />

2<br />

0<br />

t)<br />

and lowpass filtering<br />

x I () t<br />

x<br />

---------- Q () t<br />

[ 1+<br />

cos( 2ω<br />

2<br />

0<br />

t)<br />

]– ------------ ⋅ sin( 2ω<br />

2<br />

0<br />

t)<br />

* r ωg<br />

() t<br />

x I () t<br />

= ----------<br />

2<br />

. (3)<br />

* is <strong>the</strong> convolution operator and r ωg<br />

() t an ideal lowpass filter with cut-<strong>of</strong>f frequency ω g .<br />

Equation (3) only holds for 2ω g<br />

< ω 0 .<br />

Task 1<br />

Show, that <strong>the</strong> quadrature part qt () <strong>of</strong> <strong>the</strong> received signal (1) can be demodulated by multiplication<br />

<strong>of</strong> –sin( ω 0<br />

t)<br />

. (click for solution)<br />

With complex notation equation (1) can be written as<br />

⎧<br />

Re [ x I () t + jx Q () t ]e jω 0t ⎫<br />

⎨<br />

⎬. (4)<br />

⎩<br />

⎭<br />

In case <strong>of</strong> transmission <strong>of</strong> digital information<br />

∞<br />

∑<br />

x I () t = a I, n gt ( – nT)<br />

n = – ∞<br />

∞<br />

∑<br />

x Q () t = a Q, n gt ( – nT)<br />

n = – ∞


a n<br />

= a I, n + ja Q,<br />

n . (5)<br />

a n<br />

is <strong>the</strong> complex symbol sequence at <strong>the</strong> output <strong>of</strong> <strong>the</strong> mapper. Thus equation (4) can be written<br />

as<br />

∞<br />

⎧<br />

Re a n<br />

gt ( – nT)e jω 0t ⎫<br />

⎨ ∑<br />

⎬. (6)<br />

⎩<br />

⎭<br />

n = – ∞<br />

Task 2<br />

Show, that with complex notation <strong>the</strong> in-pase and quadrature component <strong>of</strong> <strong>the</strong> modulated signal<br />

(6) can be demodulated by multiplication <strong>of</strong> e jω 0t –<br />

and low-pass filtering. (click for solution)<br />

In <strong>the</strong> following<br />

t = nT, thus<br />

∞<br />

gt ()<br />

is assumed to be a Nyquist impulse with equidistant zero crossings at<br />

⎧<br />

g( 0) Re a n<br />

e jω 0nT ⎫<br />

⋅ ⎨ ∑ ⎬<br />

(7)<br />

⎩n<br />

= – ∞ ⎭<br />

is <strong>the</strong> received signal (6) after sampling. Now additive white gaussian noise (AWGN) is added.<br />

This is depicted in Fig. 1. As sampling and demodulation with ideal low-pass filtering are linear<br />

processes, this will lead to <strong>the</strong> received sequence<br />

g( 0)<br />

ã n<br />

= ----------a (8)<br />

2 n<br />

+ r n<br />

with discrete additive gaussian noise r n<br />

= r I, n + jr Q,<br />

n .<br />

In <strong>the</strong> following <strong>the</strong> impulse gt () is chosen suchlike, that <strong>the</strong> average signal energy<br />

M<br />

1<br />

S = ---- A<br />

2<br />

(9)<br />

M ∑ k<br />

k = 1<br />

and <strong>the</strong> average noise energy<br />

N = E { r 2 } I,<br />

n<br />

= E { r 2<br />

. (10)<br />

Q ,<br />

} = σ 2 n<br />

The decision device has to estimate â n<br />

out <strong>of</strong> ã n<br />

. â n<br />

should be <strong>the</strong> same sequence as a n<br />

. The<br />

influence <strong>of</strong> noise r n<br />

should be as low as possible. r I, n and r Q, n are assumed to be statistically<br />

independent. Thus <strong>the</strong> decision problem can be separated. In case <strong>of</strong> AWGN <strong>the</strong> noise r I,<br />

n and<br />

r Q, n follows <strong>the</strong> probability density function (pdf)<br />

1<br />

1 –-- -----<br />

r2<br />

p I ( r) = p Q ( r)<br />

= -------------- e<br />

2σ 2<br />

, (11)<br />

2πσ<br />

respectively. Thus <strong>the</strong> noise process is normally distributed with zero-mean and variance σ 2 .<br />

In total because real and imaginary part are statistically independent in complex notation<br />

e jω 0t<br />

nt ()<br />

e – jω<br />

0t<br />

low-pass<br />

decision<br />

demapper<br />

b m<br />

mapper a sampler<br />

n<br />

filter device<br />

ã â<br />

+<br />

n bˆ<br />

gt ()<br />

m<br />

× Re{}<br />

×<br />

n<br />

⎧ ⎪⎪⎪<br />

⎪<br />

⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩<br />

⎧ ⎨⎩<br />

⎧ ⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩<br />

transmitter tx AWGN receiver rx<br />

Fig. 1: principle communication system


1 -- ------<br />

pr ( ) = p I<br />

( r I<br />

) ⋅ p Q<br />

( r Q<br />

) = ------------e<br />

2 σ 2<br />

(12)<br />

2πσ 2<br />

is <strong>the</strong> pdf <strong>of</strong> r n<br />

.<br />

For example a four quadrature pulse shift keying (4-QPSK) system is analyzed. Thus<br />

a n<br />

∈ { A 1<br />

= 1 + j, A 2<br />

= 1–<br />

j, A 3<br />

= – 1 + j,<br />

A 4<br />

= – 1 – j}<br />

. Fig. 2 shows this signal constellation.<br />

Task 3<br />

1<br />

– r 2<br />

Calculate <strong>the</strong> average signal energy S 4-QPSK<br />

<strong>of</strong> <strong>the</strong> 4-QPSK. (click for solution)<br />

To this symbols a n<br />

AWGN is added. All four signal points are assumed to occure with <strong>the</strong> same<br />

probability. For simplicity g( 0)<br />

is assumed to be 2.<br />

Task 4<br />

Calculate <strong>the</strong> pdf p ãn<br />

( r) for ã n<br />

. (click for solution)<br />

Fig. 3 shows p ãn<br />

( r)<br />

in a 3-dimensional sketch. This is similar to <strong>the</strong> frequency <strong>of</strong> occurence in<br />

<strong>the</strong> <strong>16</strong>-<strong>QAM</strong> animation, where <strong>the</strong> 3rd dimension is equivalent to <strong>the</strong> density <strong>of</strong> received signal<br />

points, which are plotted in green and red colour. Green stands for correct decision and red for<br />

symbol error.<br />

The decision device has to choose <strong>the</strong> most probable signal point, wich may be sent. If <strong>the</strong> a-<br />

priori probability for <strong>the</strong> signal points is equal as mentioned, <strong>the</strong> decision thresholds consist <strong>of</strong><br />

perpendicular bisectors <strong>of</strong> <strong>the</strong> sides <strong>of</strong> adjacent signal points. That means <strong>the</strong> signal point, which<br />

is most close to <strong>the</strong> received point will be decided to. In this example <strong>the</strong> axes in Fig. 2 are also<br />

<strong>the</strong> decision thresholds.<br />

The probability <strong>of</strong> symbol errors (SER) can be calculated by integration <strong>of</strong> p Ak<br />

( r)<br />

(eq. (23); eg.<br />

Fig. 4) over <strong>the</strong> region in <strong>the</strong> complex r -plane where received symbols ã n<br />

would not be decided<br />

to <strong>the</strong> appropriate sent symbol a n<br />

= A k<br />

, respectively. This has to be done for all k signal<br />

points. The SER is <strong>the</strong> arithmetic average over all.<br />

Im[ A k<br />

]<br />

A 3<br />

1<br />

A 1<br />

1 Re[ A k<br />

]<br />

A 4<br />

A 2<br />

Fig. 2: 4-QPSK constellation


0<br />

∞<br />

1⎛<br />

P 4-QPSK<br />

= -- ⎜ p<br />

4 ∫ ∫ A1<br />

( r)<br />

dr Q<br />

dr I<br />

+ ∫ ∫ p A1<br />

( r)<br />

dr Q<br />

dr I<br />

+ ∫ ∫ p A2<br />

( r)<br />

dr Q<br />

dr I<br />

⎝<br />

–∞ –∞<br />

∞ ∞<br />

∞<br />

0<br />

0 –∞<br />

0<br />

∞<br />

–∞ –∞<br />

+ ∫ ∫ p ( A2<br />

r ) dr Q<br />

dr I<br />

+ ∫ ∫ p A3<br />

( r)<br />

dr Q<br />

dr I<br />

+ ∫ ∫ p A3<br />

( r)<br />

dr Q<br />

dr I<br />

0 0<br />

∞ ∞<br />

∞ ∞<br />

0 –∞<br />

∫ ∫ p ( A4<br />

r ) dr Q dr I ∫ ∫ p A4<br />

r<br />

+ +<br />

0 –∞<br />

0<br />

∞<br />

–∞ 0<br />

⎞<br />

( ) dr Q dr I ⎟<br />

⎠<br />

0<br />

0<br />

–∞ –∞<br />

(13)<br />

0.<strong>16</strong><br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

p ãn<br />

( r)<br />

p ãn<br />

( r)<br />

0.15<br />

0.1<br />

0.0432<br />

0.02<br />

0.01<br />

-2<br />

-1<br />

0<br />

Re[ r]<br />

1<br />

2<br />

-2<br />

-1<br />

0<br />

1<br />

Im[ r]<br />

2<br />

Fig. 3: probability density function <strong>of</strong> ã n<br />

for σ = 0.5<br />

P A1<br />

( r)<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

P A1<br />

( r)<br />

-2<br />

-1<br />

0<br />

Re[ r]<br />

1<br />

2<br />

-2<br />

-1<br />

0<br />

1<br />

Im[ r]<br />

2<br />

Fig. 4: probability density function <strong>of</strong> ã n<br />

if a n<br />

= A 1<br />

for σ = 0.5


P 4-QPSK<br />

= = ∫ ∫ p A1<br />

( r)<br />

dr Q<br />

dr I<br />

+ ∫ ∫ p A1<br />

( r)dr Q<br />

dr I<br />

= 1–<br />

∫ ∫ p A1<br />

( r)<br />

dr Q<br />

dr I<br />

The simplification in (14) can be done because <strong>of</strong> symmetry. To calculate this integral, <strong>the</strong> separation<br />

<strong>of</strong> (12) can be used.<br />

P 4-QPSK<br />

= 1 –<br />

(14)<br />

In equation (15) <strong>the</strong> substitutions<br />

r<br />

t I/Q<br />

– 1<br />

1 x<br />

= –---------------- and Qx ( ) = -- 1 – erf⎛------<br />

⎞ ⇔ erf( x)<br />

= 1 – 2Q( 2x)<br />

(<strong>16</strong>)<br />

2σ<br />

2 ⎝ 2⎠<br />

are used. With some routine <strong>the</strong> notation with <strong>the</strong> Q-function is very efficient. The Gaussian error<br />

function is defined as<br />

erf( x)<br />

Task 5<br />

Calculate P 4-QPSK as a function <strong>of</strong> SNR (average symbol energy per average noise energy) and<br />

as a function <strong>of</strong> SNRdB (SNR in decibel).<br />

Hint: Scale <strong>the</strong> signal points by a ( A k<br />

= 2a ). adapt <strong>the</strong> result in (15). Normalize adequately.<br />

(click for solution)<br />

Task 6<br />

In Fig. 5 <strong>the</strong> constellation diagram <strong>of</strong> a <strong>16</strong>-<strong>QAM</strong> is depicted. All signal points occure with <strong>the</strong><br />

same probability. Calculate P <strong>16</strong>-<strong>QAM</strong> as a function <strong>of</strong> SNR dB .<br />

Calculate <strong>the</strong> numerical values <strong>of</strong> P <strong>16</strong>-<strong>QAM</strong> for SNR dB = 01234567891011<br />

, , , , , , , , , , , .<br />

Compare your results with <strong>the</strong> calculated values in <strong>the</strong> <strong>16</strong>-<strong>QAM</strong> animation.<br />

Hint: There are three types <strong>of</strong> signal points with different error rate. (click for solution)<br />

Task 7<br />

Give <strong>the</strong> limit <strong>of</strong> SER <strong>of</strong> <strong>the</strong> <strong>16</strong>-<strong>QAM</strong> for very low SNR . (click for solution)<br />

Task 8<br />

0<br />

= 1 –<br />

∞<br />

–∞ –∞<br />

∞ ∞<br />

∫ ∫<br />

0 0<br />

∞<br />

∫<br />

0<br />

1<br />

------------e<br />

2πσ 2<br />

1<br />

-------------- e<br />

2πσ<br />

–∞<br />

– 2<br />

1<br />

–--<br />

r A 1<br />

-------------------<br />

2<br />

σ 2<br />

1( -- r I – A I1 , ) 2<br />

– -------------------------<br />

2<br />

σ 2<br />

∞<br />

0<br />

0 –∞<br />

dr Q<br />

dr I<br />

dr I<br />

⋅<br />

∞<br />

∫<br />

0<br />

1<br />

-------------- e<br />

2πσ<br />

1( -- r Q – A Q1 , ) 2<br />

– -----------------------------<br />

2<br />

Fig. 6 shows a screenshot <strong>of</strong> <strong>the</strong> <strong>16</strong>-<strong>QAM</strong> animation. Only one symbol error occured (red<br />

point). Which signal point was most probably sent? (click for solution)<br />

σ 2<br />

∞ ∞<br />

0 0<br />

dr Q<br />

1<br />

1 –------<br />

e – 1 1<br />

= – ∫<br />

t2 dt 1 --erf ----------<br />

π<br />

2 ⎝<br />

⎛ 2σ⎠<br />

⎞ 1 2<br />

= – + -- = 2Q⎛ 1<br />

2 ⎝σ -- ⎞ – Q<br />

⎠<br />

2 ⎛ 1 ⎝σ -- ⎞<br />

⎠<br />

x<br />

0<br />

1<br />

----------<br />

2σ<br />

2<br />

2<br />

= ------<br />

∫e – x2 dx . (17)<br />

π<br />

(15)


Task 9<br />

Start <strong>the</strong> <strong>16</strong>-<strong>QAM</strong> animation with SNR dB ≈ 20dB . Wait until more than 10 errors (red points)<br />

occured. Make sure, <strong>the</strong>y agglomerate at <strong>the</strong> decision thresholds.<br />

Gray coding is a coding scheme where adjacent signal points differ only by one bit in coding.<br />

Why is this coding scheme useful for <strong>QAM</strong> modulation?<br />

What about low SNR ? (click for solution)<br />

Im[ A k<br />

]<br />

3a<br />

A 1<br />

A 2<br />

A 3<br />

A 4<br />

a<br />

A 5<br />

A 6<br />

A 7 A 8<br />

a<br />

3a<br />

Re[ A k<br />

]<br />

A 9<br />

A 10<br />

A 11<br />

A 12<br />

A 13<br />

A 14<br />

A 15<br />

A <strong>16</strong><br />

Fig. 5: <strong>16</strong>-<strong>QAM</strong> constellation<br />

Fig. 6: Screenshot <strong>of</strong> <strong>the</strong> <strong>16</strong>-<strong>QAM</strong> animation


Solution 1 (click to go back)<br />

–[ x I () t ⋅ cos( ω 0 t)<br />

– x Q () t ⋅ sin( ω 0 t)<br />

] ⋅ sin( ω 0 t)<br />

= – x I () t ⋅ sin( ω 0 t)<br />

⋅ cos( ω 0 t)<br />

+ x Q () t ⋅ sin 2 ( ω 0 t)<br />

x I<br />

() t<br />

x<br />

---------- Q<br />

() t<br />

= – ⋅ sin( 2ω<br />

2<br />

0<br />

t)<br />

+ ------------ [ 1 – cos( 2ω<br />

2<br />

0<br />

t)<br />

]<br />

After lowpass filtering (* is <strong>the</strong> convolution operator):<br />

x I<br />

() t<br />

x<br />

---------- Q<br />

() t<br />

– ⋅ sin( 2ω<br />

2<br />

0<br />

t)<br />

+ ------------ [ 1 – cos( 2ω<br />

2<br />

0<br />

t)<br />

] * r ωg<br />

() t<br />

x Q<br />

() t<br />

= ------------<br />

2<br />

(click to go back)<br />

(18)<br />

(19)


Solution 2 (click to go back)<br />

1<br />

With Re{ z}<br />

= -- ( z + z)<br />

, whereby z is <strong>the</strong> conjugate complex number <strong>of</strong> z , after mutliplication<br />

– 2<br />

<strong>of</strong> e jω 0t<br />

∞<br />

⎧<br />

Re a n<br />

gt ( – nT)e jω 0t ⎫ – jω 0 t<br />

⎨ ∑<br />

⎬⋅<br />

e<br />

⎩<br />

⎭<br />

n = – ∞<br />

∞<br />

1<br />

-- a<br />

2 n e jω 0t –<br />

a n e jω 0t<br />

–<br />

( + )gt ( – nT) e jω 0t<br />

= ∑<br />

⋅<br />

n = – ∞<br />

∞<br />

1<br />

–<br />

-- a<br />

2 n<br />

a n<br />

e j2ω 0t<br />

= ∑ ( + )gt ( – nT)<br />

n = – ∞<br />

and after lowpass filtering (20) gets<br />

∞<br />

1<br />

–<br />

-- a<br />

2 n<br />

a n<br />

e j2ω 0t<br />

∑ ( + )gt ( – nT )<br />

1<br />

* r ωg<br />

() t = -- a<br />

2 ∑ n<br />

gt ( – nT)<br />

n = – ∞<br />

(click to go back)<br />

∞<br />

n = – ∞<br />

(20)<br />

(21)


Solution 3 (click to go back)<br />

4<br />

1<br />

S 4-QPSK<br />

-- A 2 1<br />

=<br />

4 ∑ k<br />

= -- ( 1 + j<br />

4<br />

+ 1 – j<br />

+ – 1 + j<br />

+ – 1 – j<br />

) =<br />

k = 1<br />

2 . (22)<br />

The signal and noise power do not have units, because <strong>of</strong> standardization!<br />

(click to go back)


Solution 4 (click to go back)<br />

p ãn<br />

4<br />

1<br />

( r)<br />

= -- p<br />

4 ∑ Ak<br />

( r)<br />

=<br />

k = 1<br />

(click to go back)<br />

1<br />

--<br />

4<br />

4<br />

∑<br />

k = 1<br />

1<br />

------------e<br />

2πσ 2<br />

– 2<br />

1<br />

–--<br />

r A k<br />

------------------<br />

2<br />

σ 2<br />

(23)


Solution 5 (click to go back)<br />

With <strong>the</strong> new signal points A 1<br />

= a + ja ; A 2<br />

= a – ja ; A 3<br />

= – a + ja ; A 4<br />

= – a – ja <strong>the</strong><br />

average signal energy<br />

S 4-QPSK = 2a 2 . (24)<br />

Thus <strong>the</strong> SER gets<br />

P 4-QPSK<br />

2Q⎛ a ⎝σ -- ⎞ Q<br />

⎠<br />

– 2 ⎛ a ⎝σ -- ⎞<br />

⎠<br />

2Q ⎛------<br />

1 2a 2<br />

2<br />

-------- ⎞<br />

⎝ σ 2 Q<br />

⎠<br />

2 1<br />

= =<br />

– ⎛------<br />

⎝ 2<br />

2a<br />

--------<br />

2 ⎞<br />

⎠<br />

SNR dB<br />

SNR .<br />

= 2Q<br />

SNR ----------<br />

⎝<br />

⎛ 2 ⎠<br />

⎞ – Q2 ⎛ SNR ---------- ⎞ 2Q 10 ---------------<br />

dB<br />

⎛<br />

10<br />

⎞ ⎛ ---------------<br />

⎜ ------------------ ⎟ Q<br />

⎝ 2 ⎠ ⎜ 2 ⎟<br />

2 10<br />

10<br />

⎞<br />

=<br />

– ⎜ ------------------ ⎟<br />

⎜ 2 ⎟<br />

⎝ ⎠ ⎝ ⎠<br />

(click to go back)<br />

σ 2


Solution 6 (click to go back)<br />

S <strong>16</strong>-<strong>QAM</strong> = 10a 2<br />

(25)<br />

4<br />

P <strong>16</strong>-<strong>QAM</strong> = ----- 2Q⎛ a<br />

<strong>16</strong> ⎝σ -- ⎞ – Q<br />

⎠<br />

2 ⎛ a ⎝σ -- ⎞<br />

⎠<br />

⎧ ⎪⎪⎪⎨⎪⎪⎪⎩<br />

A 1<br />

, A 4<br />

, A 13<br />

, A <strong>16</strong><br />

+<br />

8<br />

----- Q⎛ a<br />

<strong>16</strong> ⎝σ -- ⎞ ⎧<br />

+ 1 – Q⎛ a<br />

⎠ ⎝σ -- ⎞<br />

⎨ ⎠<br />

⎩<br />

⎧ ⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩<br />

⎫ ⎧<br />

⎬⋅<br />

⎨<br />

⎭ ⎩<br />

⎛ ⎞ Q⎛ a ⎝σ -- ⎞⎫<br />

+<br />

⎠⎬<br />

⎭<br />

Q a σ -- ⎝ ⎠<br />

A 2<br />

, A 3<br />

, A 5<br />

, A 8<br />

, A 9<br />

, A 12<br />

, A 14<br />

, A 15<br />

+<br />

4<br />

----- 2Q⎛ a<br />

<strong>16</strong> ⎝σ -- ⎞ ⎧<br />

+ 1–<br />

2Q⎛ a<br />

⎠ ⎝σ -- ⎞<br />

⎨ ⎠<br />

⎩<br />

⎧ ⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩<br />

A 6<br />

, A 7<br />

, A 10<br />

, A 11<br />

⎫ a<br />

⎬⋅<br />

2Q --<br />

⎝ ⎛ ⎭ σ⎠<br />

⎞<br />

(26)<br />

3Q⎛ a ⎝σ -- ⎞ 9<br />

= – --Q<br />

⎠ 4<br />

2 ⎛ a ⎝σ -- ⎞ 3Q⎛ SNR ---------- ⎞ 9<br />

=<br />

– --Q<br />

⎠ ⎝ 10 ⎠ 4<br />

2 ⎛<br />

⎝<br />

SNR<br />

---------- ⎞<br />

10 ⎠<br />

=<br />

⎛<br />

3Q⎜<br />

⎜<br />

⎝<br />

SNR dB<br />

10 ---------------<br />

10<br />

⎞<br />

------------------ ⎟<br />

10 ⎟<br />

⎠<br />

–<br />

SNR dB<br />

⎛ ---------------<br />

9<br />

--Q<br />

4<br />

2 10<br />

10<br />

⎞<br />

⎜ ------------------ ⎟<br />

⎜ 10 ⎟<br />

⎝ ⎠<br />

(27)<br />

SNR dB<br />

P <strong>16</strong>-<strong>QAM</strong><br />

SNR dB<br />

P <strong>16</strong>-<strong>QAM</strong><br />

0 0.80979256 12 0.28773651<br />

1 0.79027909 13 0.22268236<br />

2 0.76759250 14 0.<strong>16</strong>230454<br />

3 0.74125244 15 0.10984263<br />

4 0.71074913 <strong>16</strong> 0.067830428<br />

5 0.67557021 17 0.037404624<br />

6 0.63524598 18 0.017932041<br />

7 0.58941918 19 0.0072268271<br />

8 0.53794439 20 0.0023467250<br />

9 0.48101796 21 0.00058187175<br />

10 0.41932991 22 0.00010290522<br />

11 0.35421249 23 0.000011907710<br />

(click to go back)


Solution 7 (click to go back)<br />

15<br />

In case <strong>of</strong> very low SNR all signal points are equal probable. Thus P <strong>16</strong>-<strong>QAM</strong> → -----<br />

<strong>16</strong><br />

(click to go back)<br />

= 0.9375


Solution 8 (click to go back)<br />

Signal point A 13<br />

was most probably sent, because it is <strong>the</strong> second most close signal point to <strong>the</strong><br />

received signal point (red point).<br />

(click to go back)


Solution 9 (click to go back)<br />

In case <strong>of</strong> gray coding most symbol errors lead to only one bit error, because most wrong decided<br />

symbols come from adjacent signal points and <strong>the</strong> coding <strong>of</strong> <strong>the</strong>m differ only by one bit.<br />

Thus approximately if M bits are transmitted per symbol <strong>the</strong> bit error ratio (BER) is equal to<br />

P SER<br />

P BER<br />

≈ ----------- . (28)<br />

M<br />

This only holds for high SNR . In case <strong>of</strong> low SNR a lot <strong>of</strong> wrong decided symbols come from<br />

signal points far away. The advatage <strong>of</strong> gray coding vanishs.<br />

(click to go back)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!