24.03.2015 Views

Dipolar Cycloadditions - The Stoltz Group

Dipolar Cycloadditions - The Stoltz Group

Dipolar Cycloadditions - The Stoltz Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Me<br />

SO 2<br />

N<br />

Ph<br />

O<br />

Me<br />

SO 2 Ph<br />

H<br />

H<br />

N<br />

H<br />

O<br />

H<br />

H<br />

O<br />

O<br />

R<br />

<strong>Dipolar</strong> <strong>Cycloadditions</strong><br />

You Love <strong>The</strong>m. You Hate <strong>The</strong>m.<br />

You Need <strong>The</strong>m.<br />

Mike Meyer<br />

<strong>Stoltz</strong> <strong>Group</strong> Meeting, April 3 rd , 2006<br />

NO 2<br />

O<br />

O<br />

Et<br />

S<br />

O<br />

N<br />

O<br />

N<br />

Me<br />

N<br />

N<br />

N<br />

O<br />

N<br />

O R z<br />

R z R N e<br />

CO 2 Me<br />

Me H<br />

R e<br />

CO 2 Me<br />

A Guide for the Discussion of <strong>Dipolar</strong> <strong>Cycloadditions</strong>:<br />

1. Types and Classification of 1,3 Dipoles<br />

2. Molecular <strong>The</strong>ory Behind 1,3-<strong>Dipolar</strong> <strong>Cycloadditions</strong><br />

Ph<br />

N<br />

3. Types of Dipoles<br />

a. Nitrones<br />

b. Nitrile Oxides<br />

c. Carbonyl Ylides<br />

d. Diazoalkanes<br />

e. Azomethine ylides<br />

g. Miscellaneous<br />

Good Sources:<br />

W(CO) 5<br />

Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765.<br />

Gothelf,K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.<br />

Padwa, A. Synthetic applications of 1,3-<strong>Dipolar</strong> Cycloaddition Chemistry Toward<br />

Heterocycles and Natural Products John Wiley & Sons, 2002, p. 269-301.<br />

O<br />

O<br />

N<br />

O<br />

Me<br />

H<br />

H<br />

O<br />

OAc<br />

OTBS<br />

O<br />

O<br />

N<br />

O<br />

O<br />

CO 2 Me<br />

H<br />

O<br />

O<br />

H<br />

N<br />

Ph<br />

H<br />

O<br />

O<br />

N<br />

O<br />

R<br />

1


Types and Classification of 1,3-Dipoles<br />

Two Types of Dipoles:<br />

(1) Allyl anion<br />

Classification of the Allyl Anion Type 1,3-Dipoles<br />

C N O<br />

Nitrones<br />

C O C<br />

Carbonyl Ylide<br />

X Y Z X Y Z<br />

- Bent<br />

- Y = N, O, S<br />

C N N<br />

Azomethine Imines<br />

C O N<br />

Carbonyl Imines<br />

(2) Propargyl/allenyl anion<br />

C N C<br />

Azomethine Ylides<br />

C O O<br />

Carbonyl Oxides<br />

X Y Z X Y Z<br />

- Linear<br />

- Y = Nitrogen<br />

N N N<br />

N N O<br />

Azimines<br />

Azoxy Compounds<br />

N O N<br />

N O O<br />

Nitrosimines<br />

Nitrosoxides<br />

O N O<br />

Nitro Compounds<br />

O O O<br />

Ozone<br />

Classification of the Propargyl/Allenyl Anion Type 1,3-Dipoles<br />

C N O<br />

Nitrile Oxides<br />

C N C<br />

Nitrile Ylides<br />

N N N<br />

Azides<br />

C N N<br />

Nitrile Imines<br />

N N C<br />

Diazoalkanes<br />

N N O<br />

Nitrous Oxide<br />

Molecular <strong>The</strong>ory Behind 1,3-<strong>Dipolar</strong><br />

<strong>Cycloadditions</strong><br />

Dipole Alkene Dipole Alkene<br />

Dipole<br />

Alkene<br />

LUMO<br />

Energy<br />

HOMO<br />

Type I Type II Type III<br />

HOMO dipole —LUMO alkene<br />

HOMO dipole —LUMO alkene<br />

HOMO alkene —LUMO dipole<br />

HOMO alkene —LUMO dipole<br />

Types of<br />

Dipoles<br />

azomethine ylides,<br />

azomethine imines,<br />

nitrile ylides<br />

nitrones,<br />

nitrile oxides<br />

ozone,<br />

nitrous oxide<br />

2


Molecular <strong>The</strong>ory Behind 1,3-<strong>Dipolar</strong><br />

<strong>Cycloadditions</strong> (cont'd)<br />

What about Lewis acid activation?<br />

Dipole<br />

Alkene<br />

Dipole<br />

Alkene<br />

Energy<br />

Alkene-LA<br />

Dipole-LA<br />

LUMO<br />

HOMO<br />

Coordination of the LA to either the dipole or the alkene results in LUMO lowering, and a faster reaction rate.<br />

Another Consideration: Endo vs. Exo<br />

N O R 1<br />

R 2 O<br />

O<br />

N<br />

O<br />

O<br />

R 1<br />

OR 2<br />

N<br />

O<br />

O<br />

R 1<br />

OR 2<br />

endo<br />

exo<br />

2 diastereomers (racemic)<br />

Endo:<br />

H<br />

Me<br />

O<br />

N<br />

R 2 O H<br />

H<br />

Me<br />

R 1<br />

O<br />

H<br />

Me<br />

O<br />

N<br />

R 2 O H<br />

H<br />

Me<br />

R 1<br />

O<br />

R 1<br />

R 2 O 2 C<br />

O<br />

N<br />

Me<br />

Secondary<br />

overlap is minimal<br />

Exo:<br />

H<br />

O<br />

R 2 O 2 C<br />

N<br />

Me<br />

H<br />

H<br />

R 1<br />

Me<br />

H<br />

O<br />

R 2 O 2 C<br />

N<br />

Me<br />

H<br />

H<br />

R 1<br />

Me<br />

R 1<br />

R 2 O 2 C<br />

O<br />

N<br />

Me<br />

3


A Usefull Dipole: Nitrones (a.k.a. Azomethine<br />

Oxides)<br />

What is a nitrone?<br />

N O R1 R 2<br />

R 2<br />

O<br />

HN<br />

OH<br />

- E/Z mixtures of the nitrone can occur, resulting in mixtures<br />

of stereoisomers<br />

- Cyclic nitrones avoid geometrical isomers, and generally give<br />

better selectivity<br />

nitrone species<br />

Examples of cyclic nitrones:<br />

- <strong>Dipolar</strong> cycloadditions with nitrones can produce: isoxazolidines,<br />

nucleosides, lactams, quinolizidines, indolizidines, pyrrolizidines,<br />

peptides, amino acids (alcohols), and more<br />

RO<br />

N<br />

O<br />

OR<br />

O<br />

N<br />

Bn<br />

O<br />

O<br />

O<br />

N<br />

O<br />

O<br />

O O<br />

O<br />

N<br />

O<br />

O<br />

O<br />

O<br />

N<br />

Ph<br />

OH<br />

O<br />

N<br />

O<br />

Most common reaction with nitrones:<br />

R1<br />

N O<br />

R 1<br />

R 2<br />

R 3 R 4 R 2 N<br />

* O<br />

* *<br />

R1<br />

N O<br />

R 3 R 4<br />

isoxazolidine<br />

R 2<br />

NHR 1 OH<br />

- 1,3-DC with nitrones can create<br />

upto three stereogenic centers<br />

R 2 * * * R 4<br />

R 3<br />

!-amino alcohols (acids)<br />

Nitrones: In the Beginning<br />

In the early 1970's, organic chemists began to use 1,3 DC to build complex intermediates and important building blocks in<br />

the realm of total synthesis.<br />

- Huisgen was the first chemist to successfully prove that 1,3 DC occur through a concerted mechanism.<br />

Some examples involving nitrones:<br />

Ph<br />

Me<br />

N<br />

O<br />

Me<br />

N<br />

O<br />

Ph<br />

Ph<br />

Me N<br />

O<br />

H<br />

H<br />

Me<br />

N<br />

O<br />

Ph<br />

Bn Me<br />

H<br />

H<br />

N<br />

O<br />

N<br />

Ph<br />

Me O H<br />

H<br />

vs.<br />

H<br />

Me Bn H<br />

N<br />

O<br />

N<br />

Ph<br />

O H<br />

Me<br />

H<br />

disfavored<br />

White, J. D., et. al.; Tetrahedron, 1989, 45, 6631.<br />

favored<br />

PMBO<br />

H<br />

O<br />

O<br />

!<br />

PMBO<br />

O<br />

O<br />

!<br />

O<br />

O<br />

H<br />

3 simple<br />

steps<br />

HO<br />

O<br />

H O<br />

EtO 2 C<br />

O<br />

N<br />

O<br />

N<br />

PMBO<br />

N<br />

O<br />

74% yield<br />

N<br />

Cordero, F.M., et. al.; Org Lett. 2000, 2, 2475.<br />

4


Nitrones: Getting More Complicated<br />

<strong>The</strong>rmal transannular cycloaddition:<br />

HOHN<br />

O<br />

O<br />

O<br />

p-TsOH<br />

MeOH, H 2 O, !<br />

O<br />

70% yield<br />

O<br />

O<br />

N<br />

PhMe, !<br />

64 % yield<br />

O<br />

O<br />

H<br />

N<br />

O<br />

H H<br />

1. K 2 CO 3 ,<br />

MeOH, 88%<br />

2. SmI 2 , rt, 64% HO<br />

H<br />

MeO 2 C<br />

HO HN<br />

H<br />

White, J. D., et. al.; Org. Lett. 2001, 3, 413.<br />

A three component coupling:<br />

R 1<br />

NHOH<br />

R 2<br />

R 1 = aryl, benzyl<br />

O<br />

R 2 = alkyl, alkenyl, aryl, heteroaryl<br />

R 3 =alkyl, alkenyl, phenyl, heteroaryl<br />

I<br />

NHOH<br />

R<br />

O<br />

H<br />

H<br />

10 mol % Yb(OTf) 3<br />

4 Å MS<br />

PhMe, rt, 30 min.<br />

1. 10 mol % Yb(OTf) 3<br />

4 Å MS, PhMe, rt, 30 min<br />

2.<br />

CO 2 R<br />

CO 2 R<br />

CO 2 R<br />

O<br />

N R1<br />

CO 2 R<br />

I<br />

N O<br />

R<br />

MeO 2 C<br />

CO 2 Me<br />

R 1<br />

N O R 3<br />

R 2<br />

RO 2 C CO 2 R<br />

tetrahydro-1,2-oxazines<br />

20 mol % Pd(PPh 3 ) 4<br />

TEA, CH 3 CN, 80 °C<br />

42-71 % yield overall<br />

5 examples<br />

Young, I. S.; Kerr, M. A. Org. Lett. 2003, 6, 139.<br />

For a cat. enantiosel. 1,3-DC using a heterochiral Yb catalyst, see: Kobayashi, JACS, 1998, 120, 5840.<br />

21 examples<br />

66-96% yield<br />

O<br />

N<br />

CO 2 Me<br />

CO 2 Me<br />

R<br />

FR900482 analogs<br />

antitumor, antibiotic<br />

Chiral Metal Complex:<br />

Examples of Asymmetric 1,3-<strong>Dipolar</strong><br />

<strong>Cycloadditions</strong> using Nitrones<br />

M = Fe for the following table Ph<br />

entry nitrone enal yield (%) product ee (%)<br />

1<br />

2<br />

3<br />

4<br />

N<br />

O<br />

N<br />

O<br />

N<br />

O<br />

N<br />

O<br />

Me<br />

Me<br />

Me<br />

Ph<br />

SbF 6<br />

H<br />

(C 6 F 5 ) 2 P M<br />

O<br />

O<br />

P(C 6 F 5 ) 2<br />

CHO<br />

CHO<br />

CHO<br />

CHO<br />

O<br />

92<br />

71<br />

75<br />

71<br />

H<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H<br />

N<br />

M = Fe, Ru<br />

Kündig, E. P., et. al.; J. Am. Chem. Soc. 2002, 124, 4968.<br />

For a similar system using a Co(salen)* complex, see: Yamada, T., et. al.; Org Lett. 2002, 4, 2457.<br />

For a similar system using a bis-TiL 2 * complex, see: Maruoka, K., et. al.; J. Am. Chem. Soc. 2005, 127, 11926.<br />

O<br />

O<br />

O<br />

O<br />

CHO<br />

CHO<br />

Me<br />

CHO<br />

Me<br />

Me<br />

CHO<br />

Me<br />

96<br />

>96<br />

75<br />

94<br />

5


<strong>The</strong> One and Only, Enantioselective<br />

Organocatalytic 1,3-<strong>Dipolar</strong> Cycloaddition<br />

using Nitrones<br />

R 1<br />

Z<br />

N<br />

O<br />

R<br />

O<br />

20 mol% cat.<br />

CH 3 NO 2 -H 2 O, -20 °C<br />

3-5 d<br />

Z<br />

N<br />

O<br />

R R 1<br />

CHO<br />

endo<br />

Z<br />

N<br />

O<br />

R R 1<br />

CHO<br />

exo<br />

Catalyst:<br />

Ph<br />

O<br />

HClO 4<br />

N<br />

H<br />

Me<br />

N<br />

Me<br />

Me<br />

entry Z R R 1 endo:exo yield % ee (endo)<br />

1<br />

2<br />

3<br />

Bn<br />

Allyl<br />

Me<br />

Ph<br />

Ph<br />

Ph<br />

Me<br />

Me<br />

Me<br />

94:6<br />

93:7<br />

95:5<br />

98<br />

73<br />

66<br />

94<br />

98<br />

99<br />

Note: <strong>The</strong> shown table is abbreviated.<br />

4<br />

Bn<br />

C 6 H 4 Cl-4<br />

Me<br />

92:8<br />

78<br />

95<br />

Overall:<br />

15 examples<br />

70-98% yield<br />

90-99% ee<br />

5<br />

6<br />

Bn<br />

Bn<br />

Cy<br />

C 6 H 4 Cl-4<br />

Me<br />

H<br />

99:1<br />

80:20<br />

70<br />

80<br />

99<br />

91<br />

Jen, W. S.; Weinger, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874.<br />

Synthetic Applications of Nitrones Toward<br />

Natural Product Syntheses<br />

Gribble:<br />

N<br />

PhO 2 S<br />

O<br />

N<br />

H<br />

PhCH 3<br />

!, 5 h<br />

N<br />

PhO 2 S<br />

H<br />

H<br />

N<br />

O<br />

H<br />

1. 6% Na(Hg), Na 2 HPO 4<br />

0 °C, 40 min, 91%<br />

2. Zn, AcOH/H 2 O, 50 °C<br />

1.5 h, 96%<br />

3. TFA, !, 12 h, 77%<br />

N<br />

H<br />

H<br />

H<br />

H<br />

N<br />

H<br />

(—)-hobartine<br />

Gribble, G. W.; Barden, T. C. J. Org. Chem. 1985, 50, 5902.<br />

Petrini (not a 1,3-DC):<br />

MOMO<br />

N<br />

H<br />

A<br />

OMOM<br />

30% H 2 O 2<br />

cat. SeO 2<br />

MOMO<br />

N<br />

O<br />

OMOM<br />

PMBMgBr<br />

MgBr 2 (1 equiv)<br />

CH 2 Cl 2<br />

MOMO<br />

N<br />

OH<br />

OMOM<br />

PMB<br />

64% yield from A<br />

Ballini, R.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1992, 57, 1316.<br />

HO OH<br />

1. RaNi, H 2<br />

2. H 3 O + N<br />

PMB<br />

H<br />

(—)-anisomycin<br />

12% yield from<br />

L-tartaric acid<br />

6


A Guide for the Discussion of <strong>Dipolar</strong> <strong>Cycloadditions</strong>:<br />

1. Types and Classification of 1,3 Dipoles<br />

2. Molecular <strong>The</strong>ory Behind 1,3-<strong>Dipolar</strong> <strong>Cycloadditions</strong><br />

Ph<br />

N<br />

3. Types of Dipoles:<br />

a. Nitrones<br />

W(CO) 5<br />

b. Nitrile Oxides<br />

c. Carbonyl Ylides<br />

d. Diazoalkanes<br />

e. Azomethine ylides<br />

g. Miscellaneous<br />

O<br />

O<br />

O<br />

N<br />

O<br />

Me<br />

H<br />

H OAc<br />

O<br />

OTBS<br />

O<br />

N<br />

O<br />

O<br />

CO 2 Me<br />

H<br />

O<br />

O<br />

H<br />

N<br />

Ph<br />

H<br />

O<br />

O<br />

N<br />

O<br />

R<br />

Nitrile Oxides: Powerfull Dipoles in 1,3-<strong>Dipolar</strong><br />

<strong>Cycloadditions</strong><br />

What is a nitrile oxide, and how is it made?<br />

R<br />

Me<br />

Me<br />

O<br />

MeO<br />

N<br />

N<br />

H<br />

O<br />

O<br />

OMe<br />

N<br />

N<br />

Bn<br />

H<br />

OTBDPS<br />

N O<br />

O<br />

A. K., Parhi; R. W. Franck Org. Lett. 2004, 6, 3063<br />

O-silylated hydroxamates<br />

Tf 2 O, TEA<br />

-40 °C to 0 °C<br />

E. M., Carreira, et. al.; Org. Lett. 2000, 2, 539.<br />

R<br />

O<br />

N<br />

NO 2<br />

alkyl nitro moiety<br />

PhNCO, "Mukaiyama method"<br />

DCC<br />

cat. base T., Mukaiyama; T., Hoshino J. Am. Chem. Soc. 1960, 82, 5339.<br />

M. J., Kurth, et. al.; J. Org. Chem. 2000, 65, 499.<br />

R<br />

nitrile oxide<br />

A. P., Kozikowski; H., Ishida J. Am. Chem. Soc. 1980, 102, 4265.<br />

TEA<br />

- HCl<br />

HO<br />

R<br />

N<br />

Cl<br />

hydroximinoyl chloride<br />

NCS/NaOCl/Cl 2<br />

HO<br />

R<br />

N<br />

oxime<br />

J. W., Bode; E. M. Carreira J. Am. Chem. Soc. 2001, 123, 3611.<br />

M. J., Kurth, et. al.; Tet. Lett. 1999, 40, 3535.<br />

7


Relative Reactivity of <strong>Dipolar</strong>ophiles with<br />

Nitrile Oxides<br />

A relative reactivity guide for achiral dipolarophiles:<br />

EWG = CO 2 Me<br />

EWG<br />

> EWG<br />

X = O, Si<br />

X<br />

EWG > > ! Ph ! EWG<br />

X = OR, SI, EWG, Halogen<br />

n = 1, 2<br />

EWG<br />

> X > !<br />

n Ph<br />

EWG<br />

8<br />

6<br />

2-5<br />

1<br />

0.4-0.7 0.01-0.30<br />

Regioselctivity with nitrile oxides:<br />

O N<br />

MeO R 1 R<br />

O N<br />

Base<br />

HON<br />

MeO<br />

R 1 R<br />

O<br />

R<br />

Cl<br />

When R 1 = H:<br />

O<br />

R 1 O OMe<br />

R Yield (%) A:B<br />

2,6-Cl 2 C 6 H 3<br />

93<br />

93:7<br />

A<br />

B<br />

2,4,6-Me 3 C 6 H 2 99<br />

95:5<br />

Toward Heterocycles and Natural Products John Wiley & Sons, 2002, p. 377-<br />

380.<br />

CO 2 Et<br />

C 6 H 5<br />

COMe<br />

Br<br />

COPh<br />

94<br />

99<br />

97<br />

89<br />

76<br />

>99:1<br />

>99:1<br />

>99:1<br />

95:1<br />

>99:1<br />

When R 1 ! H, the selectivity breaks down to give unpredictable mixtures.<br />

A., Padwa Synthetic applications of 1,3-<strong>Dipolar</strong> Cycloaddition Chemistry<br />

Synthetic Examples of Nitrile Oxides in 1,3-DC<br />

reaction: In the 1980's<br />

In the Beginning, it was Kozokowski:<br />

(1)<br />

AcO<br />

NO 2<br />

NH<br />

PhNCO<br />

cat. TEA<br />

24 hrs<br />

70-90% yield<br />

OAc<br />

NH<br />

N O<br />

AcO<br />

O N<br />

H<br />

NH<br />

Isoxazoline<br />

HO<br />

HN<br />

H<br />

H<br />

NH<br />

Chanoclavine I<br />

A. P., Kozikowski; H., Ishida J. Am. Chem. Soc. 1980, 102, 4265.<br />

(2)<br />

THPO<br />

NO 2<br />

NH<br />

PhNCO<br />

cat. TEA<br />

OTHP<br />

NH<br />

N O<br />

THPO<br />

O<br />

H<br />

N<br />

dr = 1:1<br />

NH<br />

H<br />

O<br />

H<br />

Me<br />

N<br />

Me<br />

H<br />

NH<br />

(+)-paspaclavine<br />

A. P., Kozikowski; Y. Y. Chen J. Org. Chem. 1981, 46, 5250.<br />

8


1,3-<strong>Dipolar</strong> <strong>Cycloadditions</strong> using Nitrile<br />

Oxides in the 1980's (cont'd)<br />

More Kozikowski:<br />

O<br />

E<br />

H<br />

O<br />

E = CO 2 Me<br />

NO 2<br />

PhNCO<br />

cat. TEA<br />

PhH, reflux<br />

58% yield<br />

O<br />

N<br />

O<br />

O<br />

E<br />

H<br />

N<br />

O<br />

H<br />

H<br />

O<br />

O<br />

E<br />

H<br />

L-selectride<br />

THF, -78 °C<br />

72% yield<br />

H<br />

H<br />

N<br />

O<br />

O<br />

CO 2 Me<br />

O H<br />

O<br />

O<br />

E<br />

H<br />

NO 2<br />

PhNCO<br />

cat. TEA<br />

PhH, reflux<br />

65% yield<br />

O<br />

O<br />

E<br />

H<br />

H<br />

H<br />

H<br />

N<br />

O<br />

A. P. Kozikowski, et. al.; J. Am. Chem. Soc. 1984, 106, 1845.<br />

1,3-<strong>Dipolar</strong> <strong>Cycloadditions</strong> using Nitrile<br />

Oxides moves into the 1990's<br />

Curran(1987):<br />

O 2 N<br />

O<br />

PhS<br />

Me 2 OC OEt<br />

1. p-ClC 6 H 4 NCO<br />

TEA, 110 °C<br />

2. mCPBA<br />

3. NaOH, 80 °C<br />

54% yield over<br />

3 steps<br />

MeO 2 C<br />

N<br />

H<br />

O<br />

H<br />

OEt<br />

4 steps<br />

O<br />

TBSO<br />

D. P., Curran, et. al; J. Am. Chem. Soc. 1987, 109, 5280.<br />

O<br />

H<br />

H<br />

OH<br />

OEt<br />

O<br />

p-phenol<br />

O<br />

O<br />

H<br />

8 steps<br />

O<br />

O<br />

H<br />

HO<br />

OEt<br />

Specionin<br />

OEt<br />

Kurth:<br />

Ph<br />

O<br />

NO 2<br />

p-Ph(NCO) 2<br />

cat. TEA<br />

PhH<br />

88% yield<br />

Ph<br />

O<br />

H<br />

N<br />

O<br />

dr = 9:1 (syn:anti )<br />

3 steps<br />

Ph<br />

O<br />

H<br />

N<br />

O<br />

Ph<br />

O<br />

NO 2<br />

p-Ph(NCO) 2<br />

cat. TEA<br />

PhH<br />

65% yield<br />

H<br />

Ph<br />

O<br />

O<br />

H<br />

N<br />

N<br />

O<br />

Ph<br />

O<br />

M. J., Kurth, et. al; J. Org. Chem. 2000, 65, 499.<br />

9


1,3-<strong>Dipolar</strong> <strong>Cycloadditions</strong> using Nitrile<br />

Oxides in the New Millennium<br />

Dr. Mitomycin (Fukuyama):<br />

MeO<br />

CO 2 Et<br />

NOH<br />

O<br />

NaOCl<br />

EtO 2 C<br />

MeO<br />

H<br />

O<br />

N<br />

O<br />

multiple steps<br />

OMe<br />

OCONH 2<br />

OH<br />

Me N<br />

p-Ns<br />

Carreira:<br />

O<br />

CH 2 Cl 2 , 0 °C<br />

Me N<br />

O<br />

p-Ns<br />

T., Fukuyama, et. al.; Org. Lett. 2001, 3, 2575.<br />

Me<br />

N O NH<br />

FR-900482 analogue<br />

OH<br />

OTIPS<br />

Me<br />

O N<br />

(EtO) 2 P<br />

Me<br />

OH<br />

H<br />

NOC<br />

94% yield<br />

O N<br />

(EtO) 2 P<br />

Me<br />

O<br />

OTIPS<br />

(CH 2 ) 3<br />

OH<br />

OH<br />

O N O<br />

O N<br />

NOC (EtO) 2 P<br />

(EtO) 2 P<br />

OH<br />

H 79% yield<br />

Me<br />

Me<br />

J. W., Bode; E. M., Carreira J. Am. Chem. Soc. 2001, 123, 3611.<br />

OH<br />

Me<br />

R<br />

O<br />

N<br />

Me<br />

S<br />

Me<br />

O<br />

O OH O<br />

Epothilone A (R = H), B (R = Me)<br />

OH<br />

Me<br />

A Guide for the Discussion of <strong>Dipolar</strong> <strong>Cycloadditions</strong>:<br />

1. Types and Classification of 1,3 Dipoles<br />

2. Molecular <strong>The</strong>ory Behind 1,3-<strong>Dipolar</strong> <strong>Cycloadditions</strong><br />

Ph<br />

N<br />

3. Types of Dipoles:<br />

a. Nitrones<br />

W(CO) 5<br />

b. Nitrile Oxides<br />

c. Carbonyl Ylides<br />

d. Diazoalkanes<br />

e. Azomethine ylides<br />

g. Miscellaneous<br />

O<br />

O<br />

O<br />

N<br />

O<br />

Me<br />

H<br />

H OAc<br />

O<br />

OTBS<br />

O<br />

N<br />

O<br />

O<br />

CO 2 Me<br />

H<br />

O<br />

O<br />

H<br />

N<br />

Ph<br />

H<br />

O<br />

O<br />

N<br />

O<br />

R<br />

10


Carbonyl Ylides: How to Make the Dipole<br />

3 types of carbonyl ylides:<br />

(1) Unstablized ylides<br />

(2) Stablized ylides (3) Oxidopyrylium ion<br />

R<br />

O<br />

R'<br />

O<br />

R<br />

O<br />

R'<br />

R<br />

O<br />

R<br />

O<br />

Generation of the ylides:<br />

TMS<br />

Ph<br />

O<br />

Cl<br />

CsF<br />

MeCN<br />

Ph<br />

A., Hosomi, et. al.; J. Org. Chem. 1997, 62, 8610.<br />

N<br />

N<br />

O<br />

OMe<br />

! -N 2<br />

CHCl 3<br />

OMe<br />

P. K. Sharma; J., Warkentin Tetrahedron Lett. 1995, 36, 7637.<br />

Me<br />

Ph<br />

O<br />

Ph<br />

Me<br />

254 nm<br />

h"<br />

O<br />

Me<br />

Ph<br />

O<br />

O<br />

Ph<br />

Me<br />

G. W., Griffin, et. al.; Tetrahedron 1981, 37, 3345.<br />

<strong>The</strong> most common method to generate a carbonyl ylide is from a<br />

metallocarbenoid:<br />

Ph<br />

Ph<br />

O<br />

N 2<br />

Rh 2 (OAc) 4<br />

Ph<br />

O<br />

O<br />

A., Padwa, et. al.; J. Am. Chem. Soc. 1990, 112, 3100.<br />

N 2<br />

CN<br />

C 6 H 4 Cl<br />

Rh 2 (OAc) 4<br />

O<br />

Ph<br />

Ph<br />

Ph H<br />

M., Hamaguchi, et. al.; Tetrahedron Lett. 2000, 41,1457.<br />

O<br />

O<br />

CN<br />

C 6 H 4 Cl<br />

For a plethora of examples using metallocarbenoids to generate<br />

carbonyl ylides, see: A., Padwa Synthetic applications of 1,3-<strong>Dipolar</strong><br />

Cycloaddition Chemistry Toward Heterocycles and Natural Products John<br />

Wiley & Sons, 2002, p. 269-301.<br />

Hashimoto:<br />

Enantioselective Catalyzed 1,3-<strong>Dipolar</strong><br />

Cycloaddtions using Carbonyl Ylides<br />

entry R 1 temp (°C) yield (%) % ee<br />

1<br />

2<br />

3<br />

4<br />

C 6 H 5<br />

C 6 H 5<br />

4-MeC 6 H 4<br />

4-MeOC 6 H 4<br />

0<br />

-23<br />

0<br />

0<br />

77<br />

54<br />

67<br />

65<br />

90<br />

92<br />

92<br />

90<br />

5<br />

0<br />

Note: <strong>The</strong> full table conatins 11 examples with 68-92 % ee<br />

S.-i., Hashimoto, et. al.; J. Am. Chem. Soc. 1999, 121, 1417.<br />

78<br />

87<br />

R 1<br />

O<br />

N 2<br />

O<br />

L* =<br />

MeO 2 C<br />

CO 2 Me<br />

Rh 2 L 4 * (1 mol %)<br />

CF 3 C 6 H 5 0.08 M, 5 min<br />

i-Pr<br />

H<br />

O<br />

Rh<br />

O<br />

O<br />

Rh<br />

N<br />

O<br />

MeO 2 C<br />

R 1<br />

O<br />

CO 2 Me<br />

O<br />

4-ClC 6 H 4<br />

11<br />

Suga:<br />

O<br />

OMe<br />

entry temp (°C) yield (%) endo:exo % ee<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

-10<br />

-10<br />

-10<br />

-10<br />

-25<br />

-25<br />

-10<br />

96<br />

82<br />

53<br />

97<br />

84<br />

77<br />

84<br />

88:12<br />

85:15<br />

91:9<br />

82:18<br />

73:27<br />

67:37<br />

12:88<br />

91<br />

82<br />

89<br />

93<br />

86<br />

83<br />

45 (exo)<br />

H<br />

O<br />

O<br />

OMe<br />

CHN 2<br />

(S,S)-Pybox<br />

M(OTf) 3<br />

OCH 2 Ar<br />

Rh(OAc) 2<br />

OMe<br />

O<br />

O<br />

O<br />

endo<br />

H., Suga, et. al; J. Am. Chem. Soc. 2002, 124, 14836.<br />

O<br />

O<br />

OCH 2 Ar<br />

OMe<br />

O<br />

OMe<br />

O<br />

O<br />

O<br />

exo<br />

O<br />

OCH 2 Ar


Recent Examples of Carbonyl Ylides used in<br />

Natural Product Syntheses<br />

Boger:<br />

O<br />

O<br />

O<br />

N<br />

Me<br />

N<br />

[4 + 2]<br />

N<br />

O<br />

N<br />

R Z R E<br />

CO 2 Me<br />

N<br />

Me<br />

N<br />

N<br />

R Z<br />

N O R E<br />

CO 2 Me<br />

1. - N 2<br />

2. [3 + 2]<br />

60-88% yield<br />

11 examples<br />

Me<br />

N<br />

N<br />

O R Z<br />

R E<br />

H<br />

CO 2 Me<br />

Padwa:<br />

O<br />

H<br />

Me<br />

O<br />

H<br />

H<br />

O<br />

74 % yield<br />

dr = 4:1 (exo)<br />

A<br />

D. L., Boger; et. al.; J. Am. Chem. Soc. 2002, 124, 11292.<br />

O O<br />

Rh II Rh<br />

H<br />

II<br />

O<br />

Cl CN<br />

N 2<br />

illudin core and ptaquilosin core<br />

Me<br />

Cl<br />

O<br />

O<br />

CN<br />

68 % yield<br />

dr = 3:1<br />

A., Padwa, et. al.; J. Am. Chem. Soc. 1994, 116, 2667.<br />

B<br />

H<br />

Core of vinoline<br />

HO<br />

Me<br />

Me<br />

O<br />

OH<br />

Me<br />

Illudin M (R = H)<br />

Illudin S (R = OH)<br />

CH 2 R<br />

Synthetic Examples of 1,3-<strong>Dipolar</strong><br />

<strong>Cycloadditions</strong> Using Oxidopyrylium Ylide<br />

Wender:<br />

TBSO<br />

AcO<br />

O<br />

H<br />

H<br />

O<br />

O<br />

H OAc<br />

OAc DBU Me<br />

CH 2 Cl 2 , rt<br />

O<br />

Me<br />

OTBS<br />

AcO<br />

Me<br />

H<br />

O<br />

O<br />

OTBS<br />

K. C., Nicolaou; S. A., Snyder Classics in Total Synthesis II Wiley-VCH, 2003, Ch. 6.<br />

HO OH<br />

Me<br />

H<br />

H H<br />

OH<br />

OH<br />

OH<br />

O<br />

phorbol<br />

Magnus:<br />

Me<br />

HO<br />

O<br />

Me<br />

O<br />

TFA, CH 2 Cl 2 , rt<br />

82% yield<br />

Me<br />

O<br />

Me<br />

O<br />

Me<br />

Me<br />

O<br />

O<br />

cyathin core<br />

P., Magnus; L., Shen Tetrahedron, 1999, 55, 3553.<br />

12


A Guide for the Discussion of <strong>Dipolar</strong> <strong>Cycloadditions</strong>:<br />

1. Types and Classification of 1,3 Dipoles<br />

2. Molecular <strong>The</strong>ory Behind 1,3-<strong>Dipolar</strong> <strong>Cycloadditions</strong><br />

Ph<br />

N<br />

3. Types of Dipoles:<br />

a. Nitrones<br />

W(CO) 5<br />

b. Nitrile Oxides<br />

c. Carbonyl Ylides<br />

d. Diazoalkanes<br />

e. Azomethine ylides<br />

g. Miscellaneous<br />

O<br />

O<br />

O<br />

N<br />

O<br />

Me<br />

H<br />

H OAc<br />

O<br />

OTBS<br />

O<br />

N<br />

O<br />

O<br />

CO 2 Me<br />

H<br />

O<br />

O<br />

H<br />

N<br />

Ph<br />

H<br />

O<br />

O<br />

N<br />

O<br />

R<br />

Using TMSCHN 2 in 1,3-<strong>Dipolar</strong> <strong>Cycloadditions</strong><br />

Carreira:<br />

(1) Methodology<br />

O<br />

TMSCHN 2<br />

R 1 N<br />

n-Hex:PhMe (1:1)<br />

O 2 S<br />

R 2 Carreira, E. M., et. al.; J. Am. Chem. Soc. 1997, 119, 8379.<br />

TMS<br />

R 1 O<br />

R 2<br />

N N<br />

X c<br />

TFA<br />

CH 2 Cl 2<br />

R 1 O<br />

R 2<br />

X c<br />

N NH<br />

65-78% yield<br />

1. NaCNBH 3<br />

MeCN<br />

2. Mg(OMe) 2<br />

MeOH<br />

R 1 O<br />

R 2<br />

HN NH<br />

OMe<br />

dr = 9-9.5:1<br />

pyrazolidines<br />

(2) Total Synthesis<br />

Me<br />

O<br />

N<br />

O 2 S<br />

TMSCHN 2<br />

then acid workup<br />

65% yield<br />

dr = 94:6<br />

N<br />

O<br />

Me<br />

NH<br />

N<br />

O 2 S<br />

5 M NaOH<br />

150 °C, 5h<br />

68% yield<br />

O<br />

HO<br />

OH<br />

O Me NH 2<br />

C ! -methyl aspartic acid<br />

H., Sasaki; E. M., Carreira Synthesis 2000, 1, 135.<br />

H<br />

N<br />

Me<br />

H<br />

N<br />

O<br />

Me<br />

Me<br />

ent-stellettamide A<br />

Me<br />

Me<br />

R<br />

O<br />

OH<br />

H<br />

N<br />

NH 2<br />

X c<br />

HN<br />

O<br />

N<br />

OBn<br />

13


Azomethine Ylides: How they are generated<br />

R 1 CHO<br />

aldehydes<br />

RNHCH 2 R 2<br />

R<br />

R<br />

R<br />

N<br />

R 1 N R 2<br />

R 1 N R 2<br />

R 1 R 2<br />

aziridines<br />

azomethine ylide<br />

imines<br />

R<br />

N<br />

R 1<br />

O<br />

R 3 R 2 COR 3<br />

For a general review of azomethine ylides, see: I., Coldham; R., Hufton Chem. Rev. 2005, 105, 2765.<br />

Azomethine Ylides: A quick look at FMO<br />

+3<br />

LUMO<br />

+1.4<br />

0<br />

+1<br />

+2<br />

Z = electron deficient<br />

HOMO<br />

H<br />

N<br />

-6.9<br />

-8<br />

-9 -9<br />

-10.9<br />

Z C R X<br />

C = conjugated<br />

R = alkyl<br />

X = electron rich<br />

Dipole<br />

<strong>Dipolar</strong>ophiles<br />

Intramolecular Tethers:<br />

R<br />

N<br />

Type I<br />

R<br />

N<br />

R<br />

N<br />

Type II<br />

N<br />

N<br />

N<br />

I., Coldham; R., Hufton Chem. Rev. 2005, 105, 2765.<br />

14


Azomethine Ylides Generated From Aldehydes<br />

Kanemasa:<br />

O<br />

CHO<br />

Ph<br />

MeHN<br />

CO 2 Me<br />

PhMe, !, 10 h<br />

O<br />

Ph<br />

N CO 2 Me<br />

Me<br />

O<br />

H<br />

H<br />

Ph<br />

N<br />

Me<br />

CO 2 Me<br />

95% yield<br />

single diastereomer<br />

S., Kanemasa; K., Doi; E., Wada Bull. Chem. Soc. Jpn. 1990, 63, 2866.<br />

Harwood:<br />

Ph<br />

H<br />

N<br />

O<br />

O<br />

CHO<br />

PhH, !<br />

O<br />

O<br />

H<br />

N<br />

Ph<br />

H<br />

Ph<br />

H<br />

N<br />

O<br />

H<br />

O<br />

61% yield<br />

single diastereomer<br />

L. M., Harwood; L. C., Kitchen Tetrahedron Lett. 1993, 34, 6603.<br />

Azomethine Ylides Generated From Imines<br />

Parsons:<br />

TIPSO<br />

9<br />

O<br />

CO 2 Et<br />

TEA, MeCN<br />

N Ph<br />

36% yield<br />

single diastereomer<br />

TIPSO<br />

9<br />

H<br />

O<br />

CO 2 Et<br />

Ph<br />

NH<br />

H<br />

H 3 CO<br />

Cl<br />

O<br />

NH<br />

N<br />

roseophilin<br />

P. J., Parsons, et. al.; Synlett. 2003, 1856.<br />

Livinghouse:<br />

MeO<br />

MeO<br />

— OTf<br />

MeO<br />

MeO<br />

O<br />

N<br />

TfO<br />

TMS<br />

MeO<br />

O<br />

N<br />

TMS<br />

CsF<br />

DME, 65 °C<br />

70% yield<br />

MeO<br />

O<br />

N<br />

H<br />

single diastereomer<br />

erythrinane skeleton<br />

T., Livinghouse, et. al.; J. Org. Chem. 1996, 51, 1159.<br />

15


Azomethine Ylides Generated From Aziridines<br />

Ar<br />

Ar<br />

Huisgen:<br />

N<br />

N<br />

EtO 2 C<br />

110 °C<br />

Conrotatory<br />

CO 2 Et<br />

EtO 2 C<br />

1<br />

h!<br />

2<br />

Disrotatory<br />

CO 2 Et<br />

110 °C<br />

Conrotatory<br />

Ar<br />

N<br />

CO 2 Et<br />

EtO 2 C<br />

Ar<br />

N<br />

Ar<br />

N<br />

EtO 2 C<br />

Ar<br />

N<br />

CO 2 Et<br />

EtO 2 C<br />

S<br />

trans-1<br />

S<br />

CO 2 Et<br />

EtO 2 C<br />

CO 2 Et<br />

U<br />

cis-2<br />

W<br />

EtO 2 C<br />

CO 2 Et<br />

Ar = p-MeOC 6 H 4<br />

EtO 2 C<br />

CO 2 Et<br />

EtO 2 C<br />

CO 2 Et<br />

EtO 2 C<br />

N<br />

Ar<br />

CO 2 Et<br />

EtO 2 C<br />

R., Huisgen, et. al.; J. Am. Chem. Soc. 1967, 89, 1753.<br />

R., Huisgen, et. al.; Tetrahedron Lett. 1966, 397.<br />

N<br />

Ar<br />

CO 2 Et<br />

A Guide for the Discussion of <strong>Dipolar</strong> <strong>Cycloadditions</strong>:<br />

1. Types and Classification of 1,3 Dipoles<br />

2. Molecular <strong>The</strong>ory Behind 1,3-<strong>Dipolar</strong> <strong>Cycloadditions</strong><br />

Ph<br />

N<br />

3. Types of Dipoles:<br />

a. Nitrones<br />

W(CO) 5<br />

b. Nitrile Oxides<br />

c. Carbonyl Ylides<br />

d. Diazoalkanes<br />

e. Azomethine ylides<br />

g. Miscellaneous<br />

O<br />

O<br />

O<br />

N<br />

O<br />

Me<br />

H<br />

H OAc<br />

O<br />

OTBS<br />

O<br />

N<br />

O<br />

O<br />

CO 2 Me<br />

H<br />

O<br />

O<br />

H<br />

N<br />

Ph<br />

H<br />

O<br />

O<br />

N<br />

O<br />

R<br />

16


Various Dipoles and <strong>Dipolar</strong>ophiles in <strong>Dipolar</strong><br />

<strong>Cycloadditions</strong><br />

Finney:<br />

OAc<br />

AcO<br />

O<br />

OAc<br />

RN 3 , CH(OEt) 3<br />

reflux, 24-36 h<br />

AcO<br />

OAc<br />

O<br />

OAc<br />

R<br />

N<br />

N<br />

N<br />

h!, (CH 3 ) 2 CO<br />

10-12 h<br />

AcO<br />

OAc<br />

O<br />

OAc<br />

NR<br />

NaH, Nu-H<br />

cat. Sc(OTf) 3<br />

THF, 3-4 h<br />

AcO<br />

OAc<br />

O<br />

OAc<br />

Nu<br />

NHR<br />

R. S., Dahl; N. S., Finney J. Am. Chem. Soc. 2003, 126, 8356.<br />

Nair (1,4-<strong>Dipolar</strong> Cycloaddition):<br />

N<br />

CO 2 Me<br />

CO 2 Me<br />

R<br />

NTs<br />

DME, rt, 3 h<br />

7 examples, 43-92% yields<br />

5-10:1 dr<br />

NTs<br />

H<br />

Ts<br />

N<br />

N<br />

R<br />

CO 2 Me<br />

CO 2 Me<br />

N<br />

CO 2 Me<br />

CO 2 Me<br />

Ar<br />

1,4-<strong>Dipolar</strong> Cycloaddition<br />

V., Nair, et. al.; Org. Lett. 2002, 4, 3575.<br />

Various Dipoles Used to Access<br />

Complex Alkaloid Core Structures<br />

N<br />

N<br />

O<br />

isoschizizygane core<br />

Padwa:<br />

S<br />

H 5 C 2<br />

o-NO 2 C 6 H 4<br />

NH<br />

O C C C O<br />

C 2 H 5<br />

o-NO 2 C 6 H 4<br />

O<br />

S<br />

N<br />

O<br />

!<br />

C 2 H 5<br />

o-NO 2 C 6 H 4<br />

S<br />

O<br />

N O<br />

C 2 H 5<br />

o-NO 2 C 6 H 4<br />

N<br />

O<br />

66% yield<br />

single diastereomer<br />

o-NH 2 C 6 H 4<br />

1. H 2 , (Pd/C)<br />

2. LAH<br />

H + HOAc<br />

N<br />

N<br />

C<br />

N O<br />

N<br />

2 H 5 N<br />

H<br />

H<br />

C 2 H 5<br />

C 2 H 5<br />

1 : 6<br />

A., Padwa, et. al.; Org. Lett. 2005, 7, 2925.<br />

17


Dipoles Generated by Catalytic Methods Using<br />

Various Metals<br />

Iwasawa:<br />

Ph<br />

Ph<br />

OTIPS<br />

Ph<br />

OTIPS<br />

N<br />

10 mol % W(CO) 6<br />

Et 3 N, MS4Å, h!<br />

PhMe, rt<br />

N<br />

O-i-Pr<br />

N<br />

O-i-Pr<br />

H<br />

Et 3 N<br />

W(CO) 5<br />

W(CO) 5<br />

Ph<br />

N<br />

OTIPS<br />

O-i-Pr<br />

Et 3 N-H<br />

H 3 O<br />

Ph<br />

N<br />

O<br />

100 mol % = 84%<br />

10 mol % = 71%<br />

W(CO) 5<br />

W(CO) 5<br />

N., Iwasawa, et. al.; Org. Lett. 2006, 8, 895.<br />

Oh:<br />

O<br />

Me<br />

EtO 2 C<br />

3 mol % AuBr 3<br />

1,2-DCE, rt, 8 h<br />

CO 2 Et<br />

Me<br />

O<br />

AuBr 3<br />

CO 2 Et<br />

CO 2 Et<br />

O<br />

Me<br />

80% yield<br />

CO 2 Et<br />

CO 2 Et<br />

C. H., Oh, et. al.; Org. Lett. 2005, 7, 5289.<br />

One Old Friend, and One Friendly Molecule<br />

Maruoka, Taichi Kano:<br />

CHO<br />

N<br />

N<br />

O<br />

OEt<br />

Ti(OiPr) 4<br />

10 mol % BINOL<br />

CH 2 Cl 2 , -40 °C<br />

N NH<br />

Me<br />

EtO 2 C<br />

CHO<br />

42% yield, 88% ee<br />

4 steps<br />

HO 2 C<br />

N<br />

NH<br />

O<br />

N<br />

H<br />

Br<br />

Manzacidin A<br />

T., Kano, T., Hashimoto, K., Maruoka J. Am. Chem. Soc. 2006, 128, 2174.<br />

Pandey:<br />

O<br />

O<br />

O<br />

H<br />

OH<br />

N<br />

AgF<br />

TMS<br />

R<br />

CH 3 CN<br />

TMS<br />

N<br />

R<br />

O<br />

O<br />

56% yield<br />

N<br />

R<br />

H<br />

O<br />

O<br />

N<br />

Pancracine<br />

H<br />

OH<br />

R = CH 2 CH 2 OBz<br />

"Overman Talk"<br />

G., Pandey, et. al; Org. Lett. 2005, 3713.<br />

18


Some Conclusions<br />

- 1,3 DC are extremely powerful reactions that can generate multiple chiral centers, various heterocyclic or carbocyclic<br />

ring sizes, as well as a wide array of final products.<br />

- <strong>The</strong>re are many different dipoles, and there are various ways to make the more popular dipoles.<br />

- Asymmetric 1,3 DC have good ee's, however lack a wide substrate scope for specific dipoles. This area is still<br />

underexplored and will continue to draw interest.<br />

THE END<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!