15.11.2012 Views

Effects of straw mulch on soil nitrate dynamics

Effects of straw mulch on soil nitrate dynamics

Effects of straw mulch on soil nitrate dynamics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

26<br />

25<br />

27<br />

28<br />

29<br />

DTD 5<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> <strong>on</strong> <strong>soil</strong> <strong>nitrate</strong> <strong>dynamics</strong>, weeds,<br />

yield and <strong>soil</strong> erosi<strong>on</strong> in organically grown potatoes<br />

Thomas F. Döring a, *, Michael Brandt b ,Jürgen Heß c , Maria R. Finckh a , Helmut<br />

Saucke a<br />

Abstract<br />

a Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecological Plant Protecti<strong>on</strong>, Kassel University, Nordbahnh<str<strong>on</strong>g>of</str<strong>on</strong>g>str. 1a, D-37213 Witzenhausen, Germany<br />

b Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Science, Kassel University, Nordbahnh<str<strong>on</strong>g>of</str<strong>on</strong>g>str. 1a, D-37213 Witzenhausen, Germany<br />

c Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Organic Farming and Cropping, Kassel University, Nordbahnh<str<strong>on</strong>g>of</str<strong>on</strong>g>str. 1a, D-37213 Witzenhausen, Germany<br />

Received 24 June 2004; received in revised form 19 January 2005; accepted 19 January 2005<br />

The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> to organic seed potatoes (Solanum tuberosum L.) has been shown to reduce virus incidence. In<br />

order to determine the associated agr<strong>on</strong>omic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>, applied at 2.5–5 t ha 1 , <strong>on</strong> <strong>soil</strong> <strong>nitrate</strong> <strong>dynamics</strong>, weed<br />

development, tuber yield and <strong>soil</strong> erosi<strong>on</strong>, 12 field experiments were evaluated. Experiments were c<strong>on</strong>ducted <strong>on</strong> organic farms<br />

over 3 years at two locati<strong>on</strong>s in a temperate climate (635–709 mm precipitati<strong>on</strong>/year; 8.1 8C mean air temperature) <strong>on</strong> loamy silt<br />

<strong>soil</strong>s. Tuber yield and tuber size distributi<strong>on</strong> were not influenced significantly by <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing. However, the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> undesirable post<br />

harvest N-leaching was significantly reduced due to the immobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>nitrate</strong>–N after harvest at 6.8–7.0 kg N t 1 <str<strong>on</strong>g>straw</str<strong>on</strong>g> in<br />

two experiments (18–34 kg NO3–N ha 1 ). There was no c<strong>on</strong>sistent effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> <strong>on</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> weeds, weed cover and<br />

above ground biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> weeds. The fact that yield and weed development were not significantly affected by <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> is<br />

mainly attributed to the relatively low amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> applied. Soil erosi<strong>on</strong> was reduced by >97% in a rain simulati<strong>on</strong><br />

experiment <strong>on</strong> a potato field <str<strong>on</strong>g>of</str<strong>on</strong>g> 8% slope with 20% crop cover. Soil loss was greatest (1606 g m 2 ) in the un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed treatment,<br />

and 31, 42 and 26 g m 2 in treatments with chopped <str<strong>on</strong>g>straw</str<strong>on</strong>g> at 1.25, 2.5 and 5 t ha 1 , respectively.<br />

# 2005 Published by Elsevier B.V.<br />

Keywords: Straw <str<strong>on</strong>g>mulch</str<strong>on</strong>g>; Nitrogen; Organic farming; Potato; Soil erosi<strong>on</strong>; Weeds<br />

1. Introducti<strong>on</strong><br />

Field Crops Research xxx (2005) xxx–xxx<br />

Straw <str<strong>on</strong>g>mulch</str<strong>on</strong>g> applicati<strong>on</strong>s have been reported to<br />

reduce virus diseases in various crops such as barley<br />

* Corresp<strong>on</strong>ding author. Tel.: +49 5542 98 1569;<br />

fax: +49 5542 98 1564.<br />

E-mail address: doringt@wiz.uni-kassel.de (T.F. Döring).<br />

0378-4290/$ – see fr<strong>on</strong>t matter # 2005 Published by Elsevier B.V.<br />

doi:10.1016/j.fcr.2005.01.006<br />

(Kendall et al., 1991), lupins (J<strong>on</strong>es, 1994) and rape<br />

(Heimbach and Eggers, 2002). This has lead to the<br />

experimental transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> this approach to seed potatoes<br />

(Heimbach et al., 2002; Saucke and Döring, 2004),<br />

where tuber transmitted viruses are still a severe<br />

problem (Stevens<strong>on</strong>, 2001).<br />

Mulching with cereal <str<strong>on</strong>g>straw</str<strong>on</strong>g> was a frequent practice<br />

in potato growing several decades ago in parts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

UNCORRECTED PROOF<br />

www.elsevier.com/locate/fcr<br />

FIELD 4474 1–12<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37


38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

70<br />

71<br />

72<br />

73<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

DTD 5<br />

2<br />

North America (Albrecht, 1922; Rowe-Dutt<strong>on</strong>, 1957),<br />

and it was recognized that <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> might be useful<br />

against ‘‘degenerati<strong>on</strong>’’, i.e., for virus c<strong>on</strong>trol in seed<br />

potatoes (Werner, 1929; also see Emers<strong>on</strong>, 1907); but<br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing in potatoes disappeared from commercial<br />

practice when its functi<strong>on</strong> to increase <strong>soil</strong><br />

moisture (Russel, 1940; Verma and Kohnke, 1951)<br />

was taken over by sprinkler irrigati<strong>on</strong> (Pavlista, 2004,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nebraska, pers<strong>on</strong>al communicati<strong>on</strong>),<br />

and weed suppressi<strong>on</strong> (Rowe-Dutt<strong>on</strong>, 1957) was<br />

achieved by the use <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicides. With this shift,<br />

however, associated beneficial effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g><br />

were also lost, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important being the<br />

reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soil</strong> erosi<strong>on</strong> (Duley and Kelly, 1939; Borst<br />

and Woodburn, 1942a; Daws<strong>on</strong>, 1946; Adams, 1966;<br />

Edwards et al., 2000).<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> <strong>on</strong> tuber yield, however,<br />

have been variable, and this was mainly attributed to<br />

differences in climatic c<strong>on</strong>diti<strong>on</strong>s. While yield<br />

increase through <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> was frequently found<br />

under hot and dry summer c<strong>on</strong>diti<strong>on</strong>s (Bushnell and<br />

Welt<strong>on</strong>, 1931; Singh et al., 1987), reduced yields<br />

under <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> have also been reported and were<br />

attributed to below-optimum <strong>soil</strong> temperature (Opitz,<br />

1948; Jacks et al., 1955; Rowe-Dutt<strong>on</strong>, 1957), reduced<br />

<strong>soil</strong> <strong>nitrate</strong> levels (Scott, 1921; Albrecht, 1922;<br />

Albrecht and Uhland, 1925) and <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing too early<br />

(Bushnell and Welt<strong>on</strong>, 1931).<br />

Increasing the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> applied increases<br />

the effects <strong>on</strong> <strong>soil</strong> moisture and temperature (Scott,<br />

1921; Russel, 1940); therefore, large applicati<strong>on</strong> rates<br />

(10 t ha 1 and more), which were comm<strong>on</strong> in past<br />

studies and practice, appear to increase the risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

yield reducti<strong>on</strong> in cooler climates. In c<strong>on</strong>trast, the<br />

benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> <strong>on</strong> <strong>soil</strong> erosi<strong>on</strong> and virus<br />

c<strong>on</strong>trol are obtained at c<strong>on</strong>siderably lower levels. Even<br />

quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5–2.5 t ha 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g>, that leave part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>soil</strong> uncovered, were found to check erosi<strong>on</strong> to a<br />

large extent (80% and more; Borst and Woodburn,<br />

1942b; Lal, 1987; Nill and Nill, 1993). Regarding<br />

virus c<strong>on</strong>trol, small to moderate amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> (at<br />

3.5–5 tha 1 ) have been shown to c<strong>on</strong>sistently reduce<br />

aphid infestati<strong>on</strong> and potato virus Y (PVY) incidence<br />

in potatoes (Saucke and Döring, 2004).<br />

To make use <str<strong>on</strong>g>of</str<strong>on</strong>g> these benefits under temperate<br />

climatic c<strong>on</strong>diti<strong>on</strong>s, where <strong>soil</strong> moisture in summer is<br />

rarely limiting potato growth, it therefore appears to be<br />

reas<strong>on</strong>able to apply <strong>on</strong>ly small to moderate amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

T.F. Döring et al. / Field Crops Research xxx (2005) xxx–xxx<br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g>, thereby avoiding the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced yields in<br />

cool and wet growing seas<strong>on</strong>s. In order to evaluate this<br />

approach, the yield resp<strong>on</strong>se to <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing with <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

applied at 2.5–5 tha 1 was quantified in 11 field<br />

experiments that were c<strong>on</strong>ducted over 3 years at two<br />

locati<strong>on</strong>s in Germany. An additi<strong>on</strong>al field experiment<br />

was set up <strong>on</strong>-farm in order to quantify effects <str<strong>on</strong>g>of</str<strong>on</strong>g> small<br />

to moderate amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> <strong>on</strong> <strong>soil</strong> erosi<strong>on</strong><br />

under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> organic potato growing.<br />

A further pr<strong>on</strong>ounced effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g><br />

applicati<strong>on</strong> is the temporary immobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soil</strong><br />

nitrogen (N) after <str<strong>on</strong>g>straw</str<strong>on</strong>g> incorporati<strong>on</strong> into the <strong>soil</strong> due<br />

to the high C/N-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> (Cheshire et al., 1999).<br />

Since large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen are mineralized<br />

following potato harvest, <str<strong>on</strong>g>straw</str<strong>on</strong>g> incorporati<strong>on</strong> possibly<br />

c<strong>on</strong>tributes to the preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omically and<br />

envir<strong>on</strong>mentally relevant post-harvest N losses. In<br />

order to quantify these effects, pre- and post-harvest<br />

<strong>soil</strong> <strong>nitrate</strong> was measured in two <str<strong>on</strong>g>of</str<strong>on</strong>g> the field<br />

experiments.<br />

2. Material and methods<br />

2.1. Field experimental design<br />

Spreading <str<strong>on</strong>g>straw</str<strong>on</strong>g> <strong>on</strong> potato fields shortly after crop<br />

emergence (<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing) was compared to n<strong>on</strong>-<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing<br />

(bare <strong>soil</strong>) in 11 field experiments. The experiments<br />

were c<strong>on</strong>ducted <strong>on</strong> two organically managed<br />

farms in Germany: (A) The experimental farm <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Kassel at Hebenshausen and Neu-<br />

Eichenberg (51823 0 N, 9855 0 E) ca. 16 km S <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Göttingen, 220–250 m above sea level with clay–silt<br />

<strong>soil</strong>s <strong>on</strong> loess (13–15% clay, 78–83% silt, 3–6% sand);<br />

and (B) an arable farm ca. 17 km ESE <str<strong>on</strong>g>of</str<strong>on</strong>g> Göttingen<br />

(51828 0 N, 10808 0 E) ca. 240–280 m above sea level<br />

with loamy <strong>soil</strong>s (20–24% clay, 73–76% silt, 3–6%<br />

sand). Climatic c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the experimental years<br />

and locati<strong>on</strong>s are summarized in Table 1. For all<br />

experiments <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed and n<strong>on</strong>-<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed plots were<br />

either marked within existing potato fields or were set<br />

up as separate small-scale experiments (Table 2).<br />

Dates for planting, <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing and harvest, as well as<br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g> quantities and plot sizes are presented in<br />

Table 2. In all years, weeds were c<strong>on</strong>trolled twice<br />

before <str<strong>on</strong>g>mulch</str<strong>on</strong>g> applicati<strong>on</strong> with a rotary finger wheel<br />

hoe with ridging discs (site A) or a Wühlmaus Ridging<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12<br />

86<br />

87<br />

88<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

98<br />

99<br />

100<br />

101<br />

102<br />

103<br />

104<br />

105<br />

106<br />

107<br />

108<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

126<br />

127<br />

128<br />

129


DTD 5<br />

T.F. Döring et al. / Field Crops Research xxx (2005) xxx–xxx 3<br />

Table 1<br />

Air temperature (8C) and precipitati<strong>on</strong> (mm), from April to August in 2001–2003, and the l<strong>on</strong>g-term average at two experimental sites<br />

Year<br />

Temperature site A<br />

April May June July August Whole year<br />

2001 7.2 13.7 13.8 18.1 19.4<br />

2002 8.1 14.3 17.1 19.8 19.9<br />

2003 7.8 13.6 17.9 18.1 19.8<br />

1977–2000<br />

Precipitati<strong>on</strong> site A<br />

7.1 12.0 14.6 16.5 16.4 8.1<br />

2001 60.4 31.8 53.3 62.3 35.8<br />

2002 48.7 117.4 73.4 33.2 54.5<br />

2003 25.9 85.4 78.4 s.d. b<br />

19.3<br />

1977–2000<br />

Precipitati<strong>on</strong> site B<br />

45.2 53.9 75.7 62.7 54.4 635.2<br />

a<br />

2002 58.9 91.6 78.1 113.5 80.7<br />

2003 38.7 42.7 64.5 46.3 20.0<br />

1977–2000 48.3 62.0 78.7 64.7 66.8 708.7<br />

Data from weather stati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Kassel agricultural experimental stati<strong>on</strong> (site A) and from a Deutscher Wetterdienst (DWD) stati<strong>on</strong><br />

(site B).<br />

a<br />

Temperature data for site B are not available, but temperatures are expected to be similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> site A due to the short distance between<br />

the two sites and similar altitudes.<br />

b<br />

s.d.: sampler defect, but own observati<strong>on</strong>s indicate that precipitati<strong>on</strong> was below l<strong>on</strong>g time average.<br />

Table 2<br />

Details <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments: plot size, planting, <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing and harvesting date, <str<strong>on</strong>g>mulch</str<strong>on</strong>g> quantity, cumulated length <str<strong>on</strong>g>of</str<strong>on</strong>g> row harvested per plot and precrop<br />

Experiment Year Site Variety Plot size Experiment<br />

(m m) type b<br />

Planting Mulching Mulch<br />

date date (t ha 1 Date <str<strong>on</strong>g>of</str<strong>on</strong>g> m harvested Precrop<br />

) harvest per plot<br />

( 0.25)<br />

f<br />

1 2001 A Christa 9 9 Extra 23.4 18 + 28.5 c 5.0 26 + 27.7 e<br />

63 Grass-clover<br />

2 2001 A Marabel 10 10 a On-farm 10.5 12.6 3.5 2.9 7 Brussels<br />

sprouts<br />

3 2001 A Rosella 5.25 5 On-farm 11.5 21.6 1.25–5 d<br />

– – Grass-clover<br />

4 2002 A Christa 9 9 Extra 10.4 16 + 26.5 c 5.0 14. + 16.8 e 63 Grass-clover<br />

5 2002 A Nicola 9 9 Extra 15 + 20.5 3 + 10.6 c<br />

4.0 23. + 24.9 e 63 Grass-clover<br />

6 2002 B Christa 9 30 On-farm 5.4 17.5 3.5 5.8 27 Carrots<br />

7 2002 B Nicola 15 25 On-farm 8.4 17.5 3.5 28.8 15 Winter wheat<br />

8 2002 B Nicola 3 25 On-farm 8.4 17.5 3.5 28.8 15 Winter wheat<br />

9 2003 A Marabel 24 18 On-farm 17.4 28.5 3.0 3.9 15 Summer wheat<br />

10 2003 A Rosella 18 30 On-farm 17.4 28.5 3.0 4.9 15 Cabbage<br />

11 2003 B Christa 15 27.5 On-farm 26.3 8.5 2.5 2.7 27 Winter Triticale<br />

12 2003 B Nicola 30 27.5 On-farm 15.4 21.5 3.0 26.8 48 Peas<br />

a<br />

Varied plot size: 10 m 10 m, 20 m 20 m and 30 m 30 m; plot size had no significant effect <strong>on</strong> yield.<br />

b<br />

Experiment type; ‘‘<strong>on</strong>-farm’’ experiments were marked within farmers’fields, ‘‘extra’’ (small scale) experiments were surrounded by 3-m<br />

wide strips <str<strong>on</strong>g>of</str<strong>on</strong>g> bare <strong>soil</strong>.<br />

c<br />

Earlier date in presprouted, later date in n<strong>on</strong>-presprouted potatoes. No significant interacti<strong>on</strong> between <str<strong>on</strong>g>mulch</str<strong>on</strong>g> and presprouting regarding<br />

yield.<br />

d<br />

Varied amounts: 1.25, 2.5 and 5.0 t/ha.<br />

e<br />

Harvest <str<strong>on</strong>g>of</str<strong>on</strong>g> mature tubers occurred blockwise <strong>on</strong> two dates; haulms had already died back completely before harvest.<br />

f<br />

Green manure over winter after winter cereals.<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12


130<br />

131<br />

132<br />

133<br />

134<br />

135<br />

136<br />

137<br />

138<br />

139<br />

140<br />

141<br />

142<br />

143<br />

144<br />

145<br />

146<br />

147<br />

148<br />

149<br />

150<br />

151<br />

152<br />

153<br />

154<br />

155<br />

156<br />

157<br />

158<br />

159<br />

160<br />

161<br />

162<br />

163<br />

164<br />

165<br />

166<br />

167<br />

168<br />

169<br />

170<br />

171<br />

172<br />

173<br />

DTD 5<br />

4<br />

Hiller (site B). Haulm death was caused by late blight<br />

(Phytophthora infestans M<strong>on</strong>t de Bary) in 2001 and<br />

2002. In 2003, haulms were cut after plant growth had<br />

stopped due to hot and dry weather. Chopped <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g> was applied by hand in experiments 1, 4 and 5;<br />

with a Kverneland Round bale chopper (KD 807) in<br />

experiments 2, 6 and 7; and with a Hawe Stable Straw<br />

Spreader in experiments 8–12. All experiments were<br />

c<strong>on</strong>ducted in randomized complete block designs with<br />

four replicates. Further details <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments 1, 2, 4<br />

and 5 are presented in Saucke and Döring (2004). In<br />

experiments 1, 4, 5 and 12, presprouting <str<strong>on</strong>g>of</str<strong>on</strong>g> seed tubers<br />

was included as an additi<strong>on</strong>al factor. As there were no<br />

interacti<strong>on</strong>s between presprouting and <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing in<br />

any case, the presprouting factor is disregarded in this<br />

paper.<br />

2.2. Soil sampling<br />

Soil was sampled at two depths (0–30 and 30–<br />

60 cm) in experiments 1, 4 and 11 with a Göttinger <strong>soil</strong><br />

sampling set (diameter, 18 mm). Bulk samples <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

plot were obtained from 8 (experiment 1) or 10<br />

(experiments 4 and 11) points per plot, with a diag<strong>on</strong>al<br />

sampling line across the plot. Sampling points were<br />

chosen half way between the top (ridge) and the<br />

bottom (furrow), i.e., <strong>on</strong> the ridge shoulder. Sampling<br />

in experiment 1 was d<strong>on</strong>e shortly before harvest (23<br />

July 2001); sampling in experiments 4 and 11 was<br />

d<strong>on</strong>e at three dates per year (1) at plant emergence (22<br />

April 2002, 22 April 2003), (2) after haulm death<br />

shortly before harvest (6 August 2002, 22 July 2003)<br />

and (3) 3–6 weeks after harvest and before emergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the following green manure crop (24 September<br />

2002, 10 September 2003). Samples were cooled in<br />

the field and frozen at 18 8C until moisture c<strong>on</strong>tent<br />

was measured (weight loss after 24 h at 105 8C;<br />

experiments 1, 4 and 11) and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral N<br />

was d<strong>on</strong>e for samples <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments 4 and 11 with<br />

100 g <strong>soil</strong> and CaCl2-extracti<strong>on</strong> (VDLUFA, 1991;<br />

König and Fortmann, 1996).<br />

2.3. Plant growth parameters<br />

In experiment 1, the chlorophyll c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> potato<br />

leaves was measured by determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light<br />

transmissi<strong>on</strong> at 650 and 960 nm with the Hydro N-<br />

Tester <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydro Agri Ltd., Immingham, UK, which is<br />

T.F. Döring et al. / Field Crops Research xxx (2005) xxx–xxx<br />

based <strong>on</strong> a SPAD 502 by Minolta Corp. (Kantety et al.,<br />

1996; Shaahan and El-Bendary, 1999). Dimensi<strong>on</strong>less<br />

output values <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hydro N-Tester are correlated to<br />

chlorophyll c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> tobacco leaves (r 2 = 0.95) and<br />

to N c<strong>on</strong>tent in potato leaves (r 2 = 0.88) (Neukirchen<br />

and Lammel, 2002). On 25 June 2001, before<br />

flowering and at about 90% crop cover, 30 plants<br />

per plot were sampled, with <strong>on</strong>e leaf from the upper<br />

and <strong>on</strong>e from the middle part <str<strong>on</strong>g>of</str<strong>on</strong>g> each plant.<br />

Plant height was measured in cm in experiments 7,<br />

9, 11 and 12 as the distance from the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the ridge to<br />

the highest part <str<strong>on</strong>g>of</str<strong>on</strong>g> the randomly chosen plant. The<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> plants sampled per plot and the sampling<br />

dates are summarized in Table 5.<br />

2.4. Weed assessements<br />

Weed development was investigated in five<br />

experiments. In experiments 1, 9 and 12, a sampling<br />

frame <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.40 m 1.60 m was randomly thrown into<br />

the plot and adjusted so that the l<strong>on</strong>ger side was<br />

parallel with the rows; two positi<strong>on</strong>s were sampled per<br />

throw (a) the bottom half <str<strong>on</strong>g>of</str<strong>on</strong>g> the ridge pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (‘‘in<br />

furrows’’) and (b) the adjacent top half (‘‘<strong>on</strong> ridges’’).<br />

Weeds were counted and weed cover was estimated.<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> subsamples (throws) per plot is given<br />

in Table 6.<br />

In experiments 7 and 8, the above ground biomass<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> weeds was cut from four randomly chosen sampling<br />

areas per plot, measuring 1.50 m 1.50 m each. The<br />

weeds were dried at 80 8C until c<strong>on</strong>stant weight.<br />

2.5. Harvest and yield measurement<br />

Harvesting was d<strong>on</strong>e with a ‘‘Samro Spezial’’<br />

potato lifter with cleaning drum in experiments 1, 4<br />

and 5 and by hand in all other experiments. Per plot,<br />

seven subsamples were taken in experiments 1, 4, and<br />

5; two in experiment 2; nine in experiments 6 and 11;<br />

five in experiments 7–10; and sixteen in experiment<br />

12; row length per subsample was 9 m in experiments<br />

1, 4, and 5; 3.5 m in experiment 2; and 3 m in all other<br />

experiments. The cumulative row length harvested per<br />

plot is given in Table 2. Harvested tubers were sorted<br />

with a Schmotzer shaking-grid-type potato sorter,<br />

partiti<strong>on</strong>ing the lots into three fracti<strong>on</strong>s (65 mm in experiments 1 and 2; and 55 mm in all other experiments).<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12<br />

174<br />

175<br />

176<br />

177<br />

178<br />

179<br />

180<br />

181<br />

182<br />

183<br />

184<br />

185<br />

186<br />

187<br />

188<br />

189<br />

190<br />

191<br />

192<br />

193<br />

194<br />

195<br />

196<br />

197<br />

198<br />

199<br />

200<br />

201<br />

202<br />

203<br />

204<br />

205<br />

206<br />

207<br />

208<br />

209<br />

210<br />

211<br />

212<br />

213<br />

214<br />

215<br />

216<br />

217


218<br />

219<br />

220<br />

221<br />

222<br />

223<br />

224<br />

225<br />

226<br />

227<br />

228<br />

229<br />

230<br />

231<br />

232<br />

233<br />

234<br />

235<br />

236<br />

237<br />

238<br />

239<br />

240<br />

241<br />

242<br />

243<br />

244<br />

245<br />

246<br />

247<br />

248<br />

249<br />

250<br />

251<br />

252<br />

253<br />

254<br />

255<br />

256<br />

257<br />

258<br />

259<br />

260<br />

261<br />

262<br />

DTD 5<br />

2.6. Soil erosi<strong>on</strong><br />

Soil erosi<strong>on</strong> was measured in an unreplicated<br />

artificial rain experiment (experiment 3; at 20% crop<br />

cover and with a slope <str<strong>on</strong>g>of</str<strong>on</strong>g> 8%), using a mobile rainfall<br />

simulator developed by Kainz and Eicher (1990)<br />

(Auerswald and Eicher, 1992; Auerswald et al., 1992;<br />

Kainz et al., 1992), with four horiz<strong>on</strong>tally oscillating<br />

Veejet 80100 nozzles (Moore et al., 1983). The<br />

maximum rain drop size is 10–20 mm diameter and<br />

13% <str<strong>on</strong>g>of</str<strong>on</strong>g> drops are below 3 mm (Hassel and Richter,<br />

1992). Nozzle height (2.8 m) and water pressure<br />

(42.2 kPa) resulted in an adjusted dropping height <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

3.5 m. The rain interval was 60 min per plot, the first<br />

20 min with artificial rain intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> 60 mm h 1 , the<br />

last 40 min with 80 mm h 1 . The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> applied rain<br />

within 1 h <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong> was 73 mm. The kinetic energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the first 20 min was 382 J m 2 , <str<strong>on</strong>g>of</str<strong>on</strong>g> the last 40 min<br />

1012 J m 2 (Hassel and Richter, 1992). Treatments<br />

were <str<strong>on</strong>g>mulch</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> chopped winter wheat <str<strong>on</strong>g>straw</str<strong>on</strong>g> (mean<br />

length 58 mm; S.D. 41 mm) at 1.25, 2.5 and 5.0 t ha 1<br />

and uncut (l<strong>on</strong>g) <str<strong>on</strong>g>straw</str<strong>on</strong>g> at 2.5 t ha 1 ,aswellasan<br />

un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed c<strong>on</strong>trol. Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f delay after starting the<br />

artificial rainfall was determined and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f was<br />

c<strong>on</strong>tinuously measured and collected. Sediment c<strong>on</strong>centrati<strong>on</strong><br />

(g l 1 ) was determined by drying run<str<strong>on</strong>g>of</str<strong>on</strong>g>f at<br />

105 8C (Brandt, 1997). Afterflow was measured as the<br />

time between end <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial rainfall and end <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f.<br />

2.7. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> area covered by varied amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

In order to establish the relati<strong>on</strong>ship between the<br />

quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> applied and the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

area covered by <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>, wheat <str<strong>on</strong>g>straw</str<strong>on</strong>g> (dry matter<br />

c<strong>on</strong>tent 94.0 0.1%) was distributed <strong>on</strong> the object<br />

table (48.5 cm 31.5 cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> a leaf area meter (Delta-<br />

T Devices Ltd., Cambridge, UK; M<strong>on</strong>itor Hitachi<br />

VM900, Interface RS 232c; Video-Camera TC 1005/<br />

01X, RCA, Lancaster). The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <strong>on</strong> the<br />

object table was gradually increased in 5 g steps from<br />

0 to 50 g. Three treatments were measured with three<br />

replicates each: (i) <str<strong>on</strong>g>straw</str<strong>on</strong>g> cut into regular, 50 mm l<strong>on</strong>g<br />

pieces (ca. 5 mm wide; double-sided internodes <strong>on</strong>ly);<br />

(ii) chopped <str<strong>on</strong>g>straw</str<strong>on</strong>g>, piece length 100 mm). To achieve a random distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g> <strong>on</strong> the object table, the <str<strong>on</strong>g>straw</str<strong>on</strong>g> was cumulatively<br />

thrown from a height <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.32 m through a cardboard<br />

tunnel (ground area: 34 cm 26 cm) placed vertically<br />

<strong>on</strong> the object table; the tunnel was carefully removed<br />

from the object table before each area measurement.<br />

2.8. Statistical analysis<br />

Statistical analyses were performed with SAS<br />

v6.12 (SAS Institute Inc., 1989, 1990). Percentage<br />

values, such as tuber size fracti<strong>on</strong>s, weed cover<br />

estimates and <strong>soil</strong> moisture c<strong>on</strong>tents, were arcsinsquare-root<br />

transformed before ANOVA. Untransformed<br />

data are presented.<br />

3. Results and discussi<strong>on</strong><br />

3.1. Soil moisture<br />

Soil moisture measured directly before harvest in<br />

three experiments. was not affected significantly by<br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing (Table 3).<br />

While it is well established that <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g><br />

increases <strong>soil</strong> moisture by reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong><br />

(Esselen, 1937; Russel, 1940; Turk and Partridge,<br />

1947) and increase <str<strong>on</strong>g>of</str<strong>on</strong>g> infiltrati<strong>on</strong> (Duley and Kelly,<br />

1939) it may also reduce <strong>soil</strong> moisture by intercepting<br />

precipitati<strong>on</strong> and preventing rain from penetrating the<br />

<strong>soil</strong>, in cases <str<strong>on</strong>g>of</str<strong>on</strong>g> frequent but small rainfall (Griffith,<br />

1952, cited in Jacks et al., 1955, p.16). In this study,<br />

however, looking at the large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong><br />

in the two weeks before the <strong>soil</strong> moisture sampling<br />

date (48.2, 27.8 and 92.3 mm in experiments 1, 4, and<br />

11, respectively), intercepti<strong>on</strong> is unlikely to be the<br />

reas<strong>on</strong> for <strong>soil</strong> moisture being unaffected by <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing.<br />

Possibly, the heavy rainfall shortly before sampling<br />

may also have nullified any moisture c<strong>on</strong>serving<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>.<br />

It is known that the moisture c<strong>on</strong>serving effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> increases with the amount applied<br />

(Russel, 1940). Verma and Kohnke (1951, p. 150)<br />

stated that an amount <str<strong>on</strong>g>of</str<strong>on</strong>g> 3000 pounds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> per<br />

acre [=3.4 t ha 1 ] is about the smallest rate that is<br />

effective in evaporati<strong>on</strong> c<strong>on</strong>trol. Therefore, the<br />

relatively small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> applied would not<br />

be expected to be effective in c<strong>on</strong>serving <strong>soil</strong> moisture.<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12<br />

263<br />

264<br />

265<br />

266<br />

267<br />

268<br />

269<br />

270<br />

271<br />

272<br />

273<br />

274<br />

275<br />

276<br />

277<br />

278<br />

279<br />

280<br />

281<br />

282<br />

283<br />

284<br />

285<br />

286<br />

287<br />

288<br />

289<br />

290<br />

291<br />

292<br />

293<br />

294<br />

295<br />

296<br />

297<br />

298<br />

299<br />

300<br />

301<br />

302<br />

303<br />

304


305<br />

306<br />

307<br />

308<br />

309<br />

310<br />

311<br />

312<br />

313<br />

314<br />

315<br />

316<br />

317<br />

318<br />

319<br />

320<br />

DTD 5<br />

6<br />

3.2. Soil <strong>nitrate</strong> <strong>dynamics</strong><br />

At emergence and immediately before harvest,<br />

<strong>on</strong>ly small and n<strong>on</strong>-significant differences in <strong>soil</strong><br />

<strong>nitrate</strong> between <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed and un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed plots were<br />

found (Table 4). Nitrogen mineralizati<strong>on</strong> after the<br />

harvest process lead to a post-harvest increase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>nitrate</strong> in the <strong>soil</strong> (62 and 51 kg NO3–N ha 1 in the<br />

un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed <strong>soil</strong>, experiments 4 and 11, respectively).<br />

The post-harvest amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>nitrate</strong> was greater in the<br />

un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed than in the <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed plots with a total<br />

difference <str<strong>on</strong>g>of</str<strong>on</strong>g> 33.8 kg NO 3–N ha 1 in experiment 4<br />

(not significant) and 17.6 kg NO3–N ha 1 in experiment<br />

11 (significant at p = 0.035; Table 4).<br />

The reas<strong>on</strong> for this is seen in an immobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen after incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the (partially decayed)<br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g> into the <strong>soil</strong> due to the high C/N-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

T.F. Döring et al. / Field Crops Research xxx (2005) xxx–xxx<br />

Table 3<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> in potatoes <strong>on</strong> <strong>soil</strong> moisture shortly before harvest (wt%): means S.E.<br />

Soil moisture pre-harvest Experiment 1 (2001, n = 8) Experiment 4 (2002, n = 4) Experiment 11 (2003, n =4)<br />

0–30 cm 30–60 cm 0–30 cm 30–60 cm 0–30 cm 30–60 cm<br />

Un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed 17.7 0.5 19.0 1.1 21.1 2.8 20.2 2.3 8.8 0.3 11.7 0.2<br />

Mulched 18.9 0.8 18.0 0.6 21.1 2.3 20.6 3.1 9.3 0.3 11.8 0.2<br />

L.S.D. 5% (untransformed) 1.6 ns 2.0 ns 2.6 ns 1.7 ns 1.6 ns 1.1 ns<br />

ns: difference not significant (both for untransformed and angle-transformed data).<br />

(Cheshire et al., 1999). The C/N-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>straw</str<strong>on</strong>g> in<br />

experiment 4 was determined as 76.7; this value is<br />

well below the l<strong>on</strong>g-time average C/N-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 for<br />

winter wheat <str<strong>on</strong>g>straw</str<strong>on</strong>g> presented by Boguslawski and<br />

Debruck (1977). Per t<strong>on</strong>ne <str<strong>on</strong>g>straw</str<strong>on</strong>g> applied, ca. 6.8 and<br />

7.0 kg N (experiments 4 and 11, respectively) were<br />

immobilized; this immobilizati<strong>on</strong> rate is at the upper<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> the range (1–7 kgNt 1 ) summarized by<br />

Christensen and Olesen (1998).<br />

3.3. Parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> plant nutriti<strong>on</strong>al status and plant<br />

growth<br />

Hydro N-Tester values, as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

nutriti<strong>on</strong>al status <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant, were significantly<br />

reduced by <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> applicati<strong>on</strong> in experiment 1<br />

(Fig. 1). Plant height was slightly but significantly<br />

Table 4<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> applied to potatoes (var. Christa) <strong>on</strong> <strong>soil</strong> <strong>nitrate</strong>-N (kg ha 1 ) in two experiments a : means S.E., n =4<br />

Soil <strong>nitrate</strong> a<br />

Experiment 4 (2002) Experiment 11 (2003)<br />

0–30 cm<br />

At emergence (before <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing)<br />

30–60 cm Sum (0–60 cm) 0–30 cm 30–60 cm Sum (0–60 cm)<br />

b<br />

Un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed 70.2 12.5 40.4 11.4 110.6 23.6 40.1 4.1 14.3 2.7 54.4 6.7<br />

Mulched 74.3 7.3 39.4 10.2 113.7 17.4 36.2 3.9 14.0 3.5 50.2 7.3<br />

Pre-harvest (after haulm death) b<br />

Un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed 25.3 4.8 22.7 5.2 48.0 9.7 20.7 1.1 3.2 0.2 23.9 1.0<br />

Mulched<br />

Post-harvest<br />

24.4 2.6 21.8 5.8 46.2 8.3 20.6 2.1 4.5 1.1 25.1 1.6<br />

Un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed 69.4 16.2 40.6 11.7 110.0 27.8 61.1 8.1 13.8 4.7 74.9 11.1<br />

Mulched<br />

Post-harvest difference<br />

46.4 10.2 29.8 7.2 76.2 17.2 48.7 6.7 8.7 1.3 57.3 8.0<br />

Un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed-Mulched 23.0 11.7 10.8 7.2 33.8 18.8 12.5 2.6 5.1 4.1 17.6 4.8<br />

LSD (5%) 37.1 ns 23.0 ns 59.8 ns 8.3 *<br />

13.2 ns 15.2 *<br />

ns: not significant.<br />

a<br />

For details <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental c<strong>on</strong>diti<strong>on</strong>s see Table 2; for sampling dates see text (Secti<strong>on</strong> 2.2).<br />

b<br />

There were no significant differences between <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed and un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed treatments c<strong>on</strong>cerning <strong>soil</strong> <strong>nitrate</strong> at emergence and pre-harvest.<br />

* p < 0.05.<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12<br />

321<br />

322<br />

323<br />

324<br />

325<br />

326<br />

327<br />

328<br />

329<br />

330<br />

331<br />

332<br />

333<br />

334<br />

335


336<br />

337<br />

338<br />

339<br />

340<br />

341<br />

342<br />

343<br />

344<br />

345<br />

346<br />

DTD 5<br />

Fig. 1. Hydro N-Tester value as affected by <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing (experiment<br />

1). Means S.E.; n = 8. Mulching effect significant at<br />

p < 0.001; effect <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf positi<strong>on</strong> significant at p < 0.001. Interacti<strong>on</strong><br />

between <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing and leaf positi<strong>on</strong> is not significant.<br />

reduced by <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> in two out <str<strong>on</strong>g>of</str<strong>on</strong>g> five cases, i.e.,<br />

in experiments 7 and 12 <strong>on</strong> the later sampling date,<br />

butitwasnotinfluenced in experiments 9 and 11,<br />

and in experiment 12 <strong>on</strong> the earlier sampling date<br />

(Table 4).<br />

One reas<strong>on</strong> for decreased growth might be possibly<br />

lower <strong>soil</strong> <strong>nitrate</strong> levels under <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> during the<br />

vegetati<strong>on</strong> period (Albrecht, 1922; Albrecht and<br />

Uhland, 1925), but—again probably due to the small<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> applied—growth parameters were not<br />

c<strong>on</strong>sistently affected (Table 5).<br />

T.F. Döring et al. / Field Crops Research xxx (2005) xxx–xxx 7<br />

Table 5<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing in potatoes <strong>on</strong> plant height in cm<br />

Experiment 7 9 11 12 12<br />

Variety Nicola Marabel Christa Nicola Nicola<br />

Sampling date 19.06.02 09.07.03 12.06.03 12.06.03 09.07.03<br />

Plants/plot 16 16 8 8 8<br />

Replicati<strong>on</strong>s 8 4 4 8 16<br />

Un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed 38.1 55.5 41.2 47.8 64.9<br />

Mulched 36.0 53.3 42.0 48.5 63.3<br />

L.S.D. 5% 1.5 *<br />

3.8 ns 2.6 ns 2.8 ns 1.57 *<br />

ns: not significant.<br />

*<br />

p < 0.05.<br />

3.4. Weeds<br />

The most dominant weed species were Fumaria<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ficinalis in experiment 1, Polyg<strong>on</strong>um persicaria and<br />

Cirsium arvense in experiments 7 and 8, Thlaspi<br />

arvense and Chenopodium album in experiment 9 and<br />

Stellaria media and Chenopodium album in experiment<br />

12. There were no c<strong>on</strong>sistent effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing<br />

<strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> weeds, weed cover and biomass<br />

(Table 6; Fig. 2). However, the sampling positi<strong>on</strong> with<br />

respect to the ridges and the timing within the seas<strong>on</strong><br />

appeared to interact with the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing in<br />

experiment 1. Earlier in the seas<strong>on</strong> (6 June) <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing<br />

increased the number and cover <str<strong>on</strong>g>of</str<strong>on</strong>g> weeds, while three<br />

Table 6<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> and sampling positi<strong>on</strong> <strong>on</strong> weed counts (number <str<strong>on</strong>g>of</str<strong>on</strong>g> plants per m 2 ) and weed cover (%) in experiment 1, 9 and 12<br />

Parameter Count/m 2<br />

Experiment (date)<br />

Cover (%)<br />

1 (06.06) 1 (27.06) 9 (12.06) 12 (18.06) 1 (06.06) 1 (27.06) 9 (12.06) 12 (18.06) 12 (09.07)<br />

Un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed in furrows 10.4 82.0 103.3 31.4 0.0 2.1 1.3 1.7 10.5<br />

Mulched in furrows 15.6 24.4 56.8 30.4 1.8 3.2 1.0 1.9 10.3<br />

Un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed <strong>on</strong> ridges 5.2 20.1 21.5 3.9 0.5 1.2 0.7 0.3 – a<br />

Mulched <strong>on</strong> ridges<br />

Significance level for<br />

16.9 10.1 19.7 3.3 3.0 2.2 0.3 0.4 –<br />

Mulching effect<br />

* **<br />

ns ns<br />

**<br />

ns<br />

*<br />

ns ns<br />

Positi<strong>on</strong> effect ns<br />

** *** ***<br />

ns ns<br />

** ***<br />

–<br />

Interacti<strong>on</strong> ns ns ns ns ns ns ns ns –<br />

Error d.f. 21 21 9 9 21 21 9 9 7<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> subsamples 2 2 2 8 2 2 2 8 10<br />

ns: not significant.<br />

a Not sampled.<br />

* 0.01 < p < 0.05.<br />

** 0.001 < p < 0.01.<br />

*** p < 0.001.<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12<br />

347<br />

348<br />

349<br />

350<br />

351<br />

352<br />

353<br />

354<br />

355<br />

356<br />

357<br />

358<br />

359


360<br />

361<br />

362<br />

363<br />

364<br />

365<br />

366<br />

367<br />

368<br />

369<br />

DTD 5<br />

8<br />

Fig. 2. Weed dry matter (kg ha 1 ) <strong>on</strong> 9 July 2002, as affected by<br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing in experiment 7 (ridged after <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing, upper case letters)<br />

and experiment 8 (not ridged after <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing, lower case letters).<br />

Means S.E.; n = 4. Means with the same letter within the same<br />

case (i.e., within the same experiment) are not statistically different.<br />

Statistical comparis<strong>on</strong>s regarding ridging are not possible, as this<br />

factor was not randomized over the two (adjacent) experiments.<br />

weeks later (27 June) the number <str<strong>on</strong>g>of</str<strong>on</strong>g> weeds was<br />

reduced; this reducti<strong>on</strong> was significant overall (i.e., for<br />

both sampling positi<strong>on</strong>s together) and for the lower<br />

sampling positi<strong>on</strong> (‘‘in furrows’’), but not for the top<br />

half <str<strong>on</strong>g>of</str<strong>on</strong>g> the ridge pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (Fig. 3).<br />

While weed reducti<strong>on</strong> by light-excluding <str<strong>on</strong>g>mulch</str<strong>on</strong>g>es<br />

has widely been reported (Rowe-Dutt<strong>on</strong>, 1957; Prihar<br />

et al., 1976), a possible compensatory effect occurs<br />

when weeds benefit from increased <strong>soil</strong> moisture<br />

under light <str<strong>on</strong>g>mulch</str<strong>on</strong>g>es (Jacks et al., 1955; Jalota and<br />

T.F. Döring et al. / Field Crops Research xxx (2005) xxx–xxx<br />

Table 7<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing <strong>on</strong> tuber yield <str<strong>on</strong>g>of</str<strong>on</strong>g> potatoes<br />

Experiment Year Site Variety d.f. Total yield (dt/ha) c<br />

Fig. 3. Area covered by varied amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

size classes, measured by leaf area meter; means S.E., n =3.<br />

Prihar, 1979), and this may explain the increased<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> weeds early in the seas<strong>on</strong> in experiment 1.<br />

After several weeks, the <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> had partly slid<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f the top half <str<strong>on</strong>g>of</str<strong>on</strong>g> the ridge and accumulated <strong>on</strong> the<br />

bottom where it impeded weed growth. Indirect<br />

detrimental effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> <strong>on</strong> yield through the<br />

promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weeds have been reported (Zhivan, 1935,<br />

cited in Jacks et al., 1955), but here, for a negative<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> weeds <strong>on</strong> yield, overall weed cover was too<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing (%) Fracti<strong>on</strong>s: absolute difference<br />

(<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed–un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed) (%)<br />

Large fracti<strong>on</strong> d<br />

Un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed Mulched Small fracti<strong>on</strong> d<br />

1 2001 A Christa 6 359 8 375 7 4.3 ns 0.6 0.2 *<br />

1.5 1.1 ns<br />

2 2001 A Marabel 4 432 9 458 8 6.1 ns 0.1 0.9 ns 3.5 2.3 ns<br />

4 2002 A Christa 7 142 18 138 18 3.0 ns 2.9 2.8 ns 1.5 1.1 ns<br />

5 2002 A Nicola 7 150 19 159 19 6.0 ns 0.2 1.3 ns 2.5 2.1 ns<br />

6 2002 B Christa 2 146 12 153 3 4.8 ns 0.8 0.6 ns 1.4 1.2 ns<br />

7 a<br />

2002 B Nicola 7 193 12 187 14 3.2 ns 2.9 2.2 ns 1.5 1.5 ns<br />

8 2002 B Nicola 3 231 8 204 21 11.5 ns 2.7 1.6 ns 3.3 2.6 ns<br />

9 2003 A Marabel 3 306 25 299 13 2.3 ns 0.3 0.5 ns 5.9 1.1 *<br />

10 b<br />

2003 A Rosella 3 415 13 388 13 6.5 ns 0.05 0.1 ns 1.9 3.6 ns<br />

11 2003 B Christa 3 292 11 307 23 5.2 ns 0.1 0.4 ns 1.6 0.3 *<br />

12 2003 B Nicola 3 378 17 371 12 1.8 ns 0.2 0.1 ns 0.9 1.1 ns<br />

ns: difference not significant; means S.E.<br />

a<br />

Experiment 7: Straw was partly incorporated into <strong>soil</strong> with finger wheel hoe 6 weeks after <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing.<br />

b<br />

Experiment 10: Straw was partly incorporated into <strong>soil</strong> due to str<strong>on</strong>g rainfall (ca. 50 mm in 2 h) already 3 days after <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing.<br />

c<br />

Total yield <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments 1–5: Figures have already been presented in Saucke and Döring (2004).<br />

d<br />

Small fracti<strong>on</strong> < 35 mm; large fracti<strong>on</strong> > 65 mm in experiments 1 and 2 and >55 mm in experiments 4–11.<br />

* p < 0.05.<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12<br />

370<br />

371<br />

372<br />

373<br />

374<br />

375<br />

376<br />

377<br />

378


379<br />

380<br />

381<br />

382<br />

383<br />

384<br />

385<br />

386<br />

387<br />

388<br />

389<br />

390<br />

391<br />

392<br />

393<br />

394<br />

395<br />

396<br />

397<br />

398<br />

399<br />

400<br />

401<br />

402<br />

403<br />

404<br />

405<br />

406<br />

407<br />

408<br />

409<br />

410<br />

411<br />

412<br />

DTD 5<br />

little. The main reas<strong>on</strong> why weed growth was not<br />

influenced c<strong>on</strong>sistently by <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> in the<br />

experiments presented is again seen in the comparatively<br />

small applicati<strong>on</strong> rates. Bushnell and Welt<strong>on</strong><br />

(1931) found that at applicati<strong>on</strong> levels below 8 t/acre<br />

[=19.75 t ha 1 ], annual weeds readily penetrated the<br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>. Similarly, Hembry and Davies (1994) found<br />

weed growth still occurring at 20 t ha 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>, although with few weeds.<br />

3.5. Yield and tuber size fracti<strong>on</strong>s<br />

Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> yield to <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> was not<br />

significant in any experiment (Table 7) and the trends<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing effects <strong>on</strong> yield were evenly distributed<br />

(positive trend in five experiments., negative trend in<br />

six experiments.). Equally, tuber size fracti<strong>on</strong>s were<br />

not significantly affected by <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing, except for<br />

three experiments (experiments 1, 9 and 11), but again<br />

with no c<strong>on</strong>sistent directi<strong>on</strong>.<br />

These results are in agreement with recent<br />

investigati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> effects from temperate<br />

climates, which also did not show any significant yield<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> potatoes to <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> (St<strong>on</strong>er et al.,<br />

1996; Edwards et al., 2000, data not presented). As<br />

pointed out by Jacks et al. (1955), <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing affects<br />

crop yields in many and complex ways. Higher yields<br />

under <str<strong>on</strong>g>mulch</str<strong>on</strong>g> have mostly been attributed to increased<br />

<strong>soil</strong> moisture under arid and semiarid c<strong>on</strong>diti<strong>on</strong>s<br />

(Singh et al., 1987, 1988; Saha et al., 1997; Tiwari<br />

et al., 1998; Tolk et al., 1999; Ramalan and<br />

Nwokeocha, 2000; Chandra et al., 2002) but even<br />

in the comparatively hot dry summer <str<strong>on</strong>g>of</str<strong>on</strong>g> 2003 (see<br />

Table 1) yields were not significantly affected by <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing. Reas<strong>on</strong>s for the tuber yield not being<br />

affected by <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> may include the compensa-<br />

T.F. Döring et al. / Field Crops Research xxx (2005) xxx–xxx 9<br />

ti<strong>on</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant under water stress c<strong>on</strong>diti<strong>on</strong>s,<br />

the high water holding capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>soil</strong>s and the<br />

comparatively low evaporativity during the experimental<br />

periods; however, the main reas<strong>on</strong> is seen in the<br />

low amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> applied, as already <strong>soil</strong> moisture<br />

was not influenced significantly by <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing (see<br />

above).<br />

3.6. Soil erosi<strong>on</strong><br />

Soil loss was greatest in the un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed plot with<br />

1606 g m 2 (Table 8); similar values were found by<br />

Lal (1975) with 1219 and 2706 g m 2 <strong>on</strong> 5 and 10%<br />

sloping un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed <strong>soil</strong>, respectively. Even very small<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> (1.25 t ha 1 ) decreased <strong>soil</strong><br />

loss and sediment c<strong>on</strong>centrati<strong>on</strong> in run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. While cut<br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g> reduced <strong>soil</strong> loss by 97.4–98.4% compared with<br />

untreated <strong>soil</strong>, reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soil</strong> loss by l<strong>on</strong>g <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

(2.5 t ha 1 ) was less effective (reducti<strong>on</strong> by 91.7%).<br />

Similar results were found in other investigati<strong>on</strong>s.<br />

With <str<strong>on</strong>g>straw</str<strong>on</strong>g> applicati<strong>on</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 and 4 t ha 1 at 10%<br />

slope, Lal (1975) found <strong>soil</strong> loss reduced by 97 and<br />

99.6%, respectively, compared to <strong>soil</strong> loss in<br />

un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed treatments. On a 12.5% sloping silt loam,<br />

an applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ca. 5 t ha 1 lead to <strong>soil</strong> loss reducti<strong>on</strong><br />

by 98.0–99.9% (Borst and Woodburn, 1942b).<br />

During rain simulati<strong>on</strong> the <str<strong>on</strong>g>straw</str<strong>on</strong>g> was partly washed<br />

from ridges into furrows and formed micro-dams,<br />

building a lined-up microrelief which retained the<br />

surface rainwater in small hollows as was already<br />

observed by others (Roth and Helmig, 1992; Brandt,<br />

1997; Roth, 1998). As a result, afterflow was<br />

increasingly delayed with increasing <str<strong>on</strong>g>straw</str<strong>on</strong>g> quantity<br />

from 2.7 min in untreated to 39.7 min in 5 t ha 1 <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>. L<strong>on</strong>g <str<strong>on</strong>g>straw</str<strong>on</strong>g> also formed dams and built up<br />

hollows, but the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f filtrati<strong>on</strong> was less<br />

Table 8<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> quantity and <str<strong>on</strong>g>straw</str<strong>on</strong>g> texture <strong>on</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, after flow, sediment c<strong>on</strong>centrati<strong>on</strong> and <strong>soil</strong> loss—results <str<strong>on</strong>g>of</str<strong>on</strong>g> rain simulati<strong>on</strong>s<br />

Mulch quantity (t ha 1 ) (<str<strong>on</strong>g>mulch</str<strong>on</strong>g> texture)<br />

0 1.25 (cut) 2.5 (cut) 5.0 (cut) 2.5 (l<strong>on</strong>g)<br />

Start run<str<strong>on</strong>g>of</str<strong>on</strong>g>f (min) 21.7 21.4 32.2 23.0 22.7<br />

Afterflow (min) 2.7 13.4 38.3 39.7 33.4<br />

Mean sediment c<strong>on</strong>centrati<strong>on</strong> (g l 1 ) 69.0 3.4 2.2 1.1 10.5<br />

Max sediment c<strong>on</strong>centrati<strong>on</strong> (g l 1 ) 101.7 5.1 8.0 1.9 41.4<br />

Soil loss per plot (g) 10357 199 270 170 857<br />

Soil loss (g m 2 ) 1606 31 42 26 133<br />

Soil loss (%) 100 1.9 2.6 1.6 8.3<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12<br />

413<br />

414<br />

415<br />

416<br />

417<br />

418<br />

419<br />

420<br />

421<br />

422<br />

423<br />

424<br />

425<br />

426<br />

427<br />

428<br />

429<br />

430<br />

431<br />

432<br />

433<br />

434<br />

435<br />

436<br />

437<br />

438<br />

439<br />

440<br />

441<br />

442<br />

443<br />

444<br />

445<br />

446


447<br />

448<br />

449<br />

450<br />

451<br />

452<br />

453<br />

454<br />

455<br />

456<br />

457<br />

458<br />

459<br />

460<br />

461<br />

462<br />

463<br />

464<br />

465<br />

466<br />

467<br />

468<br />

469<br />

470<br />

471<br />

472<br />

473<br />

474<br />

475<br />

476<br />

477<br />

478<br />

479<br />

480<br />

481<br />

482<br />

483<br />

484<br />

485<br />

486<br />

487<br />

488<br />

489<br />

490<br />

491<br />

492<br />

DTD 5<br />

10<br />

marked than in the treatments with chopped <str<strong>on</strong>g>straw</str<strong>on</strong>g>.<br />

Due to the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> <strong>on</strong>to ridges and<br />

their transportati<strong>on</strong> into furrows by the rain, the effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reduced <strong>soil</strong> crusting <strong>on</strong> the upper half <str<strong>on</strong>g>of</str<strong>on</strong>g> the ridge<br />

was small. Soil crusting, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the artificial<br />

rain, lead to c<strong>on</strong>siderable run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. The main effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> is seen in the sediment retenti<strong>on</strong> (Brandt<br />

and Wildhagen, 1998). Therefore, <strong>on</strong>ly small amounts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> are necessary for avoiding <strong>soil</strong> erosi<strong>on</strong> in<br />

ridge till systems like potato cultivati<strong>on</strong>.<br />

3.7. Coverage by <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> as affected by the<br />

amount applied<br />

The relati<strong>on</strong>ship between the area covered by <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g> layer and the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> applied follows a<br />

typical saturati<strong>on</strong> functi<strong>on</strong> for all three <str<strong>on</strong>g>straw</str<strong>on</strong>g> piece<br />

lengths (Fig. 1). This is in accordance with the findings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Nill and Nill (1993). Regarding the length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

pieces, chopped <str<strong>on</strong>g>straw</str<strong>on</strong>g> is more ec<strong>on</strong>omic in covering<br />

the <strong>soil</strong> surface than l<strong>on</strong>g <str<strong>on</strong>g>straw</str<strong>on</strong>g>, covering the same area<br />

(e.g., 90%) with much less weight (216 g m 2<br />

=2.16tha 1 ) than l<strong>on</strong>g <str<strong>on</strong>g>straw</str<strong>on</strong>g> (443 g m 2 ). The main<br />

reas<strong>on</strong> for this is seen in the fact that the uncut material<br />

is double-sided and therefore can <strong>on</strong>ly cover half <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the area per unit weight than single-sided <str<strong>on</strong>g>straw</str<strong>on</strong>g>s that<br />

have been split by chopping. In additi<strong>on</strong>, the smaller<br />

pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> chopped <str<strong>on</strong>g>straw</str<strong>on</strong>g> may fit more properly into<br />

gaps and form a smooth, flat mat more readily than the<br />

l<strong>on</strong>g pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> uncut <str<strong>on</strong>g>straw</str<strong>on</strong>g>.<br />

Applying the figures from the leaf area meter to a<br />

(ridged) <strong>soil</strong> may <strong>on</strong>ly be d<strong>on</strong>e carefully. First, the <strong>soil</strong><br />

surface usually is c<strong>on</strong>siderably rougher in c<strong>on</strong>trast to<br />

the smooth object table used; this will probably<br />

increase the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> needed to cover a given<br />

<strong>soil</strong> area. Sec<strong>on</strong>d, in the field the <str<strong>on</strong>g>straw</str<strong>on</strong>g> (with a typical<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 80–90% dry matter) is not as dry as the<br />

material used here. Despite these restricti<strong>on</strong>s, the data<br />

are in very good accordance with those presented by<br />

Borst and Woodburn (1942b), who estimated that 1 t/<br />

acre <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g <str<strong>on</strong>g>straw</str<strong>on</strong>g> (=2.47 t ha 1 ) covered 75–85% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an unridged <strong>soil</strong>, although figures for <str<strong>on</strong>g>straw</str<strong>on</strong>g> dry weight<br />

were not given.<br />

Finally, it should be c<strong>on</strong>sidered that by ridging, the<br />

area to be covered approximately increases by a factor<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> f =(x 2 + y 2 ) 0.5 /y, where x = height <str<strong>on</strong>g>of</str<strong>on</strong>g> ridge from<br />

bottom to top and y = distance between rows. At x =<br />

30 cm ridge height and y = 75 cm row spacing, this<br />

T.F. Döring et al. / Field Crops Research xxx (2005) xxx–xxx<br />

factor is f = 1.077, e.g., 3.0 t ha 1 for flat surfaces<br />

would have to be adjusted to 3.23 t ha 1 <strong>on</strong> ridged<br />

surfaces. The results presented here indicate that<br />

5tha 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> chopped <str<strong>on</strong>g>straw</str<strong>on</strong>g> covers >95% <str<strong>on</strong>g>of</str<strong>on</strong>g> the ridged<br />

<strong>soil</strong>.<br />

4. C<strong>on</strong>clusi<strong>on</strong><br />

Under the edaphic and climatic c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

present study (loamy silt <strong>soil</strong>s, temperate climate) and<br />

with light to moderate quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g>, yield was<br />

not affected by <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing. This <str<strong>on</strong>g>of</str<strong>on</strong>g>fers the<br />

possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> benefitting from virus vector and <strong>soil</strong><br />

erosi<strong>on</strong> c<strong>on</strong>trol functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>, without the<br />

risk <str<strong>on</strong>g>of</str<strong>on</strong>g> yields being reduced when summers are wet<br />

and cool. At the same time, at lower applicati<strong>on</strong> levels<br />

costs for material and spreading are reduced. Moreover,<br />

preventing soluble N from being leached after<br />

harvest by <str<strong>on</strong>g>mulch</str<strong>on</strong>g> applicati<strong>on</strong> was shown to be possible<br />

even at small <str<strong>on</strong>g>straw</str<strong>on</strong>g> applicati<strong>on</strong> rates and can be seen as<br />

a further ec<strong>on</strong>omic benefit.<br />

Soil moisture was not significantly affected by<br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing at small or moderate applicati<strong>on</strong> levels. This<br />

is c<strong>on</strong>sidered as a further important prerequisite for the<br />

practicability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> applicati<strong>on</strong>, as mechanical<br />

tuber harvesting will not be delayed or impeded by<br />

above-optimum <strong>soil</strong> moisture, especially with heavier<br />

<strong>soil</strong>s.<br />

Finally, in this study, moderate amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

neither reduced nor enhanced weeds significantly. A<br />

prerequisite for compatibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g><br />

applicati<strong>on</strong> and mechanical weed c<strong>on</strong>trol was,<br />

however, that a sufficientweedc<strong>on</strong>trolwaspossible<br />

before <str<strong>on</strong>g>straw</str<strong>on</strong>g> applicati<strong>on</strong>. This kept overall weed<br />

levels moderate during the whole vegetati<strong>on</strong> period<br />

in all experiments. If weeding is d<strong>on</strong>e after <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing,<br />

i.e., when the <str<strong>on</strong>g>straw</str<strong>on</strong>g> is incorporated during the<br />

growing period, there will be the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

immobilizati<strong>on</strong> and the <str<strong>on</strong>g>straw</str<strong>on</strong>g> cover will at least<br />

partly be destroyed and optically mediated effects <strong>on</strong><br />

virus vectors will be lost. On the other hand, the<br />

benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> moving and aerating the <strong>soil</strong> by<br />

mechanical weeding, principally N mineralizati<strong>on</strong>,<br />

could ec<strong>on</strong>omically overcompensate these effects.<br />

Due to the possibly c<strong>on</strong>flicting objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> good<br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> coverage <strong>on</strong> the <strong>on</strong>e hand, and the need<br />

for mechanical weed c<strong>on</strong>trol measures in organic<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12<br />

493<br />

494<br />

495<br />

496<br />

497<br />

498<br />

499<br />

500<br />

501<br />

502<br />

503<br />

504<br />

505<br />

506<br />

507<br />

508<br />

509<br />

510<br />

511<br />

512<br />

513<br />

514<br />

515<br />

516<br />

517<br />

518<br />

519<br />

520<br />

521<br />

522<br />

523<br />

524<br />

525<br />

526<br />

527<br />

528<br />

529<br />

530<br />

531<br />

532<br />

533<br />

534<br />

535<br />

536<br />

537


538<br />

539<br />

540<br />

541<br />

542<br />

543<br />

544<br />

545<br />

546<br />

547<br />

548<br />

549<br />

550<br />

551<br />

552<br />

553<br />

554<br />

555<br />

556<br />

557<br />

558<br />

559<br />

560<br />

561<br />

562<br />

563<br />

564<br />

565<br />

566<br />

567<br />

568<br />

569<br />

570<br />

571<br />

572<br />

573<br />

574<br />

575<br />

576<br />

577<br />

578<br />

579<br />

580<br />

581<br />

DTD 5<br />

potato growing <strong>on</strong> the other hand, weed c<strong>on</strong>trol in<br />

organic <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> systems requires further<br />

attenti<strong>on</strong>.<br />

For the re-adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> applicati<strong>on</strong>,<br />

chopped instead <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g <str<strong>on</strong>g>straw</str<strong>on</strong>g> should be used, as it is<br />

most effective in covering the <strong>soil</strong>; this is particularly<br />

important when a complete coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>soil</strong> is<br />

regarded as a goal, e.g., in the virus vector c<strong>on</strong>trol,<br />

where the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> is based <strong>on</strong> optical<br />

mechanisms (Döring et al., 2004).<br />

Acknowledgements<br />

We like to express our thanks to S. Ahlers, J.<br />

Deckers, T. Fricke, T. Haase, H. Hein, J. Keil, G.<br />

Kellner, E. Kölsch, C. Müller-Oelbke, C. Schueler and<br />

R. Spinger for their appreciated c<strong>on</strong>tributi<strong>on</strong>s. Further<br />

we are grateful to A. Neumann, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Göttingen, U. Heimbach, Federal Biological Research<br />

Centre for Agriculture and Forestry (BBA) Braunschweig,<br />

and T. Thieme, BTL Sagerheide, for their kind<br />

support. We also acknowledge the generous financial<br />

support for this work provided by the Evangelisches<br />

Studienwerk, Villigst, and the German Federal<br />

Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>sumer Protecti<strong>on</strong>, Food and Agriculture<br />

(Bundesministerium für Verbraucherschutz,<br />

Ernährung und Landwirtschaft, BMVEL).<br />

References<br />

Adams, J.E., 1966. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>es <strong>on</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, erosi<strong>on</strong> and <strong>soil</strong><br />

moisture depleti<strong>on</strong>. Soil Sci. Soc. Am. Proc. 30, 110–114.<br />

Albrecht, W.A., 1922. Nitrate accumulati<strong>on</strong> under <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>. Soil<br />

Sci. 14, 299–305.<br />

Albrecht, W.A., Uhland, R.E., 1925. Nitrate accumulati<strong>on</strong> under the<br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>. Soil Sci. 20, 253–267.<br />

Auerswald, K., Eicher, A., 1992. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> German and Swiss<br />

rainfall simulator—accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement and effect <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall<br />

sequence <strong>on</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and <strong>soil</strong> loss. Z. Pflanzenern. Bodenkunde<br />

155, 191–195.<br />

Auerswald, K., Kainz, M., Schröder, D., Martin, W., 1992. Comparis<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> German and Swiss rainfall simulator—experimental<br />

setup. Z. Pflanzenern. Bodenkunde 155, 1–5.<br />

Boguslawski, E.v., Debruck, J., 1977. Strohdüngung und Bodenfruchtbarkeit.<br />

DLG-Verlag, Frankfurt a.m.<br />

Borst, H.L., Woodburn, R., 1942a. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing and the<br />

methods <str<strong>on</strong>g>of</str<strong>on</strong>g> cultivati<strong>on</strong> <strong>on</strong> run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f and erosi<strong>on</strong> from Muskingum<br />

silt loam. Agric. Eng. 23, 19–22.<br />

T.F. Döring et al. / Field Crops Research xxx (2005) xxx–xxx 11<br />

Borst, H.L., Woodburn, R., 1942b. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>es and surface<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the water relati<strong>on</strong>s and erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Muskingum<br />

<strong>soil</strong>s. USDA Tech. Bull. 825, 1–16.<br />

Brandt, M., 1997. Grünguthäcksel-Verwertung zur Vermeidung v<strong>on</strong><br />

Bodenerosi<strong>on</strong> und Nährst<str<strong>on</strong>g>of</str<strong>on</strong>g>faustrag. Boden und Landschaft -<br />

Schriftenreihe zur Bodenkunde. Landeskultur und Landschaftsökologie<br />

18, 1–144.<br />

Brandt, M., Wildhagen, H., 1998. Einfluß des Mulchens mit Grünguthäcksel<br />

auf den Bodenwasserhaushalt und die Bodenerosi<strong>on</strong>.<br />

Der Tropenlandwirt 63, 185–201.<br />

Bushnell, J., Welt<strong>on</strong>, F.A., 1931. Some effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> <strong>on</strong><br />

yield <str<strong>on</strong>g>of</str<strong>on</strong>g> potatoes. J. Agric. Res. 43, 837–845.<br />

Chandra, S., Singh, R.D., Bhatnagar, V.K., Bisht, J.K., 2002. Effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> and irrigati<strong>on</strong> <strong>on</strong> tuber size, canopy temperature, water<br />

use and yield <str<strong>on</strong>g>of</str<strong>on</strong>g> potato (Solanum tuberosum). Indian J. Agr<strong>on</strong>.<br />

47, 443–448.<br />

Cheshire, M.V., Bedrock, C.N., Williams, B.L., Chapman, S.J.,<br />

Solntseva, I., Thomsen, I., 1999. The immobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen<br />

by <str<strong>on</strong>g>straw</str<strong>on</strong>g> decompositi<strong>on</strong> in <strong>soil</strong>. Eur. J. Soil Sci. 50, 320–341.<br />

Christensen, B.T., Olesen, J.E., 1998. Nitrogen mineralisati<strong>on</strong><br />

potential <str<strong>on</strong>g>of</str<strong>on</strong>g> organomaterial size separates from <strong>soil</strong>s with annual<br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g> incorporati<strong>on</strong>. Eur. J. Soil Sci. 49, 25–36.<br />

Daws<strong>on</strong>, R.C., 1946. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> crop residues <strong>on</strong> <strong>soil</strong> and moisture<br />

c<strong>on</strong>servati<strong>on</strong> under Maryland c<strong>on</strong>diti<strong>on</strong>s. Soil Sci. Soc. Am.<br />

Proc. 10, 425–428.<br />

Döring, T. F., Kirchner, S.M., Kühne, S., Saucke, H. 2004. Resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> alate aphids to green targets <strong>on</strong> coloured backgrounds. Ent.<br />

exp. appl., submitted for publicati<strong>on</strong>.<br />

Duley, F.L., Kelly, L.L., 1939. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soil</strong> type, slope, and surface<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> intake <str<strong>on</strong>g>of</str<strong>on</strong>g> water. Nebr. Agric. Exp. Stat. Res. Bull.<br />

112, 16.<br />

Edwards, L., Burney, J.R., Richter, G., MacRae, A.H., 2000. Evaluati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> compost and <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing <strong>on</strong> <strong>soil</strong>-loss characteristics<br />

in erosi<strong>on</strong> plots <str<strong>on</strong>g>of</str<strong>on</strong>g> potatoes in Prince Edward Island,<br />

Canada. Agric. Ecosyst. Envir<strong>on</strong>. 81, 217–222.<br />

Emers<strong>on</strong>, R.A., 1907. Potato experiments. Bull. Agric. Exp. Stat.<br />

Nebr. 97, 1–26.<br />

Esselen, D.J., 1937. Does cultivati<strong>on</strong> c<strong>on</strong>serve <strong>soil</strong> moisture? Farming<br />

S. Afr. 12, 6–12.<br />

Hassel, J.M., Richter, G., 1992. Ein Vergleich Deutscher und<br />

Schweizerischer Regensimulatoren nach Regenstruktur und<br />

kinetischer Energie. Z. Pflanzenern. Bodenkunde 155, 185–<br />

190.<br />

Heimbach, U., Eggers, C., 2002. Möglichkeiten zur Reduzierung der<br />

Blattlauszahlen und des Virusbefalls im Raps im Herbst. Mitt.<br />

Biol. Bundesanstalt Land und Forstwirtschaft, Berlin-Dahlem<br />

388, pp. 67–75.<br />

Heimbach, U., Eggers, C., Thieme, T., 2002. Weniger Blattläuse<br />

durch Mulchen. Gesunde Pflanzen 54, 119–125.<br />

Hembry, J.K., Davies, J.S., 1994. Using <str<strong>on</strong>g>mulch</str<strong>on</strong>g>es for weed c<strong>on</strong>trol<br />

and preventing leaching <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen fertiliser. Acta Horticult.<br />

371, 311–317.<br />

Jacks, G.V., Brind, W.D., Smith, R., 1955. Mulching. Tech. Commun.<br />

Comm<strong>on</strong>wealth Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Science 49, 1–87.<br />

Jalota, S.K., Prihar, S.S., 1979. Soil water storage and weed growth<br />

as affected by shallow-tillage and <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing with and<br />

without herbicide in bare-fallow. Indian J. Ecol. 5, 41–48.<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12<br />

582<br />

583<br />

584<br />

585<br />

586<br />

587<br />

588<br />

589<br />

590<br />

591<br />

592<br />

593<br />

594<br />

595<br />

596<br />

597<br />

598<br />

599<br />

600<br />

601<br />

602<br />

603<br />

604<br />

605<br />

606<br />

607<br />

608<br />

609<br />

610<br />

611<br />

612<br />

613<br />

614<br />

615<br />

616<br />

617<br />

618<br />

619<br />

620<br />

621<br />

622<br />

623<br />

624<br />

625<br />

626<br />

627<br />

628<br />

629<br />

630<br />

631<br />

632<br />

633<br />

634<br />

635<br />

636<br />

637<br />

638


639<br />

640<br />

641<br />

642<br />

643<br />

644<br />

645<br />

646<br />

647<br />

648<br />

649<br />

650<br />

651<br />

652<br />

653<br />

654<br />

655<br />

656<br />

657<br />

658<br />

659<br />

660<br />

661<br />

662<br />

663<br />

664<br />

665<br />

666<br />

667<br />

668<br />

669<br />

670<br />

671<br />

672<br />

673<br />

674<br />

675<br />

676<br />

677<br />

678<br />

679<br />

680<br />

681<br />

682<br />

683<br />

684<br />

685<br />

686<br />

687<br />

688<br />

689<br />

690<br />

691<br />

DTD 5<br />

12<br />

J<strong>on</strong>es, R.A.C., 1994. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing with cereal <str<strong>on</strong>g>straw</str<strong>on</strong>g> and row<br />

spacing <strong>on</strong> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> bean mosaic potyvirus into narrow-leafed<br />

lupins (Lupinus angustifolius). Ann. Appl. Biol. 124, 45–58.<br />

Kainz, M., Eicher, A., 1990. Der Weihenstephaner Schwenkdüsenregner,<br />

unpublished manuscript.<br />

Kainz, M., Auerswald, K., Vöhringer, R., 1992. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

German and Swiss rainfall simulator—utility, labour demands<br />

and costs. Z. Pflanzenern. Bodenkunde 155, 7–11.<br />

Kantety, R.V., van Santen, E., Woods, F.M., Wood, C.W., 1996.<br />

Chlorophyll meter predicts nitrogen status <str<strong>on</strong>g>of</str<strong>on</strong>g> tall fescue. J. Plant<br />

Nutr. 19, 881–899.<br />

Kendall, D.A., Chinn, N.E., Smith, B.D., Tidboald, C., Winst<strong>on</strong>e, L.,<br />

Western, N.M., 1991. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> disposal and tillage <strong>on</strong><br />

spread <str<strong>on</strong>g>of</str<strong>on</strong>g> barley yellow dwarf virus in winter barley. Ann. Appl.<br />

Biol. 119, 359–364.<br />

König, N., Fortmann, H., 1996. Probenvorbereitungs-, Untersuchungs-<br />

und Elementbestimmungs-Methoden des Umweltanalytik-Labor<br />

der Niedersächsischen Forstlichen Versuchsanstalt<br />

und des Zentrallabor II des Forschungszentrums Waldökosysteme.<br />

Teil 2: Elementbestimmungsmethoden N-Z und Sammelanhänge.<br />

Berichte des Forschungszentrums Waldökosysteme<br />

der Universität Göttingen, Reihe B, vol. 47.<br />

Lal, R., 1975. Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing techniques in tropical <strong>soil</strong> and water<br />

management. Int. Inst. Trop. Agric. Tech. Bull., Ibadan, Nigeria<br />

1, 38.<br />

Lal, R., 1987. Tropical Ecology and Physical Edaphology. Wiley,<br />

Chichester, New York, 732 pp..<br />

Moore, J.D., Hirschi, M.C., Bartfield, B.J., 1983. Kentucky rainfall<br />

simulator. Trans. ASEA 26, 1085–1089.<br />

Neukirchen, D., Lammel, J., 2002. The chlorophyll c<strong>on</strong>tent as an<br />

indicator for nutrient and quality management. Nawozy i Nawozenie<br />

11, 89–109.<br />

Nill, D., Nill, E., 1993. The efficient use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> layers to reduce<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. In: Mul<strong>on</strong>goy, K., Merckx, R. (Eds.), Soil organic matter<br />

<strong>dynamics</strong> and sustainability <str<strong>on</strong>g>of</str<strong>on</strong>g> tropical agriculture, New York<br />

331–338.<br />

Opitz, K., 1948. Über den Einfluß v<strong>on</strong> Brachehaltung und Bodenbedeckung<br />

mit Stroh auf den Temperaturgang in 30 cm Bodentiefe.<br />

Z. Pflanzenern., Düngung, Bodenkunde 41, 213–222.<br />

Pavlista, A.D. 2004. Pers. comm. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nebraska-Lincoln,<br />

Panhandle Research and Extensi<strong>on</strong> Center.<br />

Prihar, S.S., Sandhu, K.S., Khera, K.L., 1976. Maize (Zea mays L.)<br />

and weed growth as affected by levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing with and<br />

without herbicide under c<strong>on</strong>venti<strong>on</strong>al and minimum tillage.<br />

Indian J. Ecol. 2, 13–22.<br />

Ramalan, A.A., Nwokeocha, C.U., 2000. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> furrow irrigati<strong>on</strong><br />

methods, <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing and <strong>soil</strong> water sucti<strong>on</strong> <strong>on</strong> the growth, yield<br />

and water use efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> tomato in the Nigerian Savanna.<br />

Agric. Water Manage. 45, 317–330.<br />

Roth, C.H., 1998. Physikalische Ursachen der Wassererosi<strong>on</strong>. In:<br />

Blume, H.P., Frede, H.G., Fischer, W., Felix-Henningsen, P.,<br />

Horn, R., Stahr, K. (Eds.), Handbuch der Bodenkunde, Ecomed,<br />

pp. 1–34.<br />

T.F. Döring et al. / Field Crops Research xxx (2005) xxx–xxx<br />

Roth, C.H., Helmig, K., 1992. Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> surface sealing, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

formati<strong>on</strong> and interrill <strong>soil</strong> loss as related to rainfall intensity,<br />

microrelief and slope. Z. Pflanzenern. Bodenkunde 155, 209–<br />

216.<br />

Rowe-Dutt<strong>on</strong>, P., 1957. The <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetables. Tech. Commun.<br />

Comm<strong>on</strong>wealth Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Horticulture and Plantati<strong>on</strong><br />

Crops 24, 1–169.<br />

Russel, J.C., 1940. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> surface cover <strong>on</strong> <strong>soil</strong> moisture<br />

losses by evaporati<strong>on</strong>. Soil Sci. Soc. Am. Proc. 4, 65–70.<br />

Saha, K.U., Hye, A., Haider, J., Saha, R.R., 1997. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> rice <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g> <strong>on</strong> water use and tuber yield <str<strong>on</strong>g>of</str<strong>on</strong>g> potato grown under<br />

different irrigati<strong>on</strong> schedules. Jpn. J. Trop. Agric. 41, 168–176.<br />

SAS Institute Inc., 1989. SAS/STAT 1 User’s Guide, versi<strong>on</strong> 6. Cary,<br />

NC, 1686 pp.<br />

SAS Institute Inc., 1990. SAS 1 Procedures Guide, versi<strong>on</strong> 6. Cary,<br />

NC, 705 pp.<br />

Saucke, H., Döring, T.F., 2004. Potato virus Y reducti<strong>on</strong> by <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g> in organic potatoes. Ann. Appl. Biol. 144, 347–355.<br />

Scott, H., 1921. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat <str<strong>on</strong>g>straw</str<strong>on</strong>g> <strong>on</strong> the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>nitrate</strong>s in the <strong>soil</strong>. J. Am. Soc. Agr<strong>on</strong>. 13, 233–258.<br />

Shaahan, M.M., El-Bendary, Y., 1999. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen status<br />

for snap bean, potatoes and cucumber under field c<strong>on</strong>diti<strong>on</strong>s<br />

using a portable chlorophyll meter. Alexandria J. Agric. Res. 44,<br />

191–200.<br />

Singh, B., Aujla, T.S., Sandhu, B.S., Khera, K.L., 1988. Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

autumn potato (Solanum tuberosum) to irrigati<strong>on</strong> and <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing in northern India. Indian J. Agric. Sci. 58, 521–524.<br />

Singh, P.N., Joshi, B.P., Singh, G., 1987. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> <strong>on</strong> moisture<br />

c<strong>on</strong>servati<strong>on</strong>, irrigati<strong>on</strong> requirement and yield <str<strong>on</strong>g>of</str<strong>on</strong>g> potato. Indian<br />

J. Agr<strong>on</strong>. 32, 452–454.<br />

Stevens<strong>on</strong>, W.R., 2001. Compendium <str<strong>on</strong>g>of</str<strong>on</strong>g> Potato Diseases. APS<br />

Press, St. Paul, Minn, 106 pp.<br />

St<strong>on</strong>er, K.A., Ferrandino, F.J., Gent, M.P.N., Elmer, W.H., LaM<strong>on</strong>dia,<br />

J.A., 1996. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>, spent mushroom compost,<br />

and fumigati<strong>on</strong> <strong>on</strong> the density <str<strong>on</strong>g>of</str<strong>on</strong>g> Colorado potato beetle<br />

(Coleoptera: Chrysomelidae) in potatoes. J. Ec<strong>on</strong>. Ent. 89,<br />

1267–1280.<br />

Tiwari, K.N., Mal, P.K., Singh, R.M., Chattopadhyay, A., 1998.<br />

Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> okra (Abelmoschus esculentus (L.) Moench.) to drip<br />

irrigati<strong>on</strong> under <str<strong>on</strong>g>mulch</str<strong>on</strong>g> and n<strong>on</strong>-<str<strong>on</strong>g>mulch</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. Agric. Water<br />

Manage. 38, 91–102.<br />

Tolk, J.A., Howell, T.A., Evett, S.R., 1999. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> irrigati<strong>on</strong>,<br />

and <strong>soil</strong> type <strong>on</strong> water use and yield <str<strong>on</strong>g>of</str<strong>on</strong>g> maize. Soil Tillage<br />

Res. 50, 137–147.<br />

Turk, L.M., Partridge, N.L., 1947. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> various <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing<br />

materials <strong>on</strong> orchard <strong>soil</strong>s. Soil Sci. 64, 111–125.<br />

Verma, A.B.S., Kohnke, H., 1951. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic <str<strong>on</strong>g>mulch</str<strong>on</strong>g>es <strong>on</strong> <strong>soil</strong><br />

c<strong>on</strong>diti<strong>on</strong>s and soybean yields. Soil Sci. 72, 149–156.<br />

Werner, H.O., 1929. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cultural methods and maturity up<strong>on</strong><br />

the seed value <str<strong>on</strong>g>of</str<strong>on</strong>g> eastern Nebraska potatoes. Res. Bull. Nebr.<br />

Agric. Exp. Stat. 278, 1–44.<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12<br />

692<br />

693<br />

694<br />

695<br />

696<br />

697<br />

698<br />

699<br />

700<br />

701<br />

702<br />

703<br />

704<br />

705<br />

706<br />

707<br />

708<br />

709<br />

710<br />

711<br />

712<br />

713<br />

714<br />

715<br />

716<br />

717<br />

718<br />

719<br />

720<br />

721<br />

722<br />

723<br />

724<br />

725<br />

726<br />

727<br />

728<br />

729<br />

730<br />

731<br />

732<br />

733<br />

734<br />

735<br />

736<br />

737<br />

738<br />

739<br />

740<br />

741<br />

742<br />

743

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!