15.03.2015 Views

Pricing American Options - an Important Fundamental Research in ...

Pricing American Options - an Important Fundamental Research in ...

Pricing American Options - an Important Fundamental Research in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Faculty of Informatics, University of Wollongong<br />

<strong>Pric<strong>in</strong>g</strong> <strong>Americ<strong>an</strong></strong> <strong>Options</strong> - <strong>an</strong><br />

Import<strong>an</strong>t <strong>Fundamental</strong> <strong>Research</strong> <strong>in</strong><br />

<strong>Pric<strong>in</strong>g</strong> F<strong>in</strong><strong>an</strong>cial Derivatives<br />

Song-P<strong>in</strong>g Zhu<br />

School of Mathematics <strong>an</strong>d Applied Statistics<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 1/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007


Outl<strong>in</strong>e<br />

Outl<strong>in</strong>e of the talk<br />

A Review of <strong>Pric<strong>in</strong>g</strong> <strong>Americ<strong>an</strong></strong> <strong>Options</strong><br />

An exact <strong>an</strong>d explicit solution for <strong>Americ<strong>an</strong></strong> put<br />

options<br />

Examples <strong>an</strong>d Discussions<br />

Conclud<strong>in</strong>g Remarks<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 2/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-1


Background<br />

What is <strong>an</strong> option?<br />

What is a Europe<strong>an</strong>-style option?<br />

What is <strong>an</strong> <strong>Americ<strong>an</strong></strong>-style option?<br />

What is the optimal exercise price of <strong>an</strong> <strong>Americ<strong>an</strong></strong><br />

option?<br />

What is f<strong>in</strong><strong>an</strong>cial <strong>in</strong>terpretation of the optimal<br />

exercise price of <strong>an</strong> <strong>Americ<strong>an</strong></strong> option?<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 3/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-2


Review of Various solution Approaches<br />

Analytical Approximation Methods<br />

Numerical Solutions<br />

Analytical Exact Solutions<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 4/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-3


Review of Various solution Approaches<br />

Numerical Approaches:<br />

Directly solv<strong>in</strong>g PDE:<br />

– Brenn<strong>an</strong> <strong>an</strong>d Schwartz (1977), Wu <strong>an</strong>d Kwok (1997): F<strong>in</strong>ite<br />

Difference Method (FDM);<br />

– Allegretto et al. (2001): F<strong>in</strong>ite Element Method (FEM);<br />

– Forsyth <strong>an</strong>d Vetzal (2002): F<strong>in</strong>ite Volume Method (FVM);<br />

– Hon <strong>an</strong>d Mao (1997): Radial Basis Function Method (RBF);<br />

– Benth et al. (2004): Semil<strong>in</strong>ear Approach;<br />

– Rodolfo (2007): Cubic Spl<strong>in</strong>es Approach;<br />

– Zhu <strong>an</strong>d Zh<strong>an</strong>g (2007b): Predictor-Corrector Scheme.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 5/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-4


A Numerical Example Used <strong>in</strong> Zhu <strong>an</strong>d Zh<strong>an</strong>g<br />

(2007b)<br />

Strike price X = $100,<br />

Risk-free <strong>in</strong>terest rate r = 0.1,<br />

Volatility σ = 0.3,<br />

Time to expiry T = 1 (year).<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 6/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-5


A Figure <strong>in</strong> Zhu <strong>an</strong>d Zh<strong>an</strong>g (2007b)<br />

100<br />

95<br />

O<br />

Zhu <strong>an</strong>d Zh<strong>an</strong>g’s numerical solution<br />

Zhu(2006b)’s <strong>an</strong>alytical solution<br />

Optimal Exercise Price ($)<br />

90<br />

85<br />

80<br />

75<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Time to Expiry (Year)<br />

A comparison of optimal exercise prices with two different<br />

approachesIWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 7/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-6


A Figure <strong>in</strong> Zhu <strong>an</strong>d Zh<strong>an</strong>g (2007b)<br />

0.8<br />

N=200<br />

0.7<br />

0.6<br />

M=100<br />

M=80<br />

M=60<br />

CPU Time (second)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

N=10<br />

0<br />

0 1 2 3 4 5 6 7 8 9<br />

RMSRE (%)<br />

Accuracy vs. Efficiency<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 8/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-7


Review of Various solution Approaches<br />

Numerical Approaches:<br />

Risk Neutral Approaches<br />

– Cox et al. (1979): The B<strong>in</strong>omial Method<br />

– Gr<strong>an</strong>t et al. (1996): The Monte Carlo simulation method<br />

– Longstaff <strong>an</strong>d Schwartz (2001): the Least Squares Method<br />

(Monte Carlo simulation)<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 9/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-8


Review of Various solution Approaches<br />

Numerical Approaches:<br />

Risk Neutral Approaches<br />

Under the risk neutral argument, the current value of <strong>an</strong>y<br />

f<strong>in</strong><strong>an</strong>cial derivative is equal to the expected return at the<br />

expiry discounted to the present time.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 10/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-9


Review of Various solution Approaches<br />

Zhu <strong>an</strong>d Fr<strong>an</strong>cis (2004) found <strong>an</strong> improved algorithm to<br />

calculate the critical exercise price.<br />

Table 1. Convergence of the B<strong>in</strong>omial Method<br />

Method<br />

Optimal Exercise Price at Expiry<br />

B<strong>in</strong>omial n=10 78.93<br />

B<strong>in</strong>omial n=100 77.18<br />

B<strong>in</strong>omial n=1000 76.51<br />

Zhu (2006b) 76.11<br />

Wu <strong>an</strong>d Kwok (1997) n=100 76.25<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 11/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-10


Review of Various solution Approaches<br />

Integral Equation Approach<br />

Kim (1990) used the <strong>in</strong>tegral equation approach to show that<br />

there is <strong>an</strong> early-exercise premium associated with the<br />

<strong>Americ<strong>an</strong></strong> options;<br />

Jacka (1991) established the equivalence between <strong>an</strong> optimal<br />

stopp<strong>in</strong>g problem suggested by Karatzas (1988) <strong>an</strong>d the<br />

<strong>in</strong>tegral equation approach;<br />

Hu<strong>an</strong>g et al. (1996) presented a numerical solution to solve<br />

the <strong>in</strong>tegral equation;<br />

Ju (1998) proposed <strong>an</strong> approximate method to f<strong>in</strong>d the<br />

solution of the <strong>in</strong>tegral equation for the optimal exercise<br />

boundary;<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 12/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-11


Review of Various solution Approaches<br />

Integral Equation Approach<br />

Jamshidi<strong>an</strong> (1992) also used the <strong>in</strong>tegral equation approach to<br />

derive explicit formulas for <strong>Americ<strong>an</strong></strong> options on coupon bonds<br />

for the Vasicek (1977) model <strong>an</strong>d the CIR square root model<br />

(Cox et al. (1985));<br />

Zhu <strong>an</strong>d Zh<strong>an</strong>g (2007a) used the <strong>in</strong>tegral approach to solve<br />

the valuation problem of a convertible bond with <strong>Americ<strong>an</strong></strong><br />

style conversion.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 13/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-12


A Figure <strong>in</strong> Zhu <strong>an</strong>d Zh<strong>an</strong>g (2007a)<br />

Convertible bond price<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

new decompostion<br />

traditional decomposition<br />

0<br />

0 50 100 150 200<br />

Stock price<br />

A comparison of two decomposition approaches<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 14/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-13


Review of Various solution Approaches<br />

Analytical Approximations:<br />

Geske <strong>an</strong>d Johnson (1984):the compound-option<br />

approximation method;<br />

MacMill<strong>an</strong> (1986) <strong>an</strong>d Barone-Adesi <strong>an</strong>d Whaley (1987): the<br />

quadratic approximation method;<br />

Johnson (1983): the <strong>in</strong>terpolation method;<br />

Carr (1998): the r<strong>an</strong>domization approach;<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 15/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-14


Review of Various solution Approaches<br />

Analytical Approximations (cont.):<br />

Bunch <strong>an</strong>d Johnson (2000): Algebraic Equation Method;<br />

Zhu (2006a): Laplace Tr<strong>an</strong>sform based on the<br />

pseudo-steady-state approximation.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 16/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-15


A. Basso, M. Nardon <strong>an</strong>d P. Pi<strong>an</strong>ca’s 2002 work<strong>in</strong>g paper<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 17/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-16


Review of Various solution Approaches<br />

Analytical Approximations:<br />

Zhu <strong>an</strong>d He (2007) identified the miss<strong>in</strong>g term <strong>in</strong> Bunch <strong>an</strong>d<br />

Johnson’s simple formula <strong>an</strong>d proposed a revised formula:<br />

where<br />

g(τ) = ±<br />

√ 2 ln<br />

S f (τ) = e −(γ+1)τ−√ 2τg(τ) , (1)<br />

√ αSf (τ)<br />

. (2)<br />

γe −γατ ln 1 1 S f (τ) e− 2 [ ln S f (τ)−ln S f<br />

√ (τ(1−α))+(γ−1)ατ ] 2 2ατ<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 18/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-17


1<br />

γ=5<br />

0.9<br />

0.8<br />

0.7<br />

B(τ)<br />

0.6<br />

0.5<br />

0.4<br />

Carr’s solution<br />

BJ’s solution<br />

Zhu & He (2007)<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1<br />

τ<br />

The comparison of B(τ) from Carr’s solution, Bunch <strong>an</strong>d<br />

Johnson’s estimation <strong>an</strong>d Zhu <strong>an</strong>d He’s estimation when γ=5.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 19/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-18


Review of Various solution Approaches<br />

Analytical Approximations:<br />

Zhu (2006a) also derived a very eleg<strong>an</strong>t <strong>an</strong>alytical<br />

approximation formula for the optimal exercise price of<br />

<strong>Americ<strong>an</strong></strong> options, Us<strong>in</strong>g the Laplace tr<strong>an</strong>sform approach.<br />

S f (τ) =<br />

γ<br />

1 + γ + e−a2 τ<br />

∫ ∞<br />

e −τρ<br />

π 0 a 2 + ρ e−f 1(ρ) s<strong>in</strong> [f 2 (ρ)] dρ, (3)<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 20/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-19


Review of Various solution Approaches<br />

Analytical Approximations:<br />

where<br />

[ (√<br />

f 1 (ρ) = 1<br />

a<br />

b 2 b ln<br />

2 + ρ<br />

+ ρ γ<br />

)<br />

[ (√<br />

f 2 (ρ) = 1 √ a 2 + ρ<br />

ρ ln<br />

b 2 + ρ<br />

γ<br />

+ √ √ ]<br />

ρ<br />

ρ t<strong>an</strong> −1 (<br />

a ) , (4)<br />

)<br />

√ ]<br />

ρ<br />

− b t<strong>an</strong> −1 (<br />

a ) . (5)<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 21/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-20


100<br />

95<br />

Analytical Solution<br />

Numerical Solution of Wu <strong>an</strong>d Kwok (1997)<br />

Perpetual Optimal Exercise Price<br />

90<br />

Optimal Exercise Price ($)<br />

85<br />

80<br />

75<br />

70<br />

65<br />

Perpetual Optimal Exercise Price=$68.97<br />

60<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Time To Expiration (Years)<br />

Optimal exercise prices for the case <strong>in</strong> Example 1<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 22/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-21


Review of Various solution Approaches<br />

More recently, Zhu (2007) improved the accuracy <strong>in</strong> Zhu<br />

(2006a)’s orig<strong>in</strong>al approximation formula, by ch<strong>an</strong>g<strong>in</strong>g the<br />

explicit <strong>in</strong>tegral for S f (τ) <strong>in</strong>to <strong>an</strong> algebraic equation based on<br />

the proved conjecture Θ(S f (τ), τ) = 0 <strong>an</strong>d the approximat<strong>in</strong>g<br />

formula presented <strong>in</strong> Zhu (2006a).<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 23/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-22


Review of Various solution Approaches<br />

100<br />

95<br />

90<br />

Current Approximation<br />

Approximation of Zhu (2006a)<br />

Numerical Solution of Wu <strong>an</strong>d Kwok (1997)<br />

Optimal Exercise Price ($)<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

0 2 4 6 8 10 12<br />

Time To Expiration (Months)<br />

A comparison of the Critical Exercise Price<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 24/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-23


Review of Various solution Approaches<br />

Zhu <strong>an</strong>d Zh<strong>an</strong>g (2006c) extended this approach to the cases<br />

where there is a cont<strong>in</strong>uous dividend payment to the<br />

underly<strong>in</strong>g asset.<br />

1<br />

0.95<br />

Analytical−Approximation<br />

Stephest Inversion N=6,8,10<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 25/68<br />

The Critical Asset Prices by Stehfest Method with D 0 = 0<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-24


Review of Various solution Approaches<br />

Ma<strong>in</strong> Difficulties <strong>in</strong> Solv<strong>in</strong>g <strong>Americ<strong>an</strong></strong> put option<br />

problems<br />

The problem is a mov<strong>in</strong>g boundary problem (McKe<strong>an</strong> Jr.,<br />

1965 <strong>an</strong>d Merton, 1973) with the optimal exercise price as the<br />

mov<strong>in</strong>g boundary. This has to be found as part of the solution.<br />

S<strong>in</strong>gular behavior of the optimal exercise price near expiry. –<br />

Barles et al. (1995) <strong>an</strong>d Kuske <strong>an</strong>d Keller (1998) showed that<br />

near expiry, S f (τ) behaves like S f (τ) = 1 − kσ √ τ|lnτ|<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 26/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-25


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

Some Def<strong>in</strong>itions<br />

“Exact”<br />

– No approximation is made whatsoever; the differential<br />

equations, the boundary <strong>an</strong>d <strong>in</strong>itial conditions of the problem<br />

c<strong>an</strong> all be satisfied to <strong>an</strong>y desired accuracy <strong>an</strong>d the solution is<br />

<strong>in</strong>f<strong>in</strong>itely differentiable.<br />

“Explicit”<br />

– The solution for the unknown function (or functions) c<strong>an</strong> be<br />

determ<strong>in</strong>ed explicitly <strong>in</strong> terms of all the <strong>in</strong>puts to the problem.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 27/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-26


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

Some Def<strong>in</strong>itions (Cont.)<br />

“closed-form”<br />

– Gukhal’s def<strong>in</strong>ition (2001): “closed-form” solution is the<br />

one that c<strong>an</strong> be written <strong>in</strong> terms of a set of st<strong>an</strong>dard <strong>an</strong>d<br />

generally accepted mathematical functions <strong>an</strong>d operations;<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 28/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-27


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

Some Def<strong>in</strong>itions (Cont.)<br />

“closed-form”<br />

– “An equation is said to be a closed-form solution if it solves<br />

a given problem <strong>in</strong> terms of functions <strong>an</strong>d mathematical<br />

operations from a given generally accepted set. For example,<br />

<strong>an</strong> <strong>in</strong>f<strong>in</strong>ite sum would generally not be considered closed-form.<br />

However, the choice of what to call closed-form <strong>an</strong>d what<br />

not is rather arbitrary s<strong>in</strong>ce a new ”closed-form”<br />

function could simply be def<strong>in</strong>ed <strong>in</strong> terms of the <strong>in</strong>f<strong>in</strong>ite<br />

sum.”; (cf. mathworld.wolfram.com)<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 29/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-28


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

Some Def<strong>in</strong>itions (Cont.)<br />

“closed-form”<br />

– On the Wikipedia, Zhu’s solution has been declared as a<br />

semi-closed-form solution.<br />

(http://en.wikipedia.org/wiki/<strong>Americ<strong>an</strong></strong> option)<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 30/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-29


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

The PDE system for pric<strong>in</strong>g <strong>Americ<strong>an</strong></strong> put options<br />

determ<strong>in</strong><strong>in</strong>g the optimal exercise boundary<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

∂V<br />

∂t + 1 2 σ2 S 2 ∂2 V ∂V<br />

+ rS<br />

∂S2 ∂S<br />

V (S f (t), t) = X − S f (t),<br />

∂V<br />

∂S (S f (t), t) = −1,<br />

lim V (S, t) = 0,<br />

S→∞<br />

V (S, T ) = max{X − S, 0}.<br />

− rV = 0,<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 31/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-30


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

In the above PDE system,<br />

– X is the strike price of the option;<br />

– r is the risk-free <strong>in</strong>terest rate;<br />

– σ is the volatility of the underly<strong>in</strong>g asset price.<br />

In the current solution, r <strong>an</strong>d σ are assumed to be<br />

const<strong>an</strong>t.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 32/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-31


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

The normalized PDE system becomes<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

− ∂V<br />

∂τ + S2 ∂2 V ∂V<br />

+ γS − γV = 0,<br />

∂S2 ∂S<br />

V (S f (τ), τ) = 1 − S f (τ),<br />

∂V<br />

∂S (S f (τ), τ) = −1,<br />

lim V (S, τ) = 0,<br />

S→∞<br />

V (S, 0) = max{1 − S, 0},<br />

<strong>in</strong> which γ ≡ 2r c<strong>an</strong> be viewed as <strong>an</strong> <strong>in</strong>terest rate relative to the<br />

σ2 volatility of the asset price.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 33/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-32


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

We beg<strong>in</strong> with <strong>in</strong>troduc<strong>in</strong>g the L<strong>an</strong>dau tr<strong>an</strong>sform<br />

x = ln<br />

S<br />

S f (τ) .<br />

To make the current approach more general for<br />

other derivatives of <strong>Americ<strong>an</strong></strong>-style exercise, a new<br />

exp<strong>an</strong>sion is currently be<strong>in</strong>g worked, <strong>in</strong> which the<br />

L<strong>an</strong>dau tr<strong>an</strong>sform is no longer needed.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 34/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-33


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

The PDE system under the L<strong>an</strong>dau tr<strong>an</strong>sform becomes<br />

⎧<br />

⎪⎨<br />

∗<br />

∂V<br />

∂τ − ∂2 V<br />

− (γ − 1)∂V<br />

∂x2 ∂x + γV = 1<br />

S f (τ)<br />

V (x, 0) = 0,<br />

V (0, τ) = 1 − S f (τ),<br />

dS f<br />

dτ<br />

∂V<br />

∂x ,<br />

⎪⎩<br />

∂V<br />

∂x (0, τ) = −S f (τ),<br />

lim V (x, τ) = 0.<br />

x→∞<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 35/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-34


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

The homotopy-<strong>an</strong>alysis method<br />

Ortega <strong>an</strong>d Rhe<strong>in</strong>boldt (1970): Solv<strong>in</strong>g nonl<strong>in</strong>ear algebraic<br />

equations;<br />

Liao (1997) <strong>an</strong>d Liao <strong>an</strong>d Zhu (1999): Solv<strong>in</strong>g heat tr<strong>an</strong>sfer<br />

problems;<br />

Liao <strong>an</strong>d Zhu (1996) <strong>an</strong>d Liao <strong>an</strong>d Campo (2002): Solv<strong>in</strong>g<br />

fluid flow problems.<br />

The essential concept of the method is to construct a<br />

cont<strong>in</strong>uous “homotopic deformation” through a series<br />

exp<strong>an</strong>sion of the unknown function.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 36/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-35


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

Let’s now construct two new unknown functions ¯V (x, τ, p) <strong>an</strong>d<br />

¯S f (τ, p) that satisfy the follow<strong>in</strong>g differential system,<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

(1 − p)L[ ¯V (x, τ, p) − ¯V 0 (x, τ)] = −p{A[ ¯V (x, t, p), ¯S f (τ, p)]},<br />

¯V (x, 0, p) = (1 − p) ¯V 0 (x, 0),<br />

¯V (0, τ, p) + ¯S f (τ, p) = 1,<br />

∂ ¯V<br />

[<br />

∂x (0, τ, p) + ¯S f (τ, p) = (1 − p) 1 + ∂ ¯V ]<br />

0<br />

∂x (0, τ) − ¯V 0 (0, τ) ,<br />

lim ¯V (x, τ, p) = 0,<br />

x→∞<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 37/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-36


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

where L is a differential operator def<strong>in</strong>ed as<br />

L = ∂<br />

∂τ − ∂2<br />

∂<br />

− (γ − 1)<br />

∂x2 ∂x + γ,<br />

<strong>an</strong>d A is a functional def<strong>in</strong>ed as<br />

A[ ¯V (x, τ, p), ¯S f (τ, p)] = L( ¯V ) −<br />

1 ∂ ¯S f ¯V<br />

(τ, p)∂ (x, τ, p).<br />

¯S f (τ, p) ∂τ ∂x<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 38/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-37


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

With p = 0, we have, from the differential system *<br />

⎧<br />

L[ ¯V (x, τ, 0)] = L[ ¯V 0 (x, τ)],<br />

¯V (x, 0, 0) = ¯V 0 (x, 0),<br />

⎪⎨<br />

¯V (0, τ, 0) + ¯S f (τ, 0) = 1,<br />

⎪⎩<br />

∂ ¯V<br />

∂x (0, τ, 0) + ¯S f (τ, 0) = 1 + ∂ ¯V 0<br />

∂x (0, τ) − ¯V 0 (0, τ),<br />

lim ¯V (x, τ, 0) = 0.<br />

x→∞<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 39/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-38


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

Clearly, the solution of this differential system is<br />

⎧<br />

⎨ ¯V (x, τ, 0) = ¯V 0 (x, τ),<br />

⎩<br />

¯S f (τ, 0) = 1 − ¯V 0 (0, τ) = ¯S 0 (τ),<br />

so long as the <strong>in</strong>itial guess ¯V 0 (x, τ) satisfies the condition<br />

lim ¯V 0 (x, τ) = 0.<br />

x→∞<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 40/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-39


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

When p = 1, the differential system * becomes<br />

⎧<br />

L[ ¯V (x, τ, 1)] =<br />

1 ∂ ¯S f ¯V<br />

(τ, 1)∂ (x, τ, 1),<br />

¯S f (τ, 1) ∂τ ∂x<br />

⎪⎨<br />

¯V (x, 0, 1) = 0,<br />

¯V (0, τ, 1) = 1 − ¯S f (τ, 1),<br />

⎪⎩<br />

∂ ¯V<br />

∂x (0, τ, 1) = − ¯S f (τ, 1),<br />

lim ¯V (x, τ, 1) = 0.<br />

x→∞<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 41/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-40


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

Compar<strong>in</strong>g this PDE <strong>an</strong>d the orig<strong>in</strong>al one we were try<strong>in</strong>g to solve,<br />

it is obvious that the solution we seek is noth<strong>in</strong>g but<br />

⎧<br />

⎨ V (x, τ) = ¯V (x, τ, 1),<br />

⎩<br />

S f (τ) = ¯S f (τ, 1).<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 42/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-41


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

To f<strong>in</strong>d the values of ¯V (x, τ, 1) <strong>an</strong>d ¯S f (τ, 1), we c<strong>an</strong> now exp<strong>an</strong>d<br />

the functions ¯V (x, τ, p) <strong>an</strong>d ¯S f (τ, p) as a Taylor’s series exp<strong>an</strong>sion<br />

of p<br />

¯V (x, τ, p) =<br />

¯S f (τ, p) =<br />

∞∑<br />

m=0<br />

∞∑<br />

m=0<br />

¯V m (x, τ)<br />

p m ,<br />

m!<br />

¯S m (τ)<br />

p m ,<br />

m!<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 43/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-42


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

where ¯V m is the mth-order partial derivative of ¯V (x, τ, p) with<br />

respect to p <strong>an</strong>d then evaluated at p = 0,<br />

¯V m (x, τ) = ∂m<br />

∂p ¯V m (x, τ, p)<br />

∣ ,<br />

p=0<br />

<strong>an</strong>d ¯S m is the mth-order partial derivative of ¯S(τ, p) with respect<br />

to p <strong>an</strong>d then evaluated at p = 0,<br />

¯S m (τ) = ∂m<br />

∂p ¯S m f (τ, p)<br />

∣ .<br />

p=0<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 44/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-43


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

To f<strong>in</strong>d all the coefficients <strong>in</strong> the above Taylor’s exp<strong>an</strong>sions, we<br />

need to derive a set of govern<strong>in</strong>g partial differential equations <strong>an</strong>d<br />

appropriate boundary <strong>an</strong>d <strong>in</strong>itial conditions for the unknown<br />

functions ¯V m (x, τ) <strong>an</strong>d ¯S m (τ). They c<strong>an</strong> be derived from<br />

differentiat<strong>in</strong>g each equation <strong>in</strong> the differential system * with<br />

respect to p <strong>an</strong>d then sett<strong>in</strong>g p equal to zero.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 45/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-44


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

The 1st order differential system:<br />

⎧<br />

L[ ¯V 1 (x, τ)] = −L[ ¯V 0 (x, τ)] + A ′ (x, τ, 0),<br />

¯V 1 (x, 0) = − ¯V 0 (x, 0),<br />

⎪⎨<br />

¯V 1 (0, τ) + ¯S 1 (τ) = 0,<br />

⎪⎩<br />

∂ ¯V 1<br />

∂x (0, τ) + ¯S 1 (τ) = ¯V 0 (0, τ) − ∂ ¯V 0<br />

(0, τ) − 1,<br />

∂x<br />

lim ¯V 1 (x, τ) = 0.<br />

x→∞<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 46/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-45


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

The nth order differential system:<br />

⎧<br />

L[ ¯V n (x, τ)] = n ∂n−1 A ′<br />

∂ n−1 ,<br />

p ∣<br />

p=0<br />

⎪⎨<br />

¯V n (x, 0) = 0,<br />

¯V n (0, τ) + ¯S n (τ) = 0, if n ≥ 2,<br />

where<br />

⎪⎩<br />

∂ ¯V n<br />

∂x (0, τ) + ¯S n (τ) = 0,<br />

lim ¯V n (x, τ) = 0,<br />

x→∞<br />

A ′ (x, τ, p) =<br />

1 ∂ ¯S f ¯V<br />

(τ, p)∂ (x, τ, p).<br />

¯S f (τ, p) ∂τ ∂x<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 47/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-46


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

After elim<strong>in</strong>at<strong>in</strong>g ¯S n (τ) from the two boundary conditions at x = 0<br />

<strong>in</strong> above two equations, we c<strong>an</strong> rewrite them <strong>in</strong> a general form<br />

⎧<br />

L[ ¯V n (x, τ)] = f n (x, τ),<br />

⎪⎨<br />

¯V n (x, 0) = ψ n (x),<br />

⎪⎩<br />

∂ ¯V n<br />

∂x (0, τ) − ¯V n (0, τ) = φ n (τ),<br />

¯V n (∞, τ) = 0,<br />

with f n (x, τ), ψ n (x) <strong>an</strong>d φ n (τ) be<strong>in</strong>g expressed respectively as<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 48/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-47


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

⎧<br />

⎪⎨<br />

f n (x, τ) =<br />

⎪⎩<br />

ψ n (x) =<br />

−L[ ¯V 0 (x, τ)] + A ′ (x, τ, 0), if n = 1,<br />

n ∂n−1 A ′<br />

∂p n−1 ∣ ∣∣∣∣p=0<br />

, if n ≥ 2,<br />

{ − ¯V0 (x, 0), if n = 1,<br />

0, if n ≥ 2,<br />

⎧<br />

⎨<br />

φ n (τ) =<br />

¯V 0 (0, τ) − ∂ ¯V 0<br />

(0, τ) − 1, if n = 1,<br />

⎩<br />

∂x<br />

0, if n ≥ 2.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 49/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-48


The Solution for the Option Price<br />

¯V n (x, τ) = e − 1 2 (γ−1)x− 1 4 (γ+1)2 τ<br />

{<br />

∫ ∞ [<br />

·e (γ−1)√ τξ−ξ 2 dξ +<br />

x<br />

2 √ τ<br />

+e − 1 2 (γ−1)x ψ n (2 √ ]<br />

τ ξ − x)<br />

{ ∫<br />

√1<br />

π<br />

e 1 2 (γ−1)x<br />

(γ−1)x+<br />

(γ+1)2<br />

4 τ<br />

x<br />

2 √ τ<br />

−<br />

x<br />

2 √ τ<br />

e 1 2 (γ−1)x ψ n (2 √ τ ξ + x)<br />

}<br />

e (γ−1)√ τξ−ξ 2 dξ<br />

−(γ + 1) √ τ e − 1 2<br />

∫ ∞<br />

· ψ n (2 √ τξ − x)e 2γ√ τ ξ · erfc(ξ +<br />

x<br />

2 √ τ<br />

− 2 √ π<br />

e (γ+1)2<br />

4 τ<br />

[<br />

·e − (γ+1)(x+η)<br />

4ξ<br />

∫ ∞<br />

0<br />

∫ ∞<br />

e − (γ+1) η 2<br />

] 2−ξ<br />

2<br />

dξdη<br />

x+η<br />

2 √ τ<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 50/68<br />

ψ n (2 √ τ ξ + x)<br />

(γ + 1) √ τ)dξ<br />

2<br />

(<br />

)<br />

(x + η)2<br />

φ n τ −<br />

4ξ 2<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-49


The Solution for the Option Price<br />

∫ τ<br />

+<br />

0<br />

⎧<br />

⎨<br />

⎩<br />

[<br />

e (γ+1)2 η ∫<br />

4<br />

√ e 1 2 (γ−1)x<br />

π<br />

e (γ−1)√ τ−η ξ−ξ 2 dξ<br />

∫ ∞<br />

x<br />

2 √ τ−η<br />

x<br />

2 √ τ−η<br />

−<br />

x<br />

2 √ τ−η<br />

[<br />

e 1 2 (γ−1)x f n (2 √ τ − η ξ + x, η)<br />

f n (2 √ τ − η ξ + x, η)<br />

+<br />

]<br />

+e − 1 2 (γ−1)x f n (2 √ ]<br />

τ − η ξ − x, η) e (γ−1)√ τ−η ξ−ξ 2 dξ<br />

−(γ + 1) √ τ − ηe − 1 (γ+1)2<br />

(γ−1)x+ τ<br />

2 4<br />

· e 2γ√ τ−η ξ erfc(ξ + (γ+1)<br />

2<br />

∫ ∞<br />

x<br />

2 √ τ−η<br />

√ τ − η)dξ<br />

}<br />

dη<br />

f n (2 √ τ − η ξ − x, η)<br />

}<br />

,<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 51/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-50


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

Initial Guess<br />

Choos<strong>in</strong>g the correspond<strong>in</strong>g Europe<strong>an</strong> option value as the <strong>in</strong>itial<br />

guess yields the follow<strong>in</strong>g three apparent merits:<br />

The boundary condition at x = ∞ is automatically<br />

satisfied<br />

f 1 (x, τ) is further simplified because the first term<br />

on the righth<strong>an</strong>d side v<strong>an</strong>ishes<br />

ψ 1 (x) v<strong>an</strong>ishes as well, so the <strong>in</strong>tegral <strong>in</strong>volv<strong>in</strong>g ψ n<br />

is entirely elim<strong>in</strong>ated<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 52/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-51


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

Optimal Exercise Price<br />

S f (τ) = 2 √ π<br />

e − 1 2 (γ−1)x− 1 4 (γ+1)2 τ<br />

∫ ∞<br />

η<br />

2∫ √ τ τ<br />

+<br />

−<br />

0<br />

( )<br />

φ n τ − η2<br />

4ξ<br />

[e 2 ∫ ∞<br />

(γ+1)2 η 4<br />

∞∑ 1<br />

{e (γ+1)2 τ 4<br />

n!<br />

] 2−ξ<br />

2<br />

dξdη<br />

[ n=0<br />

e − (γ+1)η<br />

4ξ<br />

√ π<br />

2 (γ + 1)√ τ − ηe (γ+1)2<br />

4 τ<br />

· e 2γ√ τ−η ξ erfc(ξ + (γ+1)<br />

2<br />

0<br />

∫ ∞<br />

0<br />

e − (γ+1)<br />

2 η<br />

f n (2 √ τ − η ξ, η)e (γ−1)√ τ−η ξ−ξ 2 dξ<br />

∫ ∞<br />

0<br />

f n (2 √ τ − η ξ, η)<br />

}<br />

√ τ − η)dξ<br />

]<br />

dη<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 53/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-52


An Exact Solution <strong>in</strong> Series Exp<strong>an</strong>sion Form<br />

The convergence criterion is<br />

Convergence of the series<br />

lim ( m<br />

m→∞ m + 1 )| ¯V m+1<br />

|p < 1,<br />

¯V m<br />

for p ∈ [0, 1], accord<strong>in</strong>g to the d’Alembert’s ratio test.<br />

This is thus equivalent to<br />

lim | ¯V m+1<br />

| < 1.<br />

m→∞ ¯V m<br />

Numerical evidence will be provided to support the satisfaction of<br />

this convergence criterion.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 54/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-53


Examples <strong>an</strong>d Discussion<br />

Verification Through Examples:<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 55/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-54


Examples <strong>an</strong>d Discussion<br />

Example 1:<br />

Use the same example used <strong>in</strong> Wu <strong>an</strong>d Kwok (1997) <strong>an</strong>d Carr <strong>an</strong>d<br />

Faguet (1994):<br />

Strike price X = $100,<br />

Risk-free <strong>in</strong>terest rate r = 0.1,<br />

Volatility σ = 0.3,<br />

Time to expiry T = 1 (year).<br />

In terms of the dimensionless variables, the two parameters<br />

<strong>in</strong>volved are γ = 2.2222 <strong>an</strong>d τ exp = 0.045.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 56/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-55


Examples <strong>an</strong>d Discussion<br />

100<br />

95<br />

90<br />

Analytical Solution<br />

Numerical Solution of Wu <strong>an</strong>d Kwok (1997)<br />

Optimal Exercise Price ($)<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

0 2 4 6 8 10 12<br />

Time To Expiration (Months)<br />

Optimal exercise prices for the case <strong>in</strong> Example 1<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 57/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-56


Examples <strong>an</strong>d Discussion<br />

1 x 10−5<br />

0<br />

−1<br />

Dimensionless V n<br />

value<br />

|<br />

−2<br />

−3<br />

−4<br />

n=24<br />

n=25<br />

n=26<br />

n=27<br />

n=28<br />

n=29<br />

−5<br />

−6<br />

−7<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Logarithm of the dimensionless stock price<br />

Dimensionless option prices with six different total summation<br />

numbers <strong>in</strong>IWIF-II Example 1www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 58/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-57


Examples <strong>an</strong>d Discussion<br />

100<br />

90<br />

80<br />

70<br />

τ=1.000 Year<br />

τ=0.738 Years<br />

τ=0.508 Years<br />

τ=0.249 Years<br />

Option Price ($)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Stock Price ($)<br />

Option IWIF-II prices at www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF different times to expiration <strong>in</strong>PPT Example 59/68 1<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-58


Examples <strong>an</strong>d Discussion<br />

Example 2:<br />

This is the same example used <strong>in</strong> Bunch <strong>an</strong>d Johnson (2000) (For<br />

this example, Bunch <strong>an</strong>d Johnson have compared theirs results<br />

with those generated by the b<strong>in</strong>omial method)<br />

Strike price X = $40,<br />

Risk-free <strong>in</strong>terest rate r = 0.0488,<br />

Volatility σ = 0.3,<br />

Time to expiration T = 1 (year),<br />

In terms of the dimensionless variables, the two parameters<br />

<strong>in</strong>volved are<br />

Relative risk-free <strong>in</strong>terest rate γ = 1.084,<br />

Dimensionless time to expiration τ exp = 0.045.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 60/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-59


Examples <strong>an</strong>d Discussion<br />

40<br />

38<br />

The number of terms summed up <strong>in</strong> the series exp<strong>an</strong>sion = 29<br />

The number of terms summed up <strong>in</strong> the series exp<strong>an</strong>sion = 30<br />

36<br />

Optimal Exercise Price ($)<br />

34<br />

32<br />

30<br />

28<br />

26<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Time To Expiration (Years)<br />

Convergence IWIF-II of www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF the optimal exercise price Example PPT 61/68 2<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-60


Examples <strong>an</strong>d Discussion<br />

40<br />

38<br />

Eq. (23) <strong>in</strong> Bunch <strong>an</strong>d Johnson (2000)<br />

CRR(800) <strong>in</strong> Cox. et. al. (1979)<br />

Analytical Solution<br />

36<br />

Optimal Exercise Price ($)<br />

34<br />

32<br />

30<br />

28<br />

26<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Time To Expiration (Years)<br />

Optimal IWIF-IIexercise www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF prices for the case ExamplePPT 2 62/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-61


Examples <strong>an</strong>d Discussion<br />

40<br />

35<br />

30<br />

Option Price ($)<br />

25<br />

20<br />

15<br />

τ=1.000 Year<br />

τ=0.738 Years<br />

τ=0.508 Years<br />

τ=0.249 Years<br />

10<br />

5<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Stock Price ($)<br />

Option IWIF-II prices at www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF different times to expiration <strong>in</strong>PPT Example 63/68 2<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-62


Examples <strong>an</strong>d Discussion<br />

1<br />

0.9<br />

0.8<br />

Dimensionless Option Price<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

γ=2.2222<br />

γ=1.084<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

Dimensionless Stock Price<br />

A comparison IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF of dimensionless option price withPPT different 64/68 γ values<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-63


Examples <strong>an</strong>d Discussion<br />

Example 3:<br />

This is the same example used <strong>in</strong> Bunch <strong>an</strong>d Johnson (2000),<br />

except with a very long life time.<br />

Strike price X = $100,<br />

Risk-free <strong>in</strong>terest rate r = 0.01,<br />

Volatility σ = 0.2,<br />

Time to expiration T = 40 (years),<br />

In terms of the dimensionless variables, the two parameters<br />

<strong>in</strong>volved are<br />

Relative risk-free <strong>in</strong>terest rate γ = 0.5,<br />

Dimensionless time to expiration τ exp = 0.4.<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 65/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-64


Examples <strong>an</strong>d Discussion<br />

100<br />

90<br />

Optimal Exercise Price Calculated From the Analytical Solution<br />

Perpetual Optimal Exercise Price<br />

80<br />

Optimal Exercise Price ($)<br />

70<br />

60<br />

50<br />

40<br />

Perpetual Optimal Exercise Price=$33.33<br />

30<br />

0 5 10 15 20 25 30 35 40<br />

Time To Expiration (Years)<br />

Optimal IWIF-IIexercise www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF price for the case Example PPT 3 66/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-65


Examples <strong>an</strong>d Discussion<br />

100<br />

90<br />

80<br />

70<br />

τ=40.00 Years<br />

τ=29.50 Years<br />

τ=20.33 Years<br />

τ=9.942 Years<br />

Option Price ($)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 50 100 150<br />

Stock Price ($)<br />

Option IWIF-II prices at www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF different time to expiration <strong>in</strong> PPT Example 67/68 3<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-66


Conclusions<br />

Conclusions<br />

A review is given to the research area of pric<strong>in</strong>g<br />

<strong>Americ<strong>an</strong></strong> options;<br />

Pros <strong>an</strong>d Cons of each approach are summarized;<br />

With the homotopy-<strong>an</strong>alysis method, <strong>an</strong> exact <strong>an</strong>d<br />

explicit solution (<strong>in</strong> a Taylor series exp<strong>an</strong>sion form)<br />

of the well-known Black-Scholes equation is<br />

obta<strong>in</strong>ed for the first time;<br />

IWIF-II www.sw<strong>in</strong>gtum.com/<strong>in</strong>stitute/IWIF PPT 68/68<br />

Song-P<strong>in</strong>g Zhu, SMAS, April 26, 2007 0-67

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!