15.11.2012 Views

Effects of straw mulch on soil nitrate dynamics

Effects of straw mulch on soil nitrate dynamics

Effects of straw mulch on soil nitrate dynamics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

379<br />

380<br />

381<br />

382<br />

383<br />

384<br />

385<br />

386<br />

387<br />

388<br />

389<br />

390<br />

391<br />

392<br />

393<br />

394<br />

395<br />

396<br />

397<br />

398<br />

399<br />

400<br />

401<br />

402<br />

403<br />

404<br />

405<br />

406<br />

407<br />

408<br />

409<br />

410<br />

411<br />

412<br />

DTD 5<br />

little. The main reas<strong>on</strong> why weed growth was not<br />

influenced c<strong>on</strong>sistently by <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> in the<br />

experiments presented is again seen in the comparatively<br />

small applicati<strong>on</strong> rates. Bushnell and Welt<strong>on</strong><br />

(1931) found that at applicati<strong>on</strong> levels below 8 t/acre<br />

[=19.75 t ha 1 ], annual weeds readily penetrated the<br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>. Similarly, Hembry and Davies (1994) found<br />

weed growth still occurring at 20 t ha 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>, although with few weeds.<br />

3.5. Yield and tuber size fracti<strong>on</strong>s<br />

Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> yield to <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> was not<br />

significant in any experiment (Table 7) and the trends<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing effects <strong>on</strong> yield were evenly distributed<br />

(positive trend in five experiments., negative trend in<br />

six experiments.). Equally, tuber size fracti<strong>on</strong>s were<br />

not significantly affected by <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing, except for<br />

three experiments (experiments 1, 9 and 11), but again<br />

with no c<strong>on</strong>sistent directi<strong>on</strong>.<br />

These results are in agreement with recent<br />

investigati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> effects from temperate<br />

climates, which also did not show any significant yield<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> potatoes to <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> (St<strong>on</strong>er et al.,<br />

1996; Edwards et al., 2000, data not presented). As<br />

pointed out by Jacks et al. (1955), <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing affects<br />

crop yields in many and complex ways. Higher yields<br />

under <str<strong>on</strong>g>mulch</str<strong>on</strong>g> have mostly been attributed to increased<br />

<strong>soil</strong> moisture under arid and semiarid c<strong>on</strong>diti<strong>on</strong>s<br />

(Singh et al., 1987, 1988; Saha et al., 1997; Tiwari<br />

et al., 1998; Tolk et al., 1999; Ramalan and<br />

Nwokeocha, 2000; Chandra et al., 2002) but even<br />

in the comparatively hot dry summer <str<strong>on</strong>g>of</str<strong>on</strong>g> 2003 (see<br />

Table 1) yields were not significantly affected by <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing. Reas<strong>on</strong>s for the tuber yield not being<br />

affected by <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> may include the compensa-<br />

T.F. Döring et al. / Field Crops Research xxx (2005) xxx–xxx 9<br />

ti<strong>on</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant under water stress c<strong>on</strong>diti<strong>on</strong>s,<br />

the high water holding capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>soil</strong>s and the<br />

comparatively low evaporativity during the experimental<br />

periods; however, the main reas<strong>on</strong> is seen in the<br />

low amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> applied, as already <strong>soil</strong> moisture<br />

was not influenced significantly by <str<strong>on</strong>g>mulch</str<strong>on</strong>g>ing (see<br />

above).<br />

3.6. Soil erosi<strong>on</strong><br />

Soil loss was greatest in the un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed plot with<br />

1606 g m 2 (Table 8); similar values were found by<br />

Lal (1975) with 1219 and 2706 g m 2 <strong>on</strong> 5 and 10%<br />

sloping un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed <strong>soil</strong>, respectively. Even very small<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> (1.25 t ha 1 ) decreased <strong>soil</strong><br />

loss and sediment c<strong>on</strong>centrati<strong>on</strong> in run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. While cut<br />

<str<strong>on</strong>g>straw</str<strong>on</strong>g> reduced <strong>soil</strong> loss by 97.4–98.4% compared with<br />

untreated <strong>soil</strong>, reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soil</strong> loss by l<strong>on</strong>g <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

(2.5 t ha 1 ) was less effective (reducti<strong>on</strong> by 91.7%).<br />

Similar results were found in other investigati<strong>on</strong>s.<br />

With <str<strong>on</strong>g>straw</str<strong>on</strong>g> applicati<strong>on</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 and 4 t ha 1 at 10%<br />

slope, Lal (1975) found <strong>soil</strong> loss reduced by 97 and<br />

99.6%, respectively, compared to <strong>soil</strong> loss in<br />

un<str<strong>on</strong>g>mulch</str<strong>on</strong>g>ed treatments. On a 12.5% sloping silt loam,<br />

an applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ca. 5 t ha 1 lead to <strong>soil</strong> loss reducti<strong>on</strong><br />

by 98.0–99.9% (Borst and Woodburn, 1942b).<br />

During rain simulati<strong>on</strong> the <str<strong>on</strong>g>straw</str<strong>on</strong>g> was partly washed<br />

from ridges into furrows and formed micro-dams,<br />

building a lined-up microrelief which retained the<br />

surface rainwater in small hollows as was already<br />

observed by others (Roth and Helmig, 1992; Brandt,<br />

1997; Roth, 1998). As a result, afterflow was<br />

increasingly delayed with increasing <str<strong>on</strong>g>straw</str<strong>on</strong>g> quantity<br />

from 2.7 min in untreated to 39.7 min in 5 t ha 1 <str<strong>on</strong>g>straw</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mulch</str<strong>on</strong>g>. L<strong>on</strong>g <str<strong>on</strong>g>straw</str<strong>on</strong>g> also formed dams and built up<br />

hollows, but the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f filtrati<strong>on</strong> was less<br />

Table 8<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>straw</str<strong>on</strong>g> <str<strong>on</strong>g>mulch</str<strong>on</strong>g> quantity and <str<strong>on</strong>g>straw</str<strong>on</strong>g> texture <strong>on</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, after flow, sediment c<strong>on</strong>centrati<strong>on</strong> and <strong>soil</strong> loss—results <str<strong>on</strong>g>of</str<strong>on</strong>g> rain simulati<strong>on</strong>s<br />

Mulch quantity (t ha 1 ) (<str<strong>on</strong>g>mulch</str<strong>on</strong>g> texture)<br />

0 1.25 (cut) 2.5 (cut) 5.0 (cut) 2.5 (l<strong>on</strong>g)<br />

Start run<str<strong>on</strong>g>of</str<strong>on</strong>g>f (min) 21.7 21.4 32.2 23.0 22.7<br />

Afterflow (min) 2.7 13.4 38.3 39.7 33.4<br />

Mean sediment c<strong>on</strong>centrati<strong>on</strong> (g l 1 ) 69.0 3.4 2.2 1.1 10.5<br />

Max sediment c<strong>on</strong>centrati<strong>on</strong> (g l 1 ) 101.7 5.1 8.0 1.9 41.4<br />

Soil loss per plot (g) 10357 199 270 170 857<br />

Soil loss (g m 2 ) 1606 31 42 26 133<br />

Soil loss (%) 100 1.9 2.6 1.6 8.3<br />

UNCORRECTED PROOF<br />

FIELD 4474 1–12<br />

413<br />

414<br />

415<br />

416<br />

417<br />

418<br />

419<br />

420<br />

421<br />

422<br />

423<br />

424<br />

425<br />

426<br />

427<br />

428<br />

429<br />

430<br />

431<br />

432<br />

433<br />

434<br />

435<br />

436<br />

437<br />

438<br />

439<br />

440<br />

441<br />

442<br />

443<br />

444<br />

445<br />

446

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!