15.03.2015 Views

Research on pedestrian traffic flow in the Netherlands - TU Delft

Research on pedestrian traffic flow in the Netherlands - TU Delft

Research on pedestrian traffic flow in the Netherlands - TU Delft

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Daamen, W, & Hoogendoorn, SP (2003). <str<strong>on</strong>g>Research</str<strong>on</strong>g> <strong>on</strong> <strong>pedestrian</strong> <strong>traffic</strong> <strong>flow</strong>s <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. In<br />

Proceed<strong>in</strong>gs Walk 21 IV (pp. 101-117). Portland, Oreg<strong>on</strong>, United States: Walk 21 c<strong>on</strong>ference.<br />

model parameters is d<strong>on</strong>e us<strong>in</strong>g a microscopic approach, where model results have been<br />

compared to observed microscopic <strong>pedestrian</strong> behavior (trajectories determ<strong>in</strong>ed from video).<br />

The user of <strong>the</strong> model is free to change <strong>the</strong> model parameters to best suit <strong>the</strong> <strong>pedestrian</strong><br />

behavior for <strong>the</strong> situati<strong>on</strong> at hand. For <strong>in</strong>stance, <strong>the</strong> effect of age, trip purpose, and gender of<br />

<strong>the</strong> walk<strong>in</strong>g speeds can be described. NOMAD automatically computes <strong>the</strong> effect of <strong>the</strong>se<br />

factors <strong>on</strong> <strong>the</strong> <strong>pedestrian</strong> walk<strong>in</strong>g speeds, based <strong>on</strong> results of empirical studies, such as<br />

reported by Weidmann (1993).<br />

Model structure<br />

Figure 4 depicts an overview of <strong>the</strong> NOMAD model, its <strong>in</strong>puts and outputs. The figure<br />

<strong>in</strong>dicates that <strong>the</strong> user of <strong>the</strong> model must provide <strong>the</strong> topology of <strong>the</strong> network (walls,<br />

obstacles, stairs, escalators, activity areas, etc.), <strong>the</strong> <strong>traffic</strong> demand patterns for each activity<br />

schedule, <strong>the</strong> parameters describ<strong>in</strong>g <strong>the</strong> walk<strong>in</strong>g behavior for each of <strong>the</strong> <strong>pedestrian</strong> types that<br />

are c<strong>on</strong>sidered (e.g. men, women, commuters, etc.), and f<strong>in</strong>ally <strong>the</strong> compositi<strong>on</strong> of <strong>the</strong><br />

<strong>pedestrian</strong> <strong>flow</strong> with respect to <strong>the</strong> <strong>pedestrian</strong> types. The latter describes <strong>the</strong> compositi<strong>on</strong> of<br />

<strong>the</strong> <strong>flow</strong> at <strong>the</strong> different orig<strong>in</strong>s <strong>in</strong> <strong>the</strong> model. F<strong>in</strong>ally, <strong>the</strong> user can def<strong>in</strong>e <strong>in</strong>cident c<strong>on</strong>diti<strong>on</strong>s,<br />

for <strong>in</strong>stance to simulate <strong>the</strong> effect of an evacuati<strong>on</strong>.<br />

Network topology<br />

Traffic demand<br />

per activity pattern<br />

DESTINATION +<br />

ROUTE CHOICE<br />

MODEL<br />

Special / <strong>in</strong>cident<br />

c<strong>on</strong>diti<strong>on</strong>s<br />

Compositi<strong>on</strong> of<br />

<strong>pedestrian</strong> <strong>flow</strong><br />

WALKER<br />

MODEL<br />

Walk<strong>in</strong>g<br />

parameters<br />

Output<br />

Figure 4. Comp<strong>on</strong>ents of <strong>the</strong> NOMAD model<br />

After <strong>the</strong> <strong>in</strong>put data be<strong>in</strong>g established, NOMAD first determ<strong>in</strong>es <strong>the</strong> dest<strong>in</strong>ati<strong>on</strong> and route<br />

choice. This is achieved by comput<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imal route cost functi<strong>on</strong>, from which <strong>the</strong><br />

optimal walk<strong>in</strong>g directi<strong>on</strong>s are easily determ<strong>in</strong>ed. In turn, <strong>the</strong> walker model determ<strong>in</strong>es <strong>the</strong><br />

preferred walk<strong>in</strong>g directi<strong>on</strong> and speed us<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imal route cost.<br />

The prevail<strong>in</strong>g <strong>traffic</strong> c<strong>on</strong>diti<strong>on</strong>s predicted by <strong>the</strong> walker model may cause delays to occur,<br />

for <strong>in</strong>stance upstream of narrow bottlenecks. In turn, deteriorati<strong>on</strong> of <strong>traffic</strong> c<strong>on</strong>diti<strong>on</strong>s may<br />

cause <strong>pedestrian</strong>s to choose a different route. NOMAD <strong>in</strong>hibits a feedback mechanism that<br />

111

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!