15.11.2012 Views

Adaptation on rugged fitness landscapes - International Centre for ...

Adaptation on rugged fitness landscapes - International Centre for ...

Adaptation on rugged fitness landscapes - International Centre for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Adaptati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>rugged</strong> <strong>fitness</strong> <strong>landscapes</strong><br />

Kavita Jain<br />

Theoretical Sciences Unit & Evoluti<strong>on</strong>ary Biology Unit<br />

J. Nehru <strong>Centre</strong>, Bangalore<br />

K. Jain & S. Seetharaman, Genetics 189, 1029 (2011)<br />

K. Jain, EPL 96, 58006 (2011)


Outline<br />

A model of adaptati<strong>on</strong><br />

- has few parameters, offers a good testing ground<br />

- some theoretical predicti<strong>on</strong>s (Orr, 2002) have been experimentally verified<br />

(Rokyta et al., 2005)<br />

Our results<br />

- analytically calculate quantities of interest<br />

- make experimentally testable predicti<strong>on</strong>s


Adapt or Perish ... (H. G. Wells)<br />

A maladapted populati<strong>on</strong> will either die<br />

Antibiotic Antibiotic<br />

Fit populati<strong>on</strong> Maladapted populati<strong>on</strong> Extinct populati<strong>on</strong><br />

or acquire beneficial mutati<strong>on</strong>(s)<br />

Antibiotic Antibiotic<br />

Fit populati<strong>on</strong> Maladapted populati<strong>on</strong> Adapted populati<strong>on</strong>


Fitness <strong>landscapes</strong><br />

Fitness<br />

Local maximum<br />

Global maximum<br />

‘Genetic sequence’<br />

000<br />

100<br />

010<br />

001<br />

110 011<br />

101<br />

111<br />

Hamming space <strong>for</strong> binary<br />

sequence of lengthL = 3


Climbing the <strong>fitness</strong> landscape (Wright, 1932)<br />

Antibiotic Antibiotic<br />

Fit populati<strong>on</strong> Maladapted populati<strong>on</strong> Adapted populati<strong>on</strong>


Regimes in adaptati<strong>on</strong> dynamics (Jain & Krug, Genetics 2007)<br />

Important parametern: number of mutants produced per generati<strong>on</strong><br />

Ifn ≫ 1: polymorphic populati<strong>on</strong>, scan the whole <strong>fitness</strong> landscape quickly<br />

Populati<strong>on</strong> <strong>fitness</strong><br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Local maximum<br />

1 10 100 1000<br />

time<br />

Global maximum


Regimes in adaptati<strong>on</strong> dynamics (Jain & Krug, Genetics 2007)<br />

Ifn ≪ 1: populati<strong>on</strong> is ‘myopic’, can scan at most <strong>on</strong>e-mutant neighbors<br />

Fitness<br />

‘Sequence space’<br />

Smooth<br />

Rugged<br />

Reaches the global maximum Trapped at a local maximum<br />

In this talk: Uphill walk <strong>on</strong> maximally <strong>rugged</strong> <strong>fitness</strong> <strong>landscapes</strong>


Adaptive walk <strong>on</strong> <strong>rugged</strong> <strong>fitness</strong> <strong>landscapes</strong><br />

Populati<strong>on</strong> walks uphill until it hits a local <strong>fitness</strong> maximum<br />

Populati<strong>on</strong> <strong>fitness</strong><br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Global maximum<br />

Trapped at local maximum<br />

1 10 100 1000 10000<br />

First step in the walk is well studied (Orr 2002; Orr 2006; Joyce et al. 2008)<br />

Statistical properties of the entire walk?<br />

time


Adaptive walk (Gillespie, 1984)<br />

• Need to c<strong>on</strong>sider <strong>on</strong>lyL<strong>on</strong>e-mutant neighbors<br />

• Always walk uphill until no better <strong>fitness</strong> is available<br />

J=4<br />

J=3<br />

J=2<br />

J=1<br />

J=0<br />

<strong>on</strong>e−mutant <strong>fitness</strong><br />

• Transiti<strong>on</strong> probability∝Mutant <strong>fitness</strong>-Current <strong>fitness</strong>


Length of the adaptive walk<br />

In this talk: <strong>fitness</strong>es are independent and identically distributed<br />

Choice of <strong>fitness</strong> distributi<strong>on</strong> motivated by extreme value theory:<br />

p(f) =<br />

⎧<br />

⎪⎨<br />

(1+κf) −1+κ<br />

κ , κ < 0,f < −1/κ<br />

e<br />

⎪⎩<br />

−f , κ → 0<br />

(1+κf) −1+κ<br />

κ , κ > 0<br />

Note that mean ofp(f) is finite whenκ < 1<br />

Average number of steps to a local peak?<br />

Forκ < 1: Average walk length diverges withL<br />

Forκ > 1: Average walk length is a c<strong>on</strong>stant


Length of the adaptive walk: an argument<br />

Transiti<strong>on</strong> probabilityT(f ← h) = Lp(f)<br />

� �� �<br />

sequences with <strong>fitness</strong> f<br />

Forκ < 1: Replace �<br />

T(f ← h) =<br />

g>h<br />

�<br />

h<br />

g −hby an integral <strong>for</strong> largeL<br />

×<br />

f −h<br />

�<br />

g −h<br />

g>h<br />

(f −h)p(f)<br />

: finite <strong>for</strong> f-h∼ O(1)<br />

dg(g −h)p(g)<br />

Walk goes <strong>on</strong> indefinitely <strong>for</strong> infiniteL<br />

Forκ > 1: Replace �<br />

g>h g −hby largest term∼ Lκ &Lp(f) ∼ O(1)<br />

T(f ← h) ∼<br />

f −h<br />

L κ : finite <strong>for</strong> f-h∼ O(L κ )<br />

Since local optimum also has <strong>fitness</strong>L κ , walk terminates


Adaptive walk <strong>for</strong>κ < 1<br />

PJ(f) = Prob(<strong>fitness</strong> isf at theJth step in the walk)<br />

Recursi<strong>on</strong> equati<strong>on</strong> <strong>for</strong>PJ(f):<br />

PJ+1(f) =<br />

where<br />

J<br />

� f<br />

0<br />

dh<br />

h f<br />

(f −h)p(f)<br />

� u<br />

dg(g −h)p(g) h � �� �<br />

(1−q L (h))<br />

� �� �<br />

Prob(<strong>fitness</strong>>h available)<br />

Transiti<strong>on</strong> prob ∝ <strong>fitness</strong> gap<br />

q L (h) = Prob(n<strong>on</strong>e are better thanh) =<br />

�� h<br />

0<br />

dgp(g)<br />

�L<br />

PJ(h)


Adaptive walks are short<br />

Average walk length<br />

Average walk length ≈<br />

7<br />

6<br />

5<br />

4<br />

3<br />

• Uni<strong>for</strong>m distributi<strong>on</strong>, α=2/3<br />

• Exp<strong>on</strong>ential distributi<strong>on</strong>, α=1/2<br />

� �<br />

1−κ<br />

lnL, κ < 1<br />

2−κ<br />

10 100 1000 10000<br />

L


Entire adaptive walk: experiments (Gif<strong>for</strong>d et al., 2011)<br />

20 replicate populati<strong>on</strong>s of A. nidulans evolved <strong>for</strong>800 generati<strong>on</strong>s<br />

Fitness (growth rate) of the col<strong>on</strong>y measured<br />

For different initial c<strong>on</strong>diti<strong>on</strong>s, counted substituti<strong>on</strong>s until <strong>fitness</strong> saturated


Average walk length: experiments (Gif<strong>for</strong>d et al., 2011)<br />

(i) about2steps l<strong>on</strong>g (ii) independent of initial c<strong>on</strong>diti<strong>on</strong>s<br />

Suggestsκ > 1 in A. nidulans. This needs experimental verificati<strong>on</strong>


Summary<br />

• Described a model of adaptati<strong>on</strong>; requiresLandκ<br />

• Theoretical result <strong>on</strong> the number of steps to a local <strong>fitness</strong> peak<br />

Other results<br />

• Assumpti<strong>on</strong> of independently distributed <strong>fitness</strong>es can be relaxed<br />

• Certain distributi<strong>on</strong>s can be computed

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!