15.03.2015 Views

Research on pedestrian traffic flow in the Netherlands - TU Delft

Research on pedestrian traffic flow in the Netherlands - TU Delft

Research on pedestrian traffic flow in the Netherlands - TU Delft

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Daamen, W, & Hoogendoorn, SP (2003). <str<strong>on</strong>g>Research</str<strong>on</strong>g> <strong>on</strong> <strong>pedestrian</strong> <strong>traffic</strong> <strong>flow</strong>s <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. In<br />

Proceed<strong>in</strong>gs Walk 21 IV (pp. 101-117). Portland, Oreg<strong>on</strong>, United States: Walk 21 c<strong>on</strong>ference.<br />

In short, SimPed is used to evaluate:<br />

• The layout of (parts of) exist<strong>in</strong>g transfer stati<strong>on</strong>s,<br />

• Effects of extensi<strong>on</strong>s and/or adaptati<strong>on</strong>s of exist<strong>in</strong>g transfer stati<strong>on</strong>s,<br />

• Layout alternatives for newly developed stati<strong>on</strong>s,<br />

• Alternatives of and changes <strong>in</strong> different platform allocati<strong>on</strong>s,<br />

• Alternatives of and changes <strong>in</strong> different timetables and<br />

• Layout alternatives for large <strong>pedestrian</strong> areas without c<strong>on</strong>necti<strong>on</strong>s to public transport.<br />

Model<strong>in</strong>g <strong>pedestrian</strong> <strong>flow</strong> operati<strong>on</strong>s<br />

The model will be used to quantify <strong>the</strong> effects of stati<strong>on</strong> layouts <strong>on</strong> <strong>pedestrian</strong>s <strong>in</strong> a transfer<br />

stati<strong>on</strong>. Visualiz<strong>in</strong>g <strong>the</strong>se effects helps to identify and to understand <strong>the</strong> causes for <strong>the</strong><br />

presence of bottlenecks, l<strong>on</strong>g walk<strong>in</strong>g distances and large transfer times. The visualizati<strong>on</strong> is<br />

achieved <strong>in</strong> two ways: technical (<strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> level of service of a walkway) and threedimensi<strong>on</strong>al<br />

(three-dimensi<strong>on</strong>al view with <strong>in</strong>dividual <strong>pedestrian</strong>s). Fur<strong>the</strong>rmore, <strong>the</strong> model<br />

makes it possible to determ<strong>in</strong>e <strong>the</strong> effect of disrupti<strong>on</strong>s dur<strong>in</strong>g operati<strong>on</strong> of <strong>the</strong> timetable<br />

(delays and early arrivals of tra<strong>in</strong>s) <strong>on</strong> transfer times of passengers.<br />

In evaluat<strong>in</strong>g <strong>the</strong> result<strong>in</strong>g <strong>pedestrian</strong> <strong>flow</strong>s, <strong>the</strong> model is c<strong>on</strong>sidered as a black box,<br />

c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g an assignment model, which assigns <strong>pedestrian</strong>s to <strong>the</strong> network (see Figure 5).<br />

Inputs for <strong>the</strong> assignment model are <strong>the</strong> network topology with different l<strong>in</strong>ks and a matrix of<br />

<strong>pedestrian</strong> orig<strong>in</strong>s and dest<strong>in</strong>ati<strong>on</strong>s. The assignment model assigns <strong>pedestrian</strong>s to routes,<br />

which are optimal for <strong>the</strong> <strong>pedestrian</strong> (shortest <strong>in</strong> time). The route choice is based <strong>on</strong> <strong>the</strong><br />

current c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>the</strong> network. The behavior of <strong>the</strong> different types of <strong>pedestrian</strong>s<br />

(tourists, workers, etc) is taken <strong>in</strong>to account <strong>in</strong> a separate behavior model.<br />

Orig<strong>in</strong>s and<br />

Dest<strong>in</strong>ati<strong>on</strong>s<br />

Network<br />

Pedestrian behaviour<br />

model<br />

Macro<br />

Micro<br />

Route choice<br />

model<br />

Routes<br />

Walk<strong>in</strong>g times + deviati<strong>on</strong><br />

L<strong>in</strong>k c<strong>on</strong>diti<strong>on</strong>s<br />

C<strong>on</strong>gesti<strong>on</strong><br />

Figure 5. The <strong>pedestrian</strong> movement model <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>puts and outputs<br />

Dur<strong>in</strong>g <strong>the</strong> simulati<strong>on</strong>, <strong>the</strong> model performs <strong>the</strong> follow<strong>in</strong>g activities repetitively:<br />

• Determ<strong>in</strong><strong>in</strong>g orig<strong>in</strong>s and dest<strong>in</strong>ati<strong>on</strong>s of <strong>the</strong> <strong>pedestrian</strong>s present,<br />

• Assign<strong>in</strong>g routes through <strong>the</strong> stati<strong>on</strong> network,<br />

• Calculat<strong>in</strong>g walk<strong>in</strong>g times based <strong>on</strong> <strong>the</strong> behavior models and<br />

• Execut<strong>in</strong>g situati<strong>on</strong> updates and dynamic evaluati<strong>on</strong>s.<br />

114

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!