24.03.2015 Views

The Heck Reaction: Mechanistic Insight into a ... - The Stoltz Group

The Heck Reaction: Mechanistic Insight into a ... - The Stoltz Group

The Heck Reaction: Mechanistic Insight into a ... - The Stoltz Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Heck</strong> <strong>Reaction</strong>: <strong>Mechanistic</strong> <strong>Insight</strong> <strong>into</strong><br />

a Synthetically Useful <strong>Reaction</strong><br />

Uttam K. Tambar<br />

<strong>Stoltz</strong> <strong>Group</strong> Literature Series<br />

Thursday, April 17, 2003 (right after group meeting)<br />

L 2 Pd II X 2 or Pd(0) precatalyst<br />

X - H + NR 3<br />

red. elim.<br />

NR 3<br />

L 2 Pd(0)<br />

preactivation<br />

Br<br />

oxid. addn.<br />

R<br />

H<br />

Pd<br />

X<br />

L<br />

Ph<br />

L<br />

Pd<br />

L<br />

X<br />

Ph<br />

L<br />

Pd<br />

X<br />

L<br />

Ph<br />

R<br />

R H<br />

Pd<br />

X<br />

L<br />

R<br />

Ph<br />

Pd<br />

X<br />

L<br />

Ph<br />

Ph<br />

!-H<br />

elimination<br />

R<br />

Pd<br />

L X<br />

migratory<br />

insertion<br />

General <strong>Reaction</strong><br />

R<br />

+ R'X<br />

L 2 Pd II X 2 or Pd(0) cat.<br />

R<br />

+ Base H + X -<br />

H<br />

Base<br />

R'<br />

R' = aryl, heterocyclic, vinyl, benzyl<br />

X = Br, I, OTf, Cl, and some other miscellaneous FG<br />

Base = 2° or 3° amine, NaOAc, K 2 CO 3 , KHCO 3 , KOAc<br />

Catalyst:<br />

Pd(II) sources- Pd(OAc) 2 , PdCl 2 (PR 3 ) 2 , PdCl 2 (CH 3 CN) 2<br />

Pd(0) sources- Pd(PPh 3 ) 4 , Pd(dba) 2 + PR 3<br />

General Reviews:<br />

Chem. Rev. 2000, 100, 3009 (Beletskaya)<br />

Acc. Chem. Res. 1995, 28, 2 (Cabri)<br />

Angew. Che. Int. Ed. Engl. 1994, 33, 2379 (Meijere)<br />

History<br />

Mizoroki and <strong>Heck</strong> independently discovered the novel Pd-mediated coupling of aryl halides with olefins,<br />

but <strong>Heck</strong> developed it <strong>into</strong> a general method for synthetic chemistry<br />

Bull. Chem. Soc. Jpn. 1971, 44, 581 (Mizoroki)<br />

J. Org. Chem. 1972, 37, 2320 (<strong>Heck</strong>)<br />

Preactivation of Catalyst<br />

Oxidative Addition<br />

Migratory Insertion<br />

Possible Termination Steps<br />

!-Hydride Elimination<br />

Reductive Elimination<br />

Phosphine-Assisted vs. Phosphine Free Catalysis<br />

Outline<br />

1


Preactivation of Catalyst<br />

• if a Pd(II) source is used in a <strong>Heck</strong> reaction, it must be reduced to Pd(0) before entering the catalytic cycle<br />

Reduction by Phosphines<br />

outer shell mechanism<br />

nucleophillic<br />

attack<br />

H 2 O<br />

L n Pd II PR 3<br />

L n Pd(O) + NuPR 3<br />

Nu<br />

H<br />

+<br />

O PR 3<br />

Nu<br />

phosphonium<br />

inner shell mechanism<br />

Nu<br />

reductive<br />

elimination<br />

H 2 O<br />

L n Pd II PR 3<br />

L n Pd(O) + NuPR 3<br />

Nu<br />

H<br />

+<br />

O PR 3<br />

phosphonium<br />

• electron-withdrawing group on phosphine increases rate of Pd(II) to Pd(0) reduction,<br />

because phosphine is more susceptible to attack by nucleophile<br />

• hard nucleophiles assist Pd(II) to Pd(0) reduction (eg. - OH, - OR, H 2 O, AcO - /H 2 O, F - /H 2 O)<br />

Preactivation of Catalyst - continued<br />

• in the absence of phosphines, Pd(II) can be reduced to Pd(0) by other means<br />

Reduction by Tertiary Aliphatic Amines<br />

L n Pd II<br />

X<br />

X<br />

coordination<br />

R 2 N<br />

R<br />

L<br />

X<br />

R 2<br />

N<br />

Pd<br />

H<br />

R<br />

!-hydride<br />

elimination<br />

R 2 N<br />

R<br />

L n Pd II<br />

X<br />

H<br />

reductive<br />

elimination<br />

HX<br />

L n Pd(0)<br />

Reduction by Olefins (Wacker-Type Process)<br />

L n Pd II<br />

X<br />

X<br />

coordination<br />

R<br />

L n Pd II<br />

R<br />

X<br />

Wacker-type<br />

attack<br />

Nu<br />

H<br />

L n Pd II<br />

X<br />

Nu<br />

R<br />

!-hydride<br />

elimination<br />

R<br />

L n Pd II<br />

X<br />

H<br />

reductive<br />

elimination<br />

HX<br />

L n Pd(0)<br />

Nu<br />

• when a high catalyst loading is used, the yield may be diminished if the substrate olefin<br />

undergoes this Wacker-type reaction<br />

Reduction by Other Functional <strong>Group</strong>s<br />

• phosphonium and 4° ammonium salts can also reduce Pd(II) to Pd(0) (via oxid. addn. to C-N or C-P)<br />

2


Preactivation of Catalyst - continued<br />

• to enter the catalytic cycle, Pd(0) must have a proper coordination shell (eg. L 2 Pd(0) )<br />

there can be no more than 2 strongly bound ligands on palladium<br />

there is a a restriction on the choice of ligands and their concentration in solution<br />

<strong>The</strong> Proper Coordination Shell for Pd(0) in Monodentate Phosphine Assited Catalysis<br />

• too much phosphine inhibits catalysis by generating a coordinatively saturated complex:<br />

PR 3<br />

R 3 P Pd 0 PR 3<br />

PR 3<br />

R 3 P Pd 0 PR 3<br />

Ar Br<br />

PR 3 ligand<br />

ox. addn.<br />

assoc.<br />

Ar<br />

R 3 P Pd II Br<br />

PR 3<br />

<strong>Heck</strong><br />

• but with too little phosphine, the active dicoordinated Pd 0 (PR 3 ) 2 disproportionates<br />

to a stable tricoordinate Pd 0 (PR 3 ) 3 and unstable low-ligated complexes, which leads<br />

to Pd aggregation and cluster formation:<br />

2Pd(PR 3 ) 2 Pd(PR 3 ) 3 + Pd(PR 3 ) Pd n L m Pd-black<br />

(stable)<br />

Preactivation of Catalyst - continued<br />

<strong>The</strong> Proper Coordination Shell for Pd(0) Complexes Generated from Pd(dba) 2<br />

• once again, with too little phosphine (or other L-type ligand) the active dicoordinated Pd 0 L 2<br />

disproportionates to a stable tricoordinate Pd 0 L 3 and unstable low-ligated complexes, which<br />

leads to Pd aggregation and cluster formation:<br />

Pd(dba) 2<br />

+ 2L 2dba + PdL 2 PdL 3 + PdL Pd n L m Pd-black<br />

• with too little phosphine there may also be incomplete deligation of dba,<br />

which requires at least 4 equivalents of phosphine<br />

• Pd(dba) 2 + excess PR 3 may lead to a coordinatively saturated complex,<br />

which may not react with less reactive substrates<br />

preformed Pd(PPR 3 ) 4 may be more reactive thanPd(dba) 2 + excess PR 3<br />

Electronic Influences on the Proper Coordination Shell for Pd(0)-Triaryl Phosphine Complexes<br />

• there's a fine balance in choosing a triaryl phosphine ligand with the proper electronices<br />

electron withdrawing<br />

group on arylphosphine<br />

higher concentration of reactive Pd 0 (PAr 3 ) 2 via deligation of PAr 3<br />

electron donating<br />

group on arylphospine<br />

higher rate of oxidative addition<br />

3


Oxidative Addition<br />

L 2 Pd(0)<br />

oxid. addn.<br />

Ph<br />

L<br />

Pd<br />

L<br />

X<br />

Ph<br />

L<br />

Pd<br />

X<br />

L<br />

Br<br />

cis<br />

trans<br />

• oxidative addition is a relatively concerted process (C-X breaks synchronously with the formation<br />

of M-C and M-X)<br />

• unlike the stepwise addition-elimination mechanism of nucleophillic aromatic substitution (in which<br />

charge builds up), the concerted mechanism of oxidative addition is less sensitive to the electronics<br />

of the unsaturated R'-X substrate and is more sensitive to the nature of X and the relative bond<br />

strengths of C-X and M-X<br />

order of reactivity in oxidative addition (I >> OTf > Br >> Cl) is roughly<br />

opposite for nucleophillic aromatic substitution<br />

• in most monodentate phosphine examples, the isolable product of oxidative addition is the trans isomer,<br />

but the complex that continues in the catalytic cycle is the cis isomer<br />

<strong>Heck</strong> Ph X Ph L<br />

Pd<br />

Pd<br />

isolable<br />

L L L X<br />

cis<br />

trans<br />

R X<br />

L<br />

Pd<br />

L<br />

Migratory Insertion<br />

migratory<br />

insertion<br />

R'<br />

R<br />

R'<br />

L<br />

Pd<br />

X<br />

L<br />

• this step is usually responsible for the regioselectivity, stereoselectivity and substrate selectivity<br />

or a <strong>Heck</strong> reaction<br />

3 Possible Mechanisms<br />

(1) RPdX behaves as a carbanion (like other non-transition or early-transition metals)<br />

R<br />

L<br />

Pd<br />

L<br />

X<br />

Pd<br />

L<br />

X<br />

L<br />

R<br />

O<br />

OMe<br />

migratory<br />

insertion<br />

R<br />

Pd<br />

L<br />

O<br />

X<br />

L<br />

OMe<br />

most data refutes this mechanism<br />

(2) RPdX or RPd + are metal-centered electrophiles being attacked by an olefin<br />

(electrophillic addition mechanism)<br />

X<br />

L<br />

R<br />

Pd<br />

X<br />

L<br />

Pd<br />

R<br />

X<br />

L<br />

Pd<br />

R<br />

there is some data that supports this mechanism, and<br />

sometimes it is the most relevant mechanism<br />

4


Migratory Insertion - continued<br />

(3) RPdX or RPd + add to the olefin in a concerted process<br />

X<br />

L<br />

Pd<br />

R<br />

X<br />

L<br />

Pd<br />

R<br />

X<br />

L<br />

Pd<br />

R<br />

this mechanism is the most realistic (compromise between the 2<br />

other possible mechisms)<br />

the variable TS is adaptable/flexible to electronic demands, so<br />

steric factors are often the main source of selectivitiy<br />

eg. substitution on olefin reduces rate of reaction<br />

> ><br />

Migratory Insertion - continued<br />

Mechanism of Olefin Ligation to Pd(II)<br />

• in order for the olefin to ligate to Pd(II), another ligand must deligate first to open a coordination site<br />

if a neutral L ligand deligates (eg. PR 3 )<br />

non-polar / neutral mechanism<br />

if an anionic X ligand deligates (eg. halide)<br />

polar / cationic mechanism<br />

• neutral mechanism:<br />

L 2 Pd(0)<br />

X<br />

Ar<br />

Ar<br />

L<br />

Pd<br />

L<br />

X<br />

R<br />

R<br />

Ar<br />

Pd<br />

L<br />

X<br />

L<br />

this mechanism is thought to operate when X is a strong !-donor (ie. Cl, Br, I)<br />

• cationic mechanism:<br />

+<br />

X Ar<br />

Ar L<br />

L<br />

Ar L<br />

2 Pd(0)<br />

R<br />

Pd<br />

Pd<br />

X L<br />

R<br />

L<br />

Cl -<br />

X -<br />

this mechanism is thought to operate when X is a weakly associated anionic ligand<br />

(eg. OTf, OAc), or when Ag or Tl salts (eg. AgY or TlY, Y =CO 3 , OTf, OAc)<br />

are used to abstract the halide<br />

5


Migratory Insertion - continued<br />

• for monodentate phosphine ligands, both the neutral and cationic mechanisms are accessible:<br />

neutral<br />

Ar<br />

L Pd L<br />

X<br />

cationic<br />

-L<br />

L<br />

Ar<br />

Pd S L<br />

Ar<br />

Pd<br />

X<br />

X<br />

L<br />

Ar<br />

Pd X<br />

-X - L<br />

Ar<br />

Pd S<br />

L<br />

Ar<br />

Pd<br />

L<br />

L<br />

L<br />

• for bidentate phosphine ligands, the neutral mechanism a lot less likely<br />

when aryl or vinyl halides are used, bidentate ligands often lead to a complete<br />

or partial suppression of the reaction<br />

the neutral mechanism is still possible in special cases<br />

eg. large bite-angle diphosphine in which the spacer between phosphines<br />

is large/flexible and the P-Pd-P angle is greater than 90 °<br />

neutral (less likely)<br />

L<br />

Ar<br />

Pd X<br />

L<br />

cationic<br />

-L<br />

S<br />

Ar<br />

Pd X<br />

L L<br />

Ar<br />

-X - L Pd S<br />

L<br />

L<br />

L<br />

Ar<br />

Pd<br />

L<br />

Ar<br />

Pd<br />

L<br />

X<br />

Migratory Insertion - continued<br />

• for phosphine-free systems, the neutral mechanism is bascially inconceivable<br />

most phosphine-free <strong>Heck</strong> reactions are performed in polar solvents or with<br />

additives which assist in the exchange of anionic ligands<br />

• the electrophillicity of the arylpalladium complex has little to do with the positive charge of Pd<br />

ArPdX / ArPd + is electrophillic with electron rich olefins<br />

ArPdX / ArPd + is nucleophillic with electron poor olefins<br />

ArPd + is not more electrophillic than ArPdX<br />

• there are several degrees of freedom in the TS<br />

the !-complexed alkene rotates to an in-plane position and therefore adapts<br />

itself to 2 possible TS (representing the 2 possible regioisomeric products of<br />

olefin insertion)<br />

the TS which represents the lower energy barrier is followed<br />

6


Regioselectivity in Migratory Insertion<br />

• "the temptation to find simple rules of regioselectivity should be discarded"<br />

Intermolecular <strong>Heck</strong> <strong>Reaction</strong><br />

• regioselectivity of migratory insertion with neutral Pd complexes<br />

20%<br />

80%<br />

CO 2 Me CN Ph C 4 H 9<br />

1%<br />

40%<br />

99%<br />

60%<br />

CO 2 Me Ph N<br />

O<br />

OMe<br />

neutral Pd complex + electron poor alkene<br />

neutral Pd complex + electron rich alkene<br />

steric control<br />

electronic control<br />

Regioselectivity in Migratory Insertion - continued<br />

• regioselectivity of migratory insertion with cationic Pd complexes<br />

40%<br />

80%<br />

60%<br />

20%<br />

CO 2 Me CN Ph C 4 H 9<br />

95%<br />

O<br />

N<br />

OH<br />

5%<br />

OAc<br />

OAc<br />

cationic Pd complex + electron poor alkene<br />

cationic Pd complex + electron rich alkene<br />

electronic control<br />

electronic control<br />

coordination of the olefin to<br />

a cationic Pd complex results<br />

in a polarization of the C=C bond<br />

7


Regioselectivity in Migratory Insertion<br />

Intramolecular <strong>Heck</strong> <strong>Reaction</strong><br />

• regioselectivity of intramolecular <strong>Heck</strong> reactions is almost always determined by sterics<br />

exo-trig<br />

endo-trig<br />

Pd<br />

L X<br />

PdL n X<br />

Pd<br />

L X PdL n X<br />

for small rings (5, 6, or 7 carbons)<br />

exo-trig dominates<br />

for large rings / macrocycles (more than 9 carbons)<br />

endo-trig is generally preferred<br />

• disfavored regioselectivity in intermolecular <strong>Heck</strong> reactions can be<br />

realized by using a cleavable tether to furnish a desirable exo-trig product (TL 1999, 40, 4901)<br />

X<br />

I<br />

+<br />

OMe<br />

X<br />

I<br />

OMe<br />

X<br />

MeO<br />

X<br />

MeO<br />

Y<br />

OBn<br />

RO 2 C<br />

Y<br />

O<br />

O<br />

Y<br />

<strong>Heck</strong><br />

O<br />

O<br />

Y<br />

OBn<br />

CO 2 R<br />

Termination Step<br />

• after migratory insertion and before reductive elimination there are several options for transforming the<br />

organopalladium complex<br />

(1) Pd-H elimination / !-hydride elimination (this is the most common)<br />

(2) Pd-M elimination (eg. Pd-SiX 3 )<br />

(3) palladotropic shift: Ar Pd X<br />

O<br />

OMe<br />

XPd<br />

O<br />

OMe<br />

XPd<br />

O<br />

OMe<br />

Ar<br />

if Pd-H elimination is not possible because of stereochemical reasons or is very slow,<br />

Ar<br />

(4) nucleophillic attack at Pd (nucleophillic substitution or reductive elimination),<br />

which results in a net syn Ar-Nu addition across an olefin<br />

(5) cascade reactions: allylic substitution<br />

cross coupling<br />

carbonylation<br />

another <strong>Heck</strong><br />

8


!-Hydride Elimination<br />

Ph<br />

Pd<br />

L X<br />

R H<br />

Pd<br />

L<br />

X<br />

R<br />

Ph<br />

• after !-H elimination the olefin is coordinated to Pd-H, so if Pd-H is not<br />

induced to reductively eliminate readdition to the olefin may occur<br />

olefin isomerization in the product<br />

olefin isomerization in the starting material<br />

<strong>Heck</strong> product with the<br />

wrong stereochemistry<br />

• bases help to minimize olefin isomerization by promoting reductive elimination of PdH<br />

R<br />

H L<br />

Pd<br />

X<br />

Ph<br />

Ph<br />

R<br />

H<br />

Pd<br />

X<br />

L<br />

NR 3<br />

X - H + NR 3<br />

L 2 Pd(0)<br />

• halide scavengers help to minimize olefin isomerization by aiding in the reductive elimination of PdH<br />

Ph<br />

R<br />

Pd<br />

L X<br />

reinsert<br />

R<br />

H L<br />

Pd<br />

X<br />

Ph<br />

Ph<br />

R<br />

H<br />

Pd<br />

X<br />

L<br />

AgOAc<br />

Ag-X<br />

L 2 Pd(0)<br />

!-Hydride Elimination - continued<br />

• syn !-H elimination defines the E-selectivity of <strong>Heck</strong> products<br />

R<br />

Ph<br />

Pd<br />

L<br />

X<br />

migratory<br />

insertion<br />

H<br />

H<br />

Ph<br />

Pd<br />

H<br />

R<br />

L X<br />

internal<br />

rotation<br />

Ph<br />

H<br />

H<br />

Pd<br />

R<br />

H<br />

L X<br />

(sterically congested<br />

conformer)<br />

Ph<br />

H<br />

H<br />

Pd<br />

L X<br />

R<br />

H<br />

Pd<br />

L<br />

X<br />

R<br />

H<br />

Ph<br />

• a Z-selective <strong>Heck</strong> reaction can be explained by several factors:<br />

PdH induced isomerization of starting material<br />

PdH induced isomerization of product<br />

different mechanism for !-H elimination (eg. anti !-H elimination)<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!