15.11.2012 Views

Integrated and Modular Systems for Commercial ... - Nonstop Systems

Integrated and Modular Systems for Commercial ... - Nonstop Systems

Integrated and Modular Systems for Commercial ... - Nonstop Systems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Integrated</strong> <strong>and</strong> <strong>Modular</strong> <strong>Systems</strong><br />

<strong>for</strong> <strong>Commercial</strong> Aviation<br />

Frank M.G. Dörenberg D renberg<br />

AlliedSignal <strong>Commercial</strong> Avionics <strong>Systems</strong><br />

Redmond, WA<br />

Presented at UCLA “<strong>Modular</strong> Avionics” short course<br />

February 3-7 1997<br />

phone: (206) 885-8489 885 8489 fax: (206) 885-2061 885 2061 e-mail: mail: :frank.doerenberg@alliedsignal.com


Personal introduction<br />

• Education:<br />

– MSEE Delft Univ. of Technology (1984)<br />

– MBA Nova Southeastern Univ. (1996)<br />

• Work:<br />

–AlliedSignal Aerospace since 1984<br />

• Principal Eng on <strong>Integrated</strong> Hazard Avoidance System program (‘96-)<br />

• Prog Mgr / Staff Eng on Be-200 Integr. Avionics program (‘94-’96)<br />

• Lead systems engineer on A330/340 SFCC program (‘89-93’)<br />

• <strong>Systems</strong> engineer on Boeing 7J7 PFCS prototype program (86-’89)<br />

• Engineer on autopilot <strong>and</strong> flight simulator program (‘84-’86)<br />

• Miscellaneous:<br />

– Private pilot


<strong>Integrated</strong> <strong>and</strong> <strong>Modular</strong> <strong>Systems</strong><br />

<strong>for</strong> <strong>Commercial</strong> Aviation<br />

Frank M.G. Dörenberg renberg<br />

phone: (425) 836-4594 836 4594 e-mail: e mail: frank.doerenberg<br />

frank. doerenberg@usa usa.net .net ©1995-1997 F.M.G. Dörenberg


Personal introduction<br />

• Education:<br />

– MSEE Delft Univ. of Technology (1984)<br />

– MBA Nova Southeastern Univ. (1996)<br />

– Enrolled in PhD/EE program at University of Washington<br />

• Work:<br />

–AlliedSignal Aerospace since 1984<br />

• Principal Eng on <strong>Integrated</strong> Hazard Avoidance System program (‘96-)<br />

• Prog Mgr / Staff Eng on Be-200 Integr. Avionics program (‘94-’96)<br />

• Lead systems engineer on A330/340 SFCC program (‘89-93’)<br />

• <strong>Systems</strong> engineer on Boeing 7J7 PFCS prototype program (86-’89)<br />

• Engineer on autopilot <strong>and</strong> flight simulator program (‘84-’86)<br />

• Miscellaneous:<br />

– Private pilot<br />

©1995-1997 F.M.G. Dörenberg<br />

2


<strong>Integrated</strong> <strong>and</strong> <strong>Modular</strong> Avionics<br />

• Introduction<br />

�� Why change avionics?<br />

• Integration<br />

• <strong>Modular</strong>ization<br />

• Future .....<br />

©1995-1997 F.M.G. Dörenberg<br />

3


Aircraft<br />

Airframe<br />

Mfrs<br />

Avionics<br />

Mfrs<br />

Global aviation system<br />

- changes must be considered in overall system context-<br />

Crew<br />

Payload<br />

Airlines &<br />

Operators<br />

<strong>Integrated</strong><br />

Aviation<br />

System<br />

Gov’t &<br />

Industry<br />

Agencies<br />

Airspace Sys.,<br />

ATC/ATM<br />

Ground & Space<br />

Infrastructure<br />

Environment<br />

- many stakeholders, requirements, constraints, competition -<br />

©1995-1997 F.M.G. Dörenberg<br />

4


Engine thrust<br />

Structure<br />

& Gear<br />

Computer/<br />

Data links<br />

Cabin air<br />

press/temp<br />

Fuel Mgt<br />

Aircraft sub-systems<br />

Flight<br />

Control<br />

Phone<br />

& fax Cabin<br />

call/PA<br />

= req’d <strong>for</strong> ops in air transport system<br />

= req’d <strong>for</strong> cargo <strong>and</strong> pax com<strong>for</strong>t/well-being<br />

Electrical<br />

power<br />

Games<br />

& video<br />

Air Data<br />

Audio<br />

video<br />

Comm/Nav<br />

Surveillance<br />

Cabin<br />

lighting<br />

Cargo/bag<br />

h<strong>and</strong>ling<br />

Galleys &<br />

water/waste<br />

©1995-1997 F.M.G. Dörenberg<br />

5


Why change avionics?<br />

• Airline/Operators’ point of view:<br />

� to increase profit potential<br />

¯ lower acquisition cost<br />

¯ reduced maintenance cost<br />

¯ profitable at reduced load factor<br />

� ROI, LCC, af<strong>for</strong>dability, payback<br />

� seat-mile economics<br />

� serviceable <strong>and</strong> flyable with minimal maint. <strong>and</strong><br />

flight crew training (inc. fleet commonality)<br />

� payload, range, route structures, fuel burn (weight &<br />

volume of equipment/wiring/installation/structure)<br />

- familiar business criteria: benefits, cost, risks, profit -<br />

cont’d →<br />

©1995-1997 F.M.G. Dörenberg<br />

6


Why change avionics?<br />

• Airline/Operators’ point of view (cont’d):<br />

� safety (e.g., CFIT, WX & Windshear Radar, TCAS)<br />

� reliability, dispatchability<br />

� deferred maint., reduced unscheduled maint.<br />

� improved BITE (fault isolation, MTBUR/MTBF)<br />

� compliance with new regulations (e.g., TCAS)<br />

� increased crew & pax com<strong>for</strong>t<br />

� goal: on-time-arrival-rate = dispatchability-rate<br />

(now: 80% vs. 98%). Currently, existing capability cannot be utilized due to ATC<br />

incompatibilities.<br />

cont’d →<br />

©1995-1997 F.M.G. Dörenberg<br />

7


Why change avionics?<br />

• Airline/Operators’ point of view (cont’d):<br />

� reduced turnaround time at gate (productivity)<br />

� to support migration towards functionally flexible<br />

a/c (configuration changes) that allows:<br />

– easy incorporation of systems changes<br />

– response to changes in operational environment<br />

� to have systems that are mature at entry into service<br />

instead of years later (esp. <strong>for</strong> early ETOPS)<br />

� to reduce the cost of future software mods<br />

©1995-1997 F.M.G. Dörenberg<br />

8


Operators seek revenue enhancement<br />

•Value-added in the areas of:<br />

� operational efficiency<br />

� economic utility<br />

<strong>and</strong> above all<br />

� safety<br />

- no new technology <strong>for</strong> its own sake -<br />

ref.: Welliver, A.D.: “Higher-order technology: Adding value to an airplane,” Boeing publ., presented to Royal Aeronautical Society, London, Nov. 1991<br />

ref.: “Is new technology friend or foe?” editorial, Aerospace World, April 1992, pp. 33-35<br />

ref.: Fitzsimmons, B.: “Better value from integrated avionics?” Interavia Aerospace World, Aug. 1993, pp. 32-36<br />

ref.: ICARUS Committee: “The dollars <strong>and</strong> sense of risk management <strong>and</strong> airline safety”, Flight Safety Digest, Dec. ‘94, pp. 1-6<br />

©1995-1997 F.M.G. Dörenberg<br />

9


Airplane Operational Effectiveness →<br />

Wright Flyer<br />

Gains from avionics technology investments<br />

Individual non-avionic technologies<br />

• aerodynamics<br />

• flight controls<br />

•structures<br />

• propulsion<br />

Avionics technologies<br />

Info integration technologies<br />

1900 1950 2000<br />

- avionics is (growing) part of the equation -<br />

10<br />

©1995-1997 F.M.G. Dörenberg


Why change avionics? (cont’d)<br />

• Authorities:<br />

� ATC & ATM<br />

� ground- & space-based infrastructure<br />

� fed & int’l (de-)regulations<br />

� safety (e.g., TCAS, smoke det.)<br />

� environment<br />

• Avionics suppliers:<br />

� customer satisfaction, one-stop-shopping<br />

� cost reduction / profitability margins<br />

� technological leadership<br />

� strategic shift from BFE (commodity) → SFE<br />

� integrate competitors’ traditional products<br />

� “integrate or die”<br />

ref.: P. Parry: “Who’ll survive in the aerospace supply sector?”, Interavia, March ‘94, pp. 22-24<br />

ref.: R. Ropelewski, M. Taverna: “What drives development of new avionics?”, Interavia, Dec. ‘94, pp. 14-18 & Jan. ‘95, pp. 17-18<br />

11<br />

©1995-1997 F.M.G. Dörenberg


Why change avionics? (cont’d)<br />

• Airframe manufacturer:<br />

� customer satisfaction, product per<strong>for</strong>mance,<br />

passenger appeal<br />

� significant cost reduction over previous<br />

generation (esp. <strong>for</strong> smaller a/c, due to seat-cost considerations; e.g. 100 pax<br />

target: $35M → $20M)<br />

� reduced cycle time:<br />

– a/c development<br />

– a/c production (e.g., equipment installation & wiring)<br />

� competition (incl. from used & stored a/c, teleconf.) cont’d →<br />

12<br />

©1995-1997 F.M.G. Dörenberg


Why change avionics? (cont’d)<br />

•Airframe manufacturer (cont’d):<br />

� more dem<strong>and</strong>ing systems characteristics:<br />

– maint. deferred <strong>for</strong> 100-200 hrs or even until C-check<br />

(fault tol., spare-in-box)<br />

– fault-tolerance transparent to application s/w<br />

– brick-wall partitioned applications<br />

– all Aps & Ops software: on-board loadable/upgradeable<br />

– 100% fault detection <strong>and</strong> complete self-test (w/o test equipment)<br />

– 95% reliability over a/c life (60k-100k hrs)<br />

- more, better, cheaper, faster -<br />

ref.: P. Parry: “Who’ll survive in the aerospace supply sector?”, Interavia, March ‘94, pp. 22-24<br />

ref.: R. Ropelewski, M. Taverna: “What drives development of new avionics?”, Interavia, Dec. ‘94, pp. 14-18 & Jan. ‘95, pp. 17-18<br />

13<br />

©1995-1997 F.M.G. Dörenberg


Why change avionics? (cont’d)<br />

• Air traffic reasons:<br />

� world/regional air traffic growth<br />

� productivity improvement: traffic<br />

volume, density, flow<br />

� maintain & enhance safety<br />

• Technical & technological reasons:<br />

� airframe or engine changes<br />

� obsolescence, new capabilities<br />

- system solutions to achieve conflict-free navigation while executing<br />

the best per<strong>for</strong>mance flight-plan, moderated by passenger com<strong>for</strong>t -<br />

14<br />

©1995-1997 F.M.G. Dörenberg


Avionics business<br />

• high-tech but low volume<br />

• typ. ½-life time frames:<br />

� airframe: 25 years<br />

� electronics: 2 years<br />

� data buses: 10-15 years<br />

� HOL: ?<br />

- aircraft life-cycle: initial development, production run,<br />

through a/c lifespan after last one delivered -<br />

15<br />

©1995-1997 F.M.G. Dörenberg


Changing airtransport environment<br />

• (total) c o s t i s p a r a m o u n t<br />

• emerging markets<br />

• airlines (still) show cumulative net loss (carriers gradually<br />

returning to fin. health; ‘95 global airline operating profits $6B vs. ‘92 loss of $2B)<br />

• airline mergers, alliances, bankruptcies<br />

• airlines seek revenue enhancement <strong>and</strong> cost reductions<br />

• increasing airtraffic volume, delays<br />

• FANS/“free flight”: increased capacity, reduced<br />

separation, same or better safety<br />

• airlines & airframers want RC↓, <strong>for</strong>cing suppliers’ NRC↑<br />

• no real competition yet from video/teleconf. (biz travel)<br />

- airplanes are a commodity in rising cost environment -<br />

16<br />

©1995-1997 F.M.G. Dörenberg


Changing airtransport environment<br />

10<br />

Index 100<br />

≈ +5-6% p.a.<br />

Productivity<br />

DOC<br />

Revenue/Expense ratio<br />

Yield<br />

0<br />

1960 65 70 75 80 85 90<br />

- airline per<strong>for</strong>mance trends -<br />

ref.: Airline Business, January 1996, p. 29<br />

ref.: A. Smith: “Cost <strong>and</strong> benefits of implementing the new CNS/ATM systems”, ICAO Journal, Jan/Feb ‘96, pp. 12-15, 24<br />

≈ -2.5-2.9% p.a.<br />

17<br />

©1995-1997 F.M.G. Dörenberg


Scheduled pax (millions)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Scheduled passenger traffic trends<br />

1990<br />

- World air traffic growth<br />

outpaces economic growth -<br />

1991<br />

1992<br />

1993<br />

≈ +5%/year<br />

1994<br />

1995<br />

ref.: Flight International, 3-9 January 1996, p. 27,28<br />

ref.: Boeing CAG Current Market Outlook 1995<br />

ref.: K. O’Toole: “Cycles in the sky”, Flight Int’l, 3-9 July 1996, p. 24<br />

ref.: “IATA raises five-year passenger <strong>for</strong>ecast”, Flight Int’l, 6-12 Nov 1996, p. 8<br />

Domestic<br />

1996<br />

1997<br />

≈ +7%/year<br />

1998<br />

1999<br />

Σ =1.7 B<br />

International<br />

2000<br />

- world fleet is <strong>for</strong>ecast to<br />

double over 20 years -<br />

(by 2015: ≈ 20,000 * > 50 seats )<br />

* ex CIS & Baltic states<br />

≈ +6%/year<br />

2005<br />

18<br />

©1995-1997 F.M.G. Dörenberg


5000<br />

Pax-km (billions, log-scale)<br />

1000<br />

300<br />

Scheduled-passenger <strong>and</strong> freight traffic - steady growth<br />

Passengers<br />

Freight<br />

Most likely (5.5% p.a.)<br />

Most likely (7% p.a.)<br />

ACTUAL ICAO FORECAST<br />

1985 1995 2005<br />

- potential <strong>for</strong> airspace <strong>and</strong> airport congestion -<br />

500<br />

Tonne-km (billions, log-scale)<br />

100<br />

30<br />

19<br />

©1995-1997 F.M.G. Dörenberg


Changing airtransport environment<br />

North America<br />

Intra Asia Pacific<br />

Intra Europe<br />

Trans Pacific<br />

North Atlantic<br />

Asia-Europe<br />

CIS Domestic<br />

No. Amer.-Lat. Amer.<br />

Europe-Lat. Amer.<br />

Europe-Africa<br />

Latin America<br />

CIS International<br />

source: Boeing CAG Current Market Outlook 1995<br />

1994 traffic<br />

Growth 1995-2014<br />

RPMs, billions<br />

0 200 400 600 800 1,000<br />

20<br />

©1995-1997 F.M.G. Dörenberg


Billions of 1995 US $<br />

80<br />

60<br />

40<br />

20<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

<strong>Commercial</strong> aircraft sector - on the rebound<br />

Source: The Boeing Co.<br />

Average annual new aircraft investments (world fleet)<br />

‘71-’75 ‘76-’80 ‘81-’85 ‘86-’90 ‘91-’95 ‘96-’00 ‘01-’05 ‘06-’10 ‘11-’15<br />

Air transport annual deliveries<br />

Other<br />

McDonnell Douglas<br />

Airbus<br />

Boeing<br />

Source: Lehman Bros.<br />

0<br />

1958‘60‘62‘64‘66‘68‘70‘72‘74‘76‘78‘80‘82‘84‘86‘88‘90‘92‘94‘96‘98‘00‘02<br />

ref.: A.L. Velocci: “Restraint, Airline health key to stable rebound”, AW&ST, Nov. 25 1996, pp. 36-38<br />

ref.: P. Sparaco: “Airbus plans increased production rate”, AW&ST, Nov. 15 1996, pp. 48-50<br />

Percentage retired<br />

Number of aircraft<br />

100<br />

75<br />

50<br />

25<br />

0<br />

1,000<br />

750<br />

500<br />

250<br />

0<br />

20<br />

Retirement of aircraft<br />

Source: GE Capital Aviation Services<br />

25<br />

Age in years<br />

30 35<br />

Source: GE Capital Aviation Services<br />

Serviceable a/c available <strong>for</strong> sale or lease<br />

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997<br />

21<br />

©1995-1997 F.M.G. Dörenberg


crew<br />

fuel maint.<br />

ownership<br />

Euro-regionals: ≈ 50% of DOC is beyond<br />

control of owner/operator (fees <strong>for</strong><br />

l<strong>and</strong>ing /ATC/ground-h<strong>and</strong>ling + fuel)<br />

Direct Operating Cost<br />

12-15%<br />

ref.: P. Condom: “Is outsourcing the winning solution?”, Interavia Aerospace World, Aug. ‘93, pp. 34-<br />

36<br />

ref.: 1992 ATA study of U.S. airlines<br />

10-15%<br />

avionics & flight contr.<br />

1/3<br />

systems<br />

22<br />

©1995-1997 F.M.G. Dörenberg


24%<br />

23%<br />

23% 30%<br />

737-300<br />

($1834/hr)<br />

16% 31%<br />

28%<br />

747-200/300<br />

($7611/hr)<br />

25%<br />

25%<br />

40%<br />

25%<br />

A320<br />

($4530/hr)<br />

11%<br />

27%<br />

32%<br />

27%<br />

Direct Operating Cost<br />

30%<br />

36%<br />

737-400<br />

($1797/hr)<br />

20%<br />

17%<br />

31%<br />

747-400<br />

($6673/hr)<br />

17%<br />

45%<br />

($3802/hr)<br />

8%<br />

11%<br />

A300-600<br />

26%<br />

24%<br />

25% 26%<br />

737-500<br />

($1607/hr)<br />

20% 25%<br />

34%<br />

DC-10-30<br />

($4306/hr)<br />

25%<br />

36%<br />

25%<br />

25%<br />

14%<br />

L-1011-1/200<br />

($3799/hr)<br />

38%<br />

14%<br />

20% 28%<br />

Fokker-100<br />

($1661/hr)<br />

27%<br />

27%<br />

27%<br />

MD-80<br />

($1825/hr)<br />

ref.: Air Transport World, Jan-May 1995<br />

ref.: “The guide to airline costs”, Aircraft Technology Engineering & Maintenance, Oct/Nov 1995, pp. 50-58<br />

19%<br />

l<strong>and</strong>ing fees etc<br />

pax services,<br />

promo,<br />

ticketing/sales<br />

G&A<br />

29%<br />

4<br />

27%<br />

DC-9-30<br />

($1612/hr)<br />

12<br />

%<br />

33%<br />

27%<br />

MD-11<br />

($4530/hr)<br />

12<br />

%<br />

11%<br />

20%<br />

15%<br />

31%<br />

34%<br />

7<br />

11%<br />

27%<br />

Worldwide airlines<br />

avg costs (1993)<br />

fuel & oil<br />

crew<br />

maint. & o'haul<br />

ownership<br />

(insurance,<br />

possession,etc.)<br />

U.S. major carriers<br />

all items in U.S.$<br />

per block hour<br />

year ending Sept. 31,'94<br />

23<br />

©1995-1997 F.M.G. Dörenberg


Aircraft<br />

Type/model<br />

B747-400<br />

B747-100<br />

L-1011<br />

DC-10-10<br />

A300-600<br />

MD-11<br />

DC-10-30<br />

B767-300ER<br />

B757-200<br />

B767-200ER<br />

A320-100/200<br />

B727-200<br />

B737-400<br />

MD-80<br />

B737-300<br />

DC-9-50<br />

B737-500<br />

B737-100/200<br />

DC-9-30<br />

F-100<br />

DC-9-10<br />

Aircraft operating statistics<br />

Number of<br />

Seats<br />

398<br />

390<br />

288<br />

281<br />

266<br />

254<br />

248<br />

221<br />

186<br />

185<br />

149<br />

148<br />

144<br />

141<br />

131<br />

124<br />

113<br />

112<br />

100<br />

97<br />

72<br />

ref.: ATA “Aircraft operating statistics - 1993”, http://www.air-transport.org<br />

Speed<br />

Airborne<br />

553<br />

520<br />

496<br />

492<br />

473<br />

524<br />

520<br />

493<br />

457<br />

483<br />

445<br />

430<br />

406<br />

422<br />

414<br />

369<br />

408<br />

387<br />

383<br />

366<br />

381<br />

Flight<br />

Length<br />

4,331<br />

3,060<br />

1,498<br />

1,493<br />

1,207<br />

3,459<br />

2,947<br />

2,285<br />

1,086<br />

2,031<br />

974<br />

686<br />

615<br />

696<br />

613<br />

320<br />

532<br />

437<br />

447<br />

409<br />

439<br />

all numbers are average<br />

Fuel<br />

gph<br />

3,356<br />

3,490<br />

2,384<br />

2,229<br />

1,938<br />

2,232<br />

2,612<br />

1,549<br />

1,004<br />

1,392<br />

771<br />

1,251<br />

775<br />

891<br />

748<br />

893<br />

708<br />

800<br />

798<br />

737<br />

740<br />

Operating<br />

Cost per hr<br />

$6,939<br />

5,396<br />

4,564<br />

4,261<br />

4,332<br />

4,570<br />

4,816<br />

3,251<br />

2,303<br />

3,012<br />

1,816<br />

2,222<br />

1,779<br />

1,793<br />

1,818<br />

1,901<br />

1,594<br />

1,757<br />

1,690<br />

1,681<br />

1,332<br />

24<br />

©1995-1997 F.M.G. Dörenberg


Big $ numbers<br />

life-time maintenance cost (ROM), example:<br />

ref.: Air Transport World, Jan-May 1995<br />

• maintenance ≈ $1200/block hour<br />

• airplane life-time ≈ 60 + k hours<br />

• maintenance-over-life ≈ $75 million<br />

- Boeing 747-400 -<br />

25<br />

©1995-1997 F.M.G. Dörenberg


Fact:<br />

Life Cycle Cost* (LCC)<br />

•inflation corrected price-tag of airplanes<br />

has increased over the years**<br />

•not completely offset by simultaneous<br />

reduction in DOC<br />

New systems & technology can only be<br />

justified if they:<br />

•take cost out of the airplane<br />

•reduce DOC<br />

•increase revenue<br />

* Net Present Value (NPV) of cost & benefit $-flows<br />

** contrary to e.g. consumer electronics<br />

26<br />

©1995-1997 F.M.G. Dörenberg


Save now <strong>and</strong> save later<br />

• increased reliability<br />

• reduced size, weight, power consumption, cooling<br />

• reduced development <strong>and</strong> production time/cost<br />

• easily upgraded/updated to new engine or airframe<br />

• easily upgraded/updated to new ATC environment<br />

• reduced crew workload<br />

• contribute to on-time departure <strong>and</strong> arrival<br />

• support accurate <strong>and</strong> simple diagnostics (w.o external test eq.)<br />

• as common as possible fleet-wide <strong>for</strong> different aircraft<br />

• mature systems at entry-into-service (esp. <strong>for</strong> ETOPS out-of-thebox)<br />

ref.: C.T. Leonard: “How mechanical engineering issues affect avionics design”, Proc. IEEE NAECON, Dayton, OH, ‘89, pp. 2043-2049<br />

27<br />

©1995-1997 F.M.G. Dörenberg


Airlines’ primary product is reliable<br />

scheduled revenue service<br />

Schedule deviations are expensive:<br />

•departure delays (up to $10k / hour)<br />

•flight cancellation (up to $50k)<br />

•in-flight diversion (up to $45k)<br />

•in terms of pax perception: incalculable<br />

- 50% of delays/cancellations caused by improper maintenance -<br />

(other causes: equipment, crew, ATC*, WX, procedures, etc.)<br />

ref.: <strong>Commercial</strong> Airline Revenue Study by GE Aircraft Engines (Jan. ‘88 - Jan. ‘92)<br />

ref.: B. Rankin, J. Allen: “Maintenance Error Decision Aid”, Boeing Airliner, April-June ‘96, pp. 20-27<br />

* mid ‘90s cost to airlines in Eu due to<br />

ATC delays est. at $1.9-2.5B p.a.<br />

28<br />

©1995-1997 F.M.G. Dörenberg


Average schedule deviation costs<br />

departure delays ($/hr)<br />

flight cancellation<br />

turn-back<br />

in-flight diversion<br />

ref.: BCAG 1993 Customer Cost Benefit Model<br />

- examples -<br />

B737<br />

$ 2k5<br />

$ 7k6<br />

$ 5k9<br />

$ 7k6<br />

B757<br />

$ 5k0<br />

$ 14k9<br />

$ 10k9<br />

$ 12k8<br />

B767<br />

$ 6k3<br />

$ 18k9<br />

$ 13k8<br />

$ 16k1<br />

B747-400<br />

$ 9k3<br />

$ 37k2<br />

$ 22k6<br />

$ 28k7<br />

29<br />

©1995-1997 F.M.G. Dörenberg


Boeing 777 Development Cost<br />

<strong>Systems</strong><br />

Structures<br />

28 %<br />

47 %<br />

(engineering & labs)<br />

5 %<br />

7 %<br />

Aero<br />

6 %<br />

7 %<br />

Misc.<br />

Payloads<br />

Propulsion<br />

ref.: P. Gartz, “<strong>Systems</strong> Engineering,” tutorial at 13th DASC, Phoenix /AZ, Oct. ‘94, & 14th DASC, Boston/MA, Nov. ‘95<br />

ref.: C. Spitzer, “Digital Avionics - an International Perspective,” IEEE AES Magazine, Vol. 27, No. 1, Jan. ‘92, pp. 44-45<br />

Dev.<br />

+ V&V<br />

Development<br />

Hardware<br />

≈ 30%<br />

½ ½<br />

V&V<br />

Software<br />

≈ 70%<br />

30<br />

©1995-1997 F.M.G. Dörenberg


<strong>Integrated</strong> <strong>Modular</strong> Avionics Architectures<br />

- more than just a “cabinet solution” -<br />

• Integration<br />

• <strong>Modular</strong>ization<br />

• St<strong>and</strong>ardization<br />

- all are key attributes of partitioning -<br />

ref: Robinson, T.H., Farmer, R., Trujillo, E.: “<strong>Integrated</strong> Processing,” presented at 14th DASC, Boston/MA, Nov. 1995<br />

ref.: L.J. Yount, K.A. Liebel, B.H. Hill: “Fault effect protection <strong>and</strong> partitioning <strong>for</strong> fly-by-wire/fly-by-light avionics systems”,<br />

Proc. 5th AIAA/IEEE Computers in Aerospace Conf., Long Beach/CA, ‘85, 10 pp.<br />

31<br />

©1995-1997 F.M.G. Dörenberg


Dependability Taxonomy<br />

Attributes Means Impairments<br />

Safety<br />

Reliability<br />

Dispatchability<br />

Maintainability<br />

Integrity<br />

Dependability<br />

Fault avoidance<br />

Fault tolerance<br />

Fault removal<br />

Fault <strong>for</strong>ecasting<br />

Faults<br />

Errors<br />

Failures<br />

- dependability: degree of justifyable reliance that can placed<br />

on a system’s delivery of correct <strong>and</strong> timely service -<br />

ref.: Int’l Federation of In<strong>for</strong>mation Processing Working Group on Dependable Computing & Fault Tolerance (IFIP WG 10.4)<br />

ref.: Prasad, D., McDermid, J., W<strong>and</strong>, I.: “Dependability terminology: similarities <strong>and</strong> differences”, IEEE AES <strong>Systems</strong> Magazine, Jan. ‘96, pp. 14-20<br />

ref.: F.J. Redmill (ed.): “Dependability of critical computer systems - 1”, 1988, 292 pp., Elsevier Publ., ISBN 1-85166-203-0<br />

ref.: A. Avizienis, J.-C. Laprie: “Dependable computing: from concepts to design diversity”, Proc. of the IEEE, Vol. 74, No. 5, May ‘86, pp. 629-638<br />

32<br />

©1995-1997 F.M.G. Dörenberg


Fault Avoidance<br />

- prevent (by construction) faults from entering into, developing in,<br />

or propagating through the system -<br />

• controlled, disciplined, consistent Sys. Eng. process<br />

• simplicity, testability, etc.<br />

• reduced parts count, interconnects & interfaces (integrate!)<br />

• st<strong>and</strong>ards, analyses, simulations, lessons-learned, V&V<br />

• partitioning (<strong>for</strong> fault containment & isolation, cert., etc.)<br />

• shielding, grounding, bonding, filtering<br />

• controlled operating environment (cooling, heatsinks, etc.)<br />

• properly select, h<strong>and</strong>le, screen, <strong>and</strong> de-rate parts<br />

• test<br />

• human factors<br />

• zero-tolerance <strong>for</strong> patch work in req’s & design<br />

• etc., etc.<br />

- must address entire product life-cycle: from inception through disposal -<br />

33<br />

©1995-1997 F.M.G. Dörenberg


Fault Tolerance<br />

- the ability of a system to sustain one or more specified faults<br />

in a way that is transparent to the operating environment -<br />

• achieved by adding & managing redundancy: one or<br />

more alternate means to per<strong>for</strong>m a particular function<br />

or flight operation<br />

• goal: only independent, multiple faults <strong>and</strong> design<br />

errors remain as reasonably possible causes of<br />

catastrophic failure conditions<br />

• fail-passive, fail-safe, fail-active are fail-intolerant<br />

• “fault tolerant” does not imply “highly dependable”,<br />

“fault free”, “ignorance tolerant”, or “full/fool proof”<br />

ref.: J.H. Lala, R. Harper: “Architectural principles <strong>for</strong> safety-critical real-time applications”, Proc. of the IEEE, Vol. 82, No. 1, Jan. ‘94, pp. 25-40<br />

ref.: D.P. Siewiorek, R.S. Swarz (eds.): “Reliable Computer <strong>Systems</strong>”, 2nd ed., Digital Press, ‘92, 908 pp., ISBN 1-55558-075-0<br />

ref.: M.R. Lyu (ed.): “Software fault tolerance”, Wiley & Sons, ‘95, 337 pp., ISBN 0-471-95068-8<br />

ref.: F.J. Redmill: “Dependability of critical computer systems - 1”, ITP Publ., ‘88, 292 pp., ISBN 1-85166-203-0<br />

ref.: B.W. Johnson: “Design <strong>and</strong> Analysis of fault tolerant systems”, Addison-Wesley, ‘89, 584 pp., ISBN 0-201-07570-9<br />

ref.: “25th Anniversary Compendium of Papers from Symposium on Fault Tolerant Computing”, IEEE Comp. Society Press, ‘96, 300 pp., ISBN 0-8186-7150-5<br />

ref.: J.C. Laprie, J. Arlat, C. Beounes, K. Kanoun, C. Hourtolle: “Hardware- <strong>and</strong> software-fault tolerance: definition <strong>and</strong> analysis of architectural solutions”, Proc. 17th<br />

Symp. on Fault Tolerant Computing, Pittsburg/PA, July ‘87, pp. 116-121


Fault Tolerance Taxonomy<br />

Fault Tolerance<br />

Redundancy<br />

• physical<br />

• temporal<br />

• data<br />

Redundancy Management<br />

Static (Fault Masking) Dynamic<br />

No fault reaction:<br />

• no fault detection<br />

• no reconfiguration<br />

Fault detection<br />

Examples of techniques: Examples of techniques:<br />

•interwoven<br />

logic<br />

• comparison (cross, voter, wrap-around)<br />

•hardwired<br />

multiple hardware • reasonableness check (rate, range, cross)<br />

redundancy<br />

• task execution monitor (a.k.a. Watch Dog)<br />

•error<br />

correcting code • checksum, parity, error detection code<br />

•majority<br />

voting (N-modular • diagnostic <strong>and</strong> built-in tests<br />

redundancy)<br />

Active<br />

• Similar<br />

• Dissimilar<br />

• adaptive voting & signal select<br />

• dynamic task reallocation<br />

• graceful degradation<br />

• n-parallel, k-out-of-n<br />

• s/w recovery (retry, rollback)<br />

• operational-mode switching<br />

Fault isolation &<br />

Reconfiguration<br />

St<strong>and</strong>by<br />

Examples of techniques: Examples of techniques:<br />

Hybrid<br />

Example of techniques:<br />

• pooled spares<br />

switch-in backup spare(s)<br />

• operating (hot, shadow)<br />

• non-operating (cold, flexed)<br />

35<br />

©1995-1997 F.M.G. Dörenberg


Fault Classifications<br />

- fault tolerance approach is driven by the number & classes of faults<br />

to protect against, as well as by criticality <strong>and</strong> risk-exposure -<br />

Criteria Fault type<br />

Activity<br />

Duration<br />

Perception<br />

Cause<br />

Intent<br />

Count<br />

Time (multiple faults)<br />

Cause (multiple faults)<br />

Latent vs. active<br />

Transient vs. permanent<br />

Symmetric vs. asymmetric<br />

R<strong>and</strong>om vs. generic<br />

Benign vs. malicious<br />

Single vs. multiple<br />

(Near-) Coincident vs. Distinct<br />

Independent vs. common-mode<br />

“Nothing in nature is r<strong>and</strong>om ... A thing appears r<strong>and</strong>om only through the<br />

incompleteness of our knowledge” -- Spinoza, Dutch philosopher 1632-1677<br />

ref.: N. Suri, C.J. Walter, M.M. Hugue (eds.): “Advances in ultra-reliable distributed systems”, IEEE Comp. Society Press, ‘95, 476 pp., ISBN 0-8186-6287<br />

36<br />

©1995-1997 F.M.G. Dörenberg


Redundancy<br />

• Attributes:<br />

� <strong>for</strong>m (physical, temporal, per<strong>for</strong>mance, data,<br />

analytical)<br />

� similarity/diversity*<br />

� level of replication<br />

� physical distribution within a/c<br />

� allocation along end-to-end path<br />

� configuration (grouping & interconnects)<br />

� redundancy management concept (static, dynamic)<br />

- more resources that required <strong>for</strong> fault-free single-thread operation -<br />

* Notes:<br />

- dissimilarity’s power is based on assumption that it makes simultaneous common-mode (generic) faults extremely improbable<br />

- dissimilarity does not reduce the probability of simultaneous r<strong>and</strong>om faults<br />

- dissimilarity provides little advantage against common-mode environmental faults (EMI, temp/vibe, power)<br />

- dissimilarity allows shift away from proving absence of generic faults, to demonstrating ability to survive them (cert. level!)<br />

- dissimilarity of design drives source of faults back to (common) requirements <strong>and</strong> system architecture<br />

- dissimilarity is fault avoidance tool, as long as independence is not compromised when fixing ambiguities or divergence<br />

37<br />

©1995-1997 F.M.G. Dörenberg


Higher reliability<br />

- will it make a difference in airline maintenance? -<br />

• frequent cause of maintenance today is not avionics LRUs, but<br />

interconnects, sensors <strong>and</strong> actuators (as much as 60%)<br />

• improving MTBUR* more important than increasing MTBF (goal:<br />

MTBUR/MTBF ratio ½ → 1)<br />

• complete system <strong>for</strong>ms a chain: high-rel is required at system level,<br />

not just at “box” level<br />

• MTBF & MTBUR ↑↑ may lead to “Avionics By The Hour”:<br />

� concept: operator leases equipment, only pays <strong>for</strong> actual hours flown<br />

� avionics mfr needs this too: sells fewer spares ⇒ (much) less profit<br />

- keep the good part on the plane -<br />

ref.: P. Seidenman, D. Spanovich: “Building a Better Black Box”, Aviation Equipment Maintenance, Feb. ‘95, pp. 34-36<br />

ref.: D. Galler, G. Slenski: "Causes of Electrical Failures," IEEE AES <strong>Systems</strong> Magazine, August 1991, pp. 3-8<br />

ref.: M. Pecht (ed.): “Product reliability, maintainability. <strong>and</strong> supportability h<strong>and</strong>book”, CRC Press, ‘95, 413 pp., ISBN 0-8493-9457-0<br />

ref.: M. Doring: “Measuring the cost of dependability”, Boeing Airliner Magazine, Jul-Sep ‘94, pp. 21-25<br />

* unit pulls on maintenance alert only, not<br />

to rotate/canibalize/swap within a fleet<br />

38<br />

©1995-1997 F.M.G. Dörenberg


Basic ways to increase system reliability<br />

• higher intrinsic reliability (components)<br />

• fault avoidance (entire life-cycle)<br />

• fault tolerance<br />

� redundant architecture*<br />

� reconfigurable architecture (LRU failure typ. only involves single component)<br />

� at box level → module level → chip level (with full BIT on-die)<br />

• integration:<br />

� reduce on-board & off-board interconnects: weakest link in<br />

the reliability chain<br />

� share resources (reduce duplication)<br />

* redundancy may increase availability, but at<br />

same time increases prob. that redundant<br />

copies are inconsistent/diverge<br />

- towards reliability of the wiring (exc. connectors) -<br />

39<br />

©1995-1997 F.M.G. Dörenberg


1<br />

System<br />

Reliability<br />

λunit = 5x10-5 Example:<br />

/h<br />

MTBFunit = 20,000 hrs<br />

N-Parallel Redundancy<br />

0.5<br />

0<br />

20k<br />

(=MTBF)<br />

40k<br />

Operating<br />

time (hrs) 100k<br />

15<br />

- brute <strong>for</strong>ce: inefficient to achieve very high system reliability - 40 37<br />

10<br />

5<br />

Number of redundant units<br />

3<br />

0.5<br />

1<br />

©1995-1997 F.M.G. Dörenberg


1<br />

System<br />

Reliability<br />

λunit = 5x10-5 Example:<br />

/h<br />

MTBFunit = 20,000 hrs<br />

N-Parallel Redundancy<br />

0.5<br />

0<br />

20k<br />

(=MTBF)<br />

40k<br />

Operating<br />

time (hrs) 100k<br />

15<br />

- goals: low cost & low redundancy but high rel. & safety - 41 38<br />

10<br />

5<br />

60k<br />

Number of redundant units<br />

3<br />

Desired<br />

region<br />

0.5<br />

100k<br />

1<br />

0.9 - 0.95<br />

©1995-1997 F.M.G. Dörenberg


MTTF n-parallel ∝ ln(n) x MTTF unit<br />

=<br />

MTTF n<br />

MTTF 1<br />

MTTF as function of redundancy level<br />

3<br />

2<br />

1<br />

from n=1 2<br />

practical limit<br />

1 5 10 15 0<br />

- diminishing returns -<br />

(curves do not account <strong>for</strong><br />

rel. penalty of complexity)<br />

Number of<br />

Parallel units<br />

0.5<br />

=∆ MTTF<br />

42<br />

©1995-1997 F.M.G. Dörenberg


Note: log-log scale<br />

F (t)<br />

2-out-of-N<br />

(t)<br />

F 2-out-of-2<br />

Parallel redundancy <strong>for</strong> system reliability<br />

0<br />

10 = 1<br />

-1<br />

10<br />

-2<br />

10<br />

-3<br />

10<br />

-4<br />

10<br />

-5<br />

10<br />

-6<br />

10<br />

-7<br />

10<br />

N=2<br />

N=4<br />

N=3<br />

F2-out-of-2 = 1<br />

F<br />

2-out-of-2<br />

0.001 0.01 0.1 1.0 10<br />

- adding redundancy is only effective <strong>for</strong> t


Redundancy<br />

Note: curves are <strong>for</strong> fail-passive configs, except those shown <strong>for</strong> simplex, cube, <strong>and</strong> n-parallel<br />

1.0<br />

R config(t)<br />

0.5<br />

1/e<br />

0<br />

dual<br />

dual-dual<br />

quad<br />

t =MTTFunit<br />

1<br />

dual-triplex<br />

triplex<br />

dual-quad<br />

2<br />

- fault-tolerant configs exhibit<br />

s-curve reliability -<br />

t<br />

MTTF unit<br />

3<br />

= MTTF<br />

cube<br />

4-parallel<br />

3-parallel<br />

2-parallel<br />

simplex<br />

44<br />

©1995-1997 F.M.G. Dörenberg


System architecture <strong>and</strong> design decisions ........<br />

MOTHER GOOSE & GRIMM<br />

45<br />

©1995-1997 F.M.G. Dörenberg


1.0<br />

R config(t)<br />

0.5<br />

1/e<br />

0<br />

dual<br />

dual-dual<br />

quad<br />

t =MTTFunit<br />

Redundancy<br />

1<br />

dual-triplex<br />

triplex<br />

dual-quad<br />

2<br />

- redundancy <strong>for</strong> fault-tolerance<br />

<strong>and</strong> extended system reliability -<br />

region of<br />

practical use<br />

t<br />

MTTF unit<br />

3<br />

= MTTF<br />

cube<br />

4-parallel<br />

3-parallel<br />

2-parallel<br />

simplex<br />

46<br />

©1995-1997 F.M.G. Dörenberg


1.0<br />

Rconfig(t)<br />

0.9<br />

0.8<br />

dual<br />

Redundancy<br />

2-p<br />

simplex<br />

triplex<br />

dual-dual<br />

quad<br />

3-p<br />

dual-triple<br />

cube<br />

4-p<br />

dual-quad<br />

0.5 1.0<br />

MTTFunit<br />

- region of practical use, enlarged -<br />

t<br />

47<br />

©1995-1997 F.M.G. Dörenberg


Relative MTTF of various configurations<br />

Simplex<br />

Dual<br />

Triplex<br />

Quad<br />

Dual-Dual<br />

Dual-Triplex<br />

Dual-Quad<br />

Triple-Dual<br />

Quad-Dual<br />

Triple-Triple<br />

2-Parallel<br />

3-Parallel<br />

4-Parallel<br />

Cube<br />

note: MTTFs solely based on time-integration of reliability funct., <strong>and</strong> do not reflect system complexity; Markov analysis may give different result.<br />

48<br />

©1995-1997 F.M.G. Dörenberg


Simplex<br />

Dual<br />

Triplex<br />

Quad<br />

Dual-Dual<br />

Dual-Triplex<br />

Dual-Quad<br />

Triple-Dual<br />

Quad-Dual<br />

Triple-Triple<br />

2-Parallel<br />

3-Parallel<br />

4-Parallel<br />

Cube<br />

Mission times of several configurations<br />

Time-to-R= 0.997 Time-to-R= 0.95 Time-to-R= 0.5 (Median TTF)<br />

49<br />

©1995-1997 F.M.G. Dörenberg


note: output wraparounds not shown<br />

“Cube” configuration concept<br />

λ 1 λ 1 λ 1 λ b<br />

λ a λ a λ a<br />

λ b<br />

λ c λ c λ c<br />

3-parallel “cube”<br />

increased number of<br />

paths through the system<br />

λ b<br />

λ a<br />

λ b<br />

λ a<br />

λ c λ c λ c<br />

“optimized cube”<br />

if no single-thread ops., then<br />

don’t need 3 output modules<br />

- use resources more efficiently: do not discard entire lane if only part fails -<br />

ref.: M. Lambert: “Maintenance-free avionics offered to airlines”, Interavia, Oct. ‘88, pp. 1088-<br />

λ b<br />

λ b<br />

50<br />

©1995-1997 F.M.G. Dörenberg


Integration is necessary because....<br />

• Increase operational effectiveness via integration of<br />

in<strong>for</strong>mation (e.g., safety)<br />

• Must work smarter, not harder:<br />

– system reliability increases only slowly as redundancy level increases:<br />

∝ ln(n)<br />

– above n = 3, adding redundancy is not effective<br />

– “brute <strong>for</strong>ce” will not get us there<br />

• Unit-reliability is more powerful than redundancy<br />

level in achieving high system reliability<br />

- Fit-<strong>and</strong>-<strong>for</strong>get system reliability (based on conventional redundancy)<br />

implies units with reliability of today’s components (λ ≈ 10 -7 /h) −<br />

51<br />

©1995-1997 F.M.G. Dörenberg


Integration of what?<br />

• hardware, software, mechanical elements<br />

• data buses, RF apertures<br />

• related, interacting, closely associated, similar functions<br />

& controls (reduce duplication)<br />

• distributed in<strong>for</strong>mation<br />

� e.g., fusion <strong>for</strong> more meaningful pilot info (“smart alerting”, EMACS)<br />

� e.g., improve per<strong>for</strong>mance (flight + thrust control, ECS)<br />

• displays, controls, LRUs (esp. single-thread)<br />

• BIT<br />

� increase fault isolation accuracy<br />

� reduce NFF/CND/RETOK* from 50% to < 10%<br />

• organizations, people<br />

• entire aviation system<br />

ref.: P. Gartz: “Trends in Avionics <strong>Systems</strong> Architecture”, presented at the 9th DASC, Virginia Beach/VA, Oct. ‘90, 23 pp.<br />

ref.: Avionics <strong>Systems</strong> Eng. & Maint. Committee (ASEMC) of the Air Transport Ass’n (ATA)<br />

ref.: Avionics Magazine, Feb. 1996, p. 12<br />

* ATA est. NFF cost to US airline<br />

industry ≈ $100M p.a., avg $800 per<br />

removal (labor, shipping, sparing)<br />

52<br />

©1995-1997 F.M.G. Dörenberg


Integration trend: Multi-Mode Receiver (MMR)<br />

• ICAO philosophy change (Comm/Ops meeting,<br />

Montreal ‘95):<br />

� from: single-system (e.g., VOR/DME) st<strong>and</strong>ard,<br />

ensuring int’l uni<strong>for</strong>mity & compatibility<br />

� to: st<strong>and</strong>ardizing on 3 quite different approach<br />

aids (ILS, MLS, GNSS*)<br />

� so: CAAs, airports, operators free to choose one<br />

or more<br />

� <strong>and</strong>: world aviation authorities should promote<br />

the use of Multi-Mode Receivers (MMRs) or<br />

equivalent avionics<br />

* ICAO: GNSS > GPS (e.g., GNS+GLONASS,<br />

to ensure complete redundancy, esp. in l<strong>and</strong>ing ops.)<br />

ref.: W. Reynish: “Three systems, One st<strong>and</strong>ard?”, Avionics Magazine, Sept. ‘95, pp. 26-28<br />

ref.: D. Hughes: “USAF, GEC-Marconi test ILS/MLS/GPS receiver”, AW&ST, Dec. 4 ‘95, pp. 96<br />

ref.: R.S. Prill, R. Minarik: “Programmable digital radio common module prototypr”, Proc. 13th DASC, Phoenix/AZ, Nov. ‘94, pp. 563-567<br />

53<br />

ref.: ARINC-754/755 (analog/digital MMR), ARINC-756 (GNLU)<br />

©1995-1997 F.M.G. Dörenberg


LRUs<br />

Integration trend<br />

FMGD<br />

System<br />

On<br />

Chip<br />

1970s 1980s 1990s 2000-2010<br />

-2<br />

-4<br />

-5<br />

λ ~10 λ ~10<br />

total<br />

total<br />

λ ~ 2x10<br />

total<br />

λ total<br />

point-to-point analog<br />

interconnect<br />

single-thread systems<br />

ARINC-429 digital<br />

interconnect<br />

single-thread LRUs<br />

ARINC-629 digital data<br />

bus between LRUs<br />

ARINC-659 backplane<br />

bus between LRMs<br />

fault tolerant LRUs<br />

high-speed fiber optic<br />

comm. between systems<br />

fault tolerant cards<br />

system level redundancy box level redundancy card level redundancy chip level redundancy<br />

ref: BCAC/J. Shaw<br />

~10<br />

-7<br />

54<br />

©1995-1997 F.M.G. Dörenberg


Integration issues<br />

• “integrated system” is not a “package deal”<br />

• airline:<br />

� no more option to pick favorite supplier <strong>for</strong> each federated LRU<br />

� but gets improved availability, reduced sparing & LCC<br />

• as levels of (functional) integration increase → more stringent<br />

availability & integrity req’s than <strong>for</strong> more distributed<br />

implementation<br />

• if integration requires fault-tolerance (= redundancy), some of the<br />

gains from reduced duplication are lost<br />

• compared to “conventional” LRUs, cabinet/LRM solutions pose<br />

challenge to effective shielding/bonding <strong>for</strong> EMI/Lightning<br />

protection<br />

• partitioning provides change/growth flexibility: only re-certify<br />

changed areas<br />

55<br />

©1995-1997 F.M.G. Dörenberg


Integration issues (cont’d)<br />

• loss of a shared resource affects multiple functions → potential <strong>for</strong><br />

single-point/common-mode failure due to contaminated data flow,<br />

control flow, resource:<br />

� fault tolerance required to meet availability & integrity req’s<br />

� partitioning must be part of architecture <strong>and</strong> independent of application<br />

software<br />

� increased importance of FMEA, FHA, etc.<br />

• mixed levels of criticality: certify at highest level, or certify the<br />

partitioning protection.<br />

• criticality of the “whole” may be higher than that of “st<strong>and</strong>-alone”<br />

parts due to effects of loss (3x “essential” → “critical” ?)<br />

• technology readiness (risk): development of fault-tolerant integrated<br />

architectures drives a/c level schedules (be mature at a/c program go-ahead)<br />

56<br />

©1995-1997 F.M.G. Dörenberg


Fault Tolerance <strong>for</strong> Safety, Reliability,<br />

Larson<br />

NO unpleasant surprises!<br />

Dispatchability:<br />

57<br />

©1995-1997 F.M.G. Dörenberg


FAA/JAA Hazard Severity Classification<br />

Catastrophic<br />

Hazardous /<br />

Severe-Major<br />

Major<br />

Minor<br />

*<br />

Failure<br />

Condition<br />

Classification<br />

No Effect<br />

FAR /JAR<br />

25-1309<br />

AC25.1309-1A<br />

Effect of failure condition on<br />

aircraft <strong>and</strong> occupants<br />

• Prevents continued safe flight <strong>and</strong> l<strong>and</strong>ing<br />

• Loss of aircraft<br />

• Multiple deaths<br />

• Large reduction in safety margins or functional capabilities<br />

• Difficult <strong>for</strong> crew to cope with adverse operating conditions, <strong>and</strong><br />

cannot be relied upon to per<strong>for</strong>m tasks accurately & completely<br />

• Some passengers seriously injured (potentially fatal)<br />

• Significant reduction in safety margins or functional capabilities<br />

• Significant increase in crew workload or conditions impairing<br />

crew efficiency<br />

• Some passengers injured<br />

• Slight reduction of safety margins or functional capabilities<br />

• Slight increase in crew workload, well within capabilities<br />

• Operational limitations, diversions, flight plan changes<br />

• Inconvenience to passengers<br />

• No effect on operational capability of aircraft<br />

• No increase in crew workload<br />

• Concern, nuisance<br />

*determined by per<strong>for</strong>ming Funct. Hazard Assess. (FHA)<br />

- hazard severity: worst credible known/potential consequence of mishap -<br />

58<br />

©1995-1997 F.M.G. Dörenberg


Quant.<br />

Prob.<br />

1<br />

10-3<br />

10-5<br />

10-7<br />

10-9<br />

0<br />

FAA/JAA Probability Ranges<br />

JAR<br />

Qualitative<br />

Frequent<br />

Reasonably<br />

Probable<br />

Remote<br />

Extremely<br />

Remote<br />

FAR<br />

Qualitative<br />

Probable<br />

Improbable<br />

Extremely Improbable<br />

AMJ 25.1309<br />

* *<br />

AC 25.1309-1A<br />

- qualitative <strong>and</strong> quantitative -<br />

Qualitative Probability<br />

several times during operational<br />

life of each airplane<br />

occasionally during total<br />

operational life of all<br />

airplanes of particular type<br />

not expected to occur in entire<br />

fleet operational life<br />

* FAR & JAR are being harmonized<br />

59<br />

©1995-1997 F.M.G. Dörenberg


Hazard<br />

Probability<br />

Probable<br />

Improbable<br />

Extremely<br />

Improbable<br />

FAA/JAA Criticality Index<br />

Unacceptable<br />

Unacceptable<br />

Acceptable<br />

unless single failure<br />

Critical<br />

(A)<br />

failure contributes to, or<br />

causes a failure condition<br />

which would prevent<br />

continued safe flight <strong>and</strong><br />

l<strong>and</strong>ing<br />

Unacceptable<br />

Conditionally<br />

Acceptable<br />

Acceptable<br />

unless single failure<br />

Essential (B)<br />

failure contributes to, or<br />

causes a failure condition<br />

which would significantly<br />

impact airplane safety or<br />

crew ability to cope with<br />

adverse operating condit.<br />

Acceptable<br />

Acceptable<br />

Acceptable<br />

Non-Essential<br />

(C)<br />

failure would not<br />

contribute<br />

to, or causes a failure<br />

condition which would<br />

significantly impact airplane<br />

safety or crew ability to<br />

cope with adverse condit.<br />

- allowed combinations of hazard severity <strong>and</strong> probability -<br />

Equipment<br />

Category<br />

60<br />

©1995-1997 F.M.G. Dörenberg


Failure System<br />

Condition Design<br />

Assurance<br />

Classification Level<br />

Catastrophic<br />

Hazardous /<br />

Severe-Major<br />

Major<br />

Minor<br />

No Effect<br />

FAR /JAR<br />

AC/AMJ<br />

25.1309<br />

FAA/JAA Hazard Index<br />

A<br />

B<br />

C<br />

D<br />

E<br />

DO-178B<br />

DO-180<br />

ARP 4754<br />

Probability<br />

Objective<br />

extremely<br />

improbable<br />

extremely<br />

remote<br />

remote<br />

none<br />

none<br />

Failure Objectives<br />

Fail-safe Single-point<br />

Failures<br />

required<br />

may be<br />

required<br />

may be<br />

required<br />

not<br />

required<br />

not<br />

required<br />

precluded<br />

no<br />

requirement<br />

no<br />

requirement<br />

no<br />

requirement<br />

no<br />

requirement<br />

- hazard: potential/existing unplanned condition<br />

that can result in death, injury, illness, damage, loss -<br />

ref.: H.E. Rol<strong>and</strong>, B. Moriarty: “System safety engineering <strong>and</strong> management”, 2nd ed., Wiley & Sons, ‘90, 367 pp., ISBN 0-471-61816-0<br />

61<br />

©1995-1997 F.M.G. Dörenberg


“Don’t worry!<br />

Nothing can go wrong ....<br />

go wrong.....<br />

go wrong....”<br />

Hal, 2001: A Space Odyssey<br />

62<br />

©1995-1997 F.M.G. Dörenberg


Electro-Magnetic Interference (EMI) - sources<br />

LIGHTNING<br />

RADIO<br />

FREQUENCY<br />

HUMAN<br />

ELECTRO-<br />

STATIC<br />

DISCHARGE<br />

ELECTRONIC<br />

UNIT & WIRING<br />

Aircraft radios<br />

AM/FM radio<br />

TV stations<br />

Ground radar<br />

POWER DISTURBANCE<br />

ref.: Clarke, C.A., Larsen, W.A.: “Aircraft Electromagnetic Compatibility”, DOT/FAA/CT-86/40, June 1987<br />

ref.: Shooman, L.M.: “A study of occurrence rates of EMI to aircraft with a focus on HIRF”, Proc. DASC-93, pp. 191-194<br />

ref.: RTCA Document DO-233 “Portable Electronic Devices Carried On Board Aircraft, Aug. ‘96<br />

Graphics adapted from: J.A. Schofield: “European st<strong>and</strong>ards shine spotlight on EMI”, Design News, 9-25-1995, pp. 58-60<br />

PERSONAL<br />

ELECTRONIC<br />

DEVICES<br />

cell phones<br />

laptop PCs<br />

CD players<br />

games<br />

CONDUCTED EMISSIONS<br />

Aircraft power 400 Hz E/M<br />

Bus switching<br />

Inductive load switching<br />

Switching regulators<br />

Computer clock & data<br />

Analog signal coupling<br />

RADIATED<br />

EMISSIONS<br />

- average EMI incident occurrence rate ≈ 5x10 -3 per flight -<br />

63<br />

©1995-1997 F.M.G. Dörenberg


EMC: Electro-Magnetic Compatibility<br />

• increased EMI-susceptibility of electronic devices:<br />

� integration: higher chip density; (deep) sub-micron feature sizes<br />

� reduced operating voltages<br />

� lower levels of energy cause upsets<br />

• increased reliance on digital computers (<strong>for</strong> flight-critical<br />

functions) that contain EMI-susceptible devices<br />

• higher clock speeds:<br />

� reduced susceptibility: PCB tracks become transmission lines<br />

� but absolute b<strong>and</strong>width <strong>for</strong> decent signal shapes goes up (≈10xfc)<br />

� though b<strong>and</strong>width pushed into range with fewer x-mitters (civil)<br />

• continued proliferation of EM transmitters (incl. PEDs),<br />

<strong>and</strong> increase in EM power<br />

• reduced inherent Faraday-cage protection: increasing<br />

amounts of non-metallic airframe sections<br />

ref.: C.A. Clarke, W.E. Larsen: “Aircraft Electromagnetic Compatibility”, Feb. ‘89, 155 pp., DOT/FAA/CT-88/10; same as Chapt. 11 of Dig. <strong>Systems</strong> Validation H<strong>and</strong>book Vol.<br />

II<br />

ref.:G.L. Fuller: “Underst<strong>and</strong>ing HIRF - High Intensity Radiated Fields”, Avionics Comm. Publ., Leesburg/VA, ‘95, 123 pp., ISBN 1-885544-05-7<br />

64<br />

ref.: M.L. Shooman: “A study of occurrence rates of EMI to aircraft with a focus on HIRF”, Proc. 12th DASC, Seattle/WA, Oct. ‘93, pp. 191-194<br />

©1995-1997 F.M.G. Dörenberg


Req's <strong>for</strong> Fault Avoidance<br />

(incl. Containment)<br />

<strong>and</strong> Robustness<br />

Requirements Taxonomy<br />

• Mission<br />

• Safety<br />

• Reliability<br />

• Dispatchability<br />

Requirements<br />

• Availability<br />

• Functionality<br />

• Per<strong>for</strong>mance<br />

• Operational<br />

Req's <strong>for</strong> Fault Tolerance<br />

Req's <strong>for</strong> Redundancy<br />

• Fault masking<br />

• Fault detection<br />

• Fault isolation<br />

• Fault recovery<br />

• etc.<br />

• Maintenance<br />

• Cost<br />

• Certificability<br />

• etc.<br />

Req's <strong>for</strong> Redundancy Management<br />

Req's <strong>for</strong> Integrity Checks<br />

65<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong>ity issues<br />

• modularization decreases the size of the Line Removable<br />

Item from LRU “box” to LRM “module”<br />

• flexibility: add or remove functions <strong>and</strong> hardware<br />

• flexibility: change architecture (configure & reconfigure)<br />

• permits management of obsolescence: piece-meal update<br />

on modular basis, as technology & economics justify<br />

• reconfigurability, expansion to meet future needs by<br />

adding modules<br />

• facilitates fault tolerance (N+1 redundancy)<br />

- module = building block -<br />

66<br />

©1995-1997 F.M.G. Dörenberg


St<strong>and</strong>ardization issues<br />

• “generic”, can be used across variety of functions<br />

• economies of scale (production volume, recurring cost)<br />

• fewer unique designs <strong>and</strong> parts, re-use<br />

• fewer part numbers:<br />

– smaller number of spares:<br />

PL = exp(-N) .Σ<br />

1/k N<br />

m!<br />

– spares acquisition (may be higher) & holding cost<br />

– logistics, supportability<br />

– documentation, configuration management<br />

– training, test equipment<br />

• “overkill” penalty <strong>for</strong> being “universal” (must support<br />

highest system req’s → higher design assurance level)<br />

kit<br />

- st<strong>and</strong>ardization ~ commonality -<br />

NS<br />

m=0<br />

m<br />

67<br />

©1995-1997 F.M.G. Dörenberg


Hardware<br />

Resources<br />

Processor core<br />

Memory<br />

Common I/O *<br />

BIT hardware<br />

Power supply<br />

Chassis<br />

Unique I/O *<br />

Typical st<strong>and</strong>-alone LRU<br />

* with EMI protection<br />

Software<br />

Resources<br />

Operating<br />

System<br />

I/O processing<br />

<strong>and</strong> monitoring<br />

BIT <strong>and</strong> Maint.<br />

functions<br />

Application<br />

Unique BIT<br />

ref.: M.J. Morgan: “<strong>Integrated</strong> <strong>Modular</strong> Avionics <strong>for</strong> Next-Generation <strong>Commercial</strong> Aircraft”, IEEE AES <strong>Systems</strong> Magazine, Aug. ‘91, pp. 9-12<br />

ref.: D. Hart: “<strong>Integrated</strong> <strong>Modular</strong> Avionics - Part I - V”, Avionics, May-Nov. 1991<br />

Common<br />

Unique<br />

68<br />

©1995-1997 F.M.G. Dörenberg


Resources<br />

Hardware Software<br />

St<strong>and</strong>ard<br />

<strong>and</strong><br />

common<br />

functions<br />

Unique<br />

functions<br />

Integration of multiple LRUs<br />

St<strong>and</strong>ard<br />

<strong>and</strong><br />

common<br />

functions<br />

Unique<br />

functions<br />

LRU-2<br />

LRU-1<br />

INTEGRATION<br />

LRU-3<br />

Hardware<br />

Resources<br />

Processor Core<br />

Memory<br />

Shared I/O *<br />

BIT hardware<br />

Power Supply<br />

Chassis<br />

Unique I/O *<br />

Unique I/O *<br />

Unique I/O *<br />

Software<br />

Resources<br />

Operating<br />

System<br />

I/O processing<br />

& monitoring<br />

BIT <strong>and</strong> Maint.<br />

functions<br />

Application-1<br />

Unique BIT<br />

Application-2<br />

Unique BIT<br />

Application-3<br />

Unique BIT<br />

69<br />

©1995-1997 F.M.G. Dörenberg


Resources<br />

Hardware Software<br />

St<strong>and</strong>ard<br />

<strong>and</strong><br />

common<br />

functions<br />

Unique<br />

functions<br />

Integration of multiple LRUs<br />

St<strong>and</strong>ard<br />

<strong>and</strong><br />

common<br />

functions<br />

Unique<br />

functions<br />

LRU-2<br />

LRU-1<br />

INTEGRATION<br />

LRU-3<br />

st<strong>and</strong>ardize<br />

via end-to-end digitalization<br />

from sensors to actuators<br />

Hardware<br />

Resources<br />

Processor Core<br />

Memory<br />

Shared I/O *<br />

BIT hardware<br />

Power Supply<br />

Chassis<br />

Unique I/O *<br />

Unique I/O *<br />

Unique I/O *<br />

Software<br />

Resources<br />

Operating<br />

System<br />

I/O processing<br />

& monitoring<br />

BIT <strong>and</strong> Maint.<br />

functions<br />

Application-1<br />

Unique BIT<br />

Application-2<br />

Unique BIT<br />

Application-3<br />

Unique BIT<br />

70<br />

©1995-1997 F.M.G. Dörenberg


Integration & <strong>Modular</strong>ization<br />

• LRUs interact → interconnects<br />

• Integration of LRUs → fewer interconnects:<br />

� connectors (failure prone <strong>and</strong> very expensive if high pin-count)<br />

� wiring (weight)<br />

� communication h/w at both ends<br />

� communication s/w at both ends<br />

71<br />

©1995-1997 F.M.G. Dörenberg


Integration & <strong>Modular</strong>ization<br />

• LRU integration reduces overlap/duplication<br />

of h/w <strong>and</strong> s/w functions:<br />

� processor core<br />

� I/O (un)<strong>for</strong>matting<br />

� input signal monitoring & selection<br />

� parameter derivation<br />

� hardware monitoring<br />

� EMI/Lightning protection<br />

� power supply<br />

� faul reporting, maintenance, BIT<br />

72<br />

©1995-1997 F.M.G. Dörenberg


O/S<br />

I/O<br />

Maint.<br />

BIT<br />

Appl.<br />

Total<br />

CPU<br />

I/O<br />

Power<br />

Bus<br />

Chass.<br />

Total<br />

Effect of integrating additional functions - exercise<br />

Federated <strong>Integrated</strong><br />

5%<br />

20%<br />

10%<br />

20%<br />

45%<br />

100%<br />

15%<br />

20%<br />

10%<br />

30%<br />

25%<br />

100%<br />

-- - ≈ + ++<br />

-- - ≈ + ++<br />

IMA enclosure + 1 st application<br />

Rel. hardware cost Rel. software complexity<br />

O/S<br />

I/O<br />

Maint.<br />

BIT<br />

Appl.<br />

Total<br />

CPU<br />

I/O<br />

Power<br />

Bus<br />

Chass.<br />

Total<br />

Federated <strong>Integrated</strong><br />

5%<br />

20%<br />

10%<br />

20%<br />

45%<br />

100%<br />

15%<br />

20%<br />

10%<br />

30%<br />

25%<br />

100%<br />

-- - ≈ + ++<br />

-- - ≈ + ++<br />

Each additional application<br />

Rel. hardware cost Rel. software complexity<br />

73<br />

©1995-1997 F.M.G. Dörenberg


Effect of integrating additional functions - (gu)es(s)timates<br />

O/S<br />

I/O<br />

Maint.<br />

BIT<br />

Appl.<br />

Total<br />

CPU<br />

I/O<br />

Power<br />

Bus<br />

Chass.<br />

Total<br />

source: BCAG (adapted)<br />

Federated <strong>Integrated</strong><br />

5%<br />

20%<br />

10%<br />

20%<br />

45%<br />

100%<br />

15%<br />

20%<br />

10%<br />

30%<br />

25%<br />

100%<br />

+50%<br />

same<br />

+30%<br />

same<br />

same<br />

+2/3<br />

same<br />

double<br />

double<br />

+20%<br />

7%<br />

20%<br />

13%<br />

25%<br />

45%<br />

110%<br />

25%<br />

20%<br />

20%<br />

60%<br />

30%<br />

155%<br />

IMA enclosure + 1 st application<br />

Rel. software complexity<br />

Rel. hardware cost<br />

O/S<br />

I/O<br />

Maint.<br />

BIT<br />

Appl.<br />

Total<br />

CPU<br />

I/O<br />

Power<br />

Bus<br />

Chass.<br />

Total<br />

Federated <strong>Integrated</strong><br />

5%<br />

20%<br />

10%<br />

20%<br />

45%<br />

100%<br />

15%<br />

20%<br />

10%<br />

30%<br />

25%<br />

100%<br />

half<br />

half<br />

same<br />

-1/4<br />

half<br />

-80%<br />

10%<br />

5%<br />

45%<br />

60%<br />

15%<br />

5%<br />

5%<br />

25%<br />

Each additional application<br />

Rel. hardware cost Rel. software complexity<br />

74<br />

©1995-1997 F.M.G. Dörenberg


Effect of integrating additional functions - (gu)es(s)timates<br />

Rel. hardware cost<br />

Rel. software complexity<br />

source: BCAG (adapted)<br />

100%<br />

155%<br />

Federated <strong>Integrated</strong><br />

100%<br />

110%<br />

Federated <strong>Integrated</strong><br />

IMA enclosure + 1 st application<br />

Rel. hardware cost<br />

Rel. software complexity<br />

100%<br />

100%<br />

- the more you integrate, the “better” -<br />

assumes integration of related<br />

functions of equal size &<br />

complexity; 25% error margin<br />

25%<br />

Federated <strong>Integrated</strong><br />

60%<br />

Federated <strong>Integrated</strong><br />

Each additional application<br />

75<br />

©1995-1997 F.M.G. Dörenberg


assumes integration of related<br />

functions with equal size/complexity<br />

Normalized softwar esize →<br />

10<br />

8<br />

6<br />

4<br />

2<br />

1<br />

source: BCAG (adapted)<br />

Advantages of integrating additional functions<br />

Federated<br />

1 2 4 6 8 10<br />

Number of system functions →<br />

25% error bar<br />

<strong>Integrated</strong><br />

- not effective if only integrating 2 or 3 functions -<br />

Normalized hardware cost →<br />

10<br />

8<br />

6<br />

4<br />

2<br />

1<br />

Federated<br />

<strong>Integrated</strong><br />

1 2 4 6 8 10<br />

Number of system functions →<br />

25% error bar<br />

76<br />

©1995-1997 F.M.G. Dörenberg


assumes integration of related<br />

functions with equal size/complexity<br />

Normalized softwar esize →<br />

10<br />

8<br />

6<br />

4<br />

2<br />

1<br />

<strong>Integrated</strong><br />

1 2 4 6 8 10<br />

Number of system functions →<br />

- ??????????? -<br />

Well……..<br />

Normalized hardware cost →<br />

10<br />

8<br />

6<br />

4<br />

2<br />

1<br />

⌠<br />

⌡<br />

Federated<br />

<strong>Integrated</strong><br />

1 2 4 6 8 10<br />

Number of system functions →<br />

Cost of cert., partitioning,config mgt<br />

77<br />

©1995-1997 F.M.G. Dörenberg


Integration & <strong>Modular</strong>ization<br />

• <strong>Modular</strong>ization reduces duplication of<br />

product development ef<strong>for</strong>t:<br />

� specification<br />

� design<br />

� integration <strong>and</strong> test<br />

� qualification<br />

� V&V, certification<br />

� part numbers<br />

� time-to-market<br />

� program risk<br />

� $$$<br />

78<br />

©1995-1997 F.M.G. Dörenberg


Integration & <strong>Modular</strong>ization<br />

• Other factors:<br />

� Natural tendency: trend towards more<br />

interaction & coordination between<br />

systems (flight & thrust control, safety, com/nav, etc.)<br />

� sub-optimal use of (now) distributed<br />

data/knowledge<br />

� NFF/CND/RETOK, MTBUR/MTBF<br />

typically at 50%<br />

� FANS (com/nav/surveillance)<br />

79<br />

©1995-1997 F.M.G. Dörenberg


A historical note<br />

“<strong>Modular</strong> electronics” dates back to several<br />

German military radios of the late 1930s!<br />

• modules<br />

• chassis with “backplane”<br />

• st<strong>and</strong>ardization of parts<br />

• BIT<br />

- reasons: technical, logistical, maintenance,<strong>and</strong> manufacturing-<br />

ref.: H.-J. Ellissen: “Funk- u. Bordsprechanlagen in Pantzerfahrzeugen” Die deutschen Funknachrichtenanlagen bis 1945, B<strong>and</strong> 3, Verlag Molitor, 1991, ISBN 3-928388-01-0<br />

ref.: D. Rollema:: “German WW II Communications Receivers - Technical Perfection from a Nearby Past”, Part 1-3, CQ, Aug/Oct 1980, May 1981<br />

80<br />

ref.: A. O. Bauer: “Receiver <strong>and</strong> transmitter development in Germany 1920-1945”, presented at IEE Int’l Conf. on 100 Years of Radio, London, Sept. 1995<br />

©1995-1997 F.M.G. Dörenberg


German “WW II” radios<br />

• Modules:<br />

� die-cast Alu-Mg alloy module* <strong>for</strong> each stage<br />

� completely enclosed & shielded, with internally<br />

shielded compartments<br />

� generously applied decoupling (fault avoidance)<br />

� mechanically & electrically very stable<br />

� easily installed/removed w. 90° lock-screws (maint.)<br />

� simple (manufacturability: strategically distributed, no high skills)<br />

ref.: Telefunken GmbH: “Luftboden-Empf-Programm 2-7500 m für die Bodenausrüstung der deutschen Luftwaffe”, Berlin, May<br />

* from mid-1943 on, only Goering’s Luftwaffe got Alu;<br />

Army/Navy got Zn alloy<br />

81<br />

©1995-1997 F.M.G. Dörenberg


German “WW II” radios<br />

• Chassis <strong>and</strong> “Backplane”:<br />

� modules plug into chassis<br />

� motherboard / backplane module<br />

(E52 “Köln” receiver, 1943)<br />

� 3-D arrangement<br />

� assy slides into sturdy (!) cabinet<br />

82<br />

©1995-1997 F.M.G. Dörenberg


German “WW II” radios<br />

• Receiver st<strong>and</strong>ardization:<br />

� 40 kHz - 150 MHz covered with 4 radios<br />

with identical <strong>for</strong>m, fit, operation<br />

• Parts st<strong>and</strong>ardization:<br />

� 1 or 2 st<strong>and</strong>ard types of tubes per radio<br />

– Lorenz Lo 6 K 39a: 6x RV12P2000<br />

– Telefunken Kw E a: 11x RV2P800<br />

– FuSprech. f.: 6x RV12P2000 + 1x RL12P10 (RX),<br />

<strong>and</strong> 1x RV12P2000 + 2x RL12P10 (TX)<br />

– tricky circuitry<br />

- spares logistics, test equipment -<br />

83<br />

©1995-1997 F.M.G. Dörenberg


• BIT:<br />

German “WW II” radios<br />

� switchable meter <strong>for</strong> V anode &I anode of each<br />

radio stage, <strong>and</strong> <strong>for</strong> filament voltage<br />

� noise generator to measure RX sensitivity<br />

� pass/fail, minimum servicability markings<br />

- simple line maintenance-<br />

84<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Electronics: Not a New Concept!<br />

photo: courtesy Foundation Centre <strong>for</strong> German Communication & Related Technology 1920-1945, Amsterdam/NL, A.O. Bauer<br />

<strong>Modular</strong><br />

construction<br />

Lorenz E 10 aK<br />

(11x RV12P2000)<br />

85<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Electronics: Not a New Concept!<br />

- “backplane module” Bu 3 from Telefunken E 52 “Köln” -<br />

(1939-1945)<br />

photo: courtesy Foundation Centre <strong>for</strong> German Communication & Related Technology 1920-1945, Amsterdam/NL, A.O. Bauer<br />

86<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Electronics: Not a New Concept!<br />

- “backplane module” Bu 3 from Telefunken E 52 “Köln” -<br />

(1939-1945)<br />

photo: courtesy Foundation Centre <strong>for</strong> German Communication & Related Technology 1920-1945, Amsterdam/NL, A.O. Bauer<br />

87<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Electronics: Not a New Concept!<br />

ref.: Telefunken GmbH: “Luftboden-Empf-Programm 2-7500 m für die Bodenausrüstung der deutschen Luftwaffe”, Berlin, May<br />

Telefunken<br />

E 52a<br />

“Köln”<br />

88<br />

©1995-1997 F.M.G. Dörenberg


IMA - <strong>Integrated</strong> <strong>Modular</strong> Avionics<br />

LRUs<br />

- the basic idea -<br />

LRMs<br />

89<br />

©1995-1997 F.M.G. Dörenberg


IMA - <strong>Integrated</strong> <strong>Modular</strong> Avionics<br />

• Level-1: LRUs re-packaged into LRMs<br />

• Level-2: databus integration <strong>and</strong> partitioning<br />

• Level-3: all digital, global databuses<br />

• Level-4: functional integration at LRM level<br />

• Level-5: dynamic task allocation & reconfig.<br />

- a range of concepts <strong>and</strong> configurations -<br />

(no hard distinction between levels)<br />

ref.: R.J. Staf<strong>for</strong>d: “IMA cost <strong>and</strong> design issues”, Proc. 6th ERA Avionics Conf., London/UK, Dec. ‘92, pp. 1.4.1-1.4.10<br />

90<br />

©1995-1997 F.M.G. Dörenberg


IMA Level-1<br />

• LRUs re-packaged as LRMs in cabinet(s):<br />

� several types of st<strong>and</strong>ardized I/O modules (mix<br />

of analog/discrete/digital)<br />

� external input data-concentrators<br />

� st<strong>and</strong>ard computational module<br />

� integration only of power-supplies (shared)<br />

� no functional integration (LRUs mapped 1:1)<br />

� no new interactions (certification!)<br />

� ARINC-429 links between LRMs retained<br />

� ARINC-429 links between “cabinets”<br />

91<br />

©1995-1997 F.M.G. Dörenberg


IMA Level-2 & -3<br />

• Level-2: databus integration <strong>and</strong> partitioning<br />

� non-A429 inter-LRM communication<br />

� broadcast databus<br />

� separation of application s/w <strong>and</strong> OS<br />

� st<strong>and</strong>ard OS (facilitates aps. s/w modularity)<br />

• Level-3: all digital, global databuses<br />

� fully digital I/O at cabinet level, possibly with<br />

external data concentrators<br />

� data gateway modules to global bus networks<br />

� remote electronics: digitization close(r) to<br />

sensors & actuators<br />

92<br />

©1995-1997 F.M.G. Dörenberg


IMA Level-4 & -5<br />

• Level-4: functional integration at LRM level<br />

� multi-function computational LRMs<br />

� more functions integrated (toward supra-function IMA)<br />

� strict partitioning<br />

� st<strong>and</strong>ard interfaces (towards F 3 I)<br />

� improved BIT<br />

� fault tolerance<br />

• Level-5: dynamic task allocation & reconfig.<br />

� flexibility<br />

� more efficient h/w resource utilization<br />

� certification<br />

93<br />

©1995-1997 F.M.G. Dörenberg


IMA cost indicators <strong>and</strong> prediction<br />

• LCC cost drivers (RC & NRC):<br />

� design & development cost & risk<br />

� hardware, mechanical, data/signal<br />

interconnects, power interconnects<br />

� use of st<strong>and</strong>ard components, OS,<br />

� complexity<br />

� certification aspects<br />

� re-useability (future savings)<br />

� weight/size/power/cooling<br />

� installation<br />

� maintenance, support (NFF, spares, rel., org.)<br />

� etc.<br />

- IMA does not have an intuitively obvious bottom line advantage -<br />

94<br />

©1995-1997 F.M.G. Dörenberg


Major Areas of <strong>Systems</strong> Integration<br />

Communication<br />

& Navigation<br />

“Safety” <strong>Systems</strong><br />

Flight & Propulsion<br />

Control<br />

VMS<br />

Utility <strong>Systems</strong><br />

Pax Services* *Entertainment,<br />

Info, Telecom,<br />

Sales, Banking, etc.<br />

Flying: Aviate, Navigate, Communicate<br />

(<strong>and</strong> have some fun ...)<br />

95<br />

©1995-1997 F.M.G. Dörenberg


ATC/ATM<br />

FMS<br />

Functional Integration<br />

AT FADEC<br />

AP/AL<br />

FD<br />

FBW<br />

Sec. FC<br />

FBW<br />

Prim. FC<br />

SERVOS<br />

SERVOS<br />

- inner & outer control loops -<br />

96<br />

©1995-1997 F.M.G. Dörenberg


ATC/ATM<br />

FMS<br />

Functional Integration<br />

AT FADEC<br />

AP/AL<br />

FD<br />

FBW<br />

Sec. FC<br />

FBW<br />

Prim. FC<br />

SERVOS<br />

SERVOS<br />

- center of integration depends on avionics mfr’s <strong>for</strong>te -<br />

97<br />

©1995-1997 F.M.G. Dörenberg


ATC/ATM<br />

FMS<br />

Functional Integration<br />

AT FADEC<br />

AP/AL<br />

FD<br />

FBW<br />

Sec. FC<br />

FBW<br />

Prim. FC<br />

SERVOS<br />

SERVOS<br />

- center of integration depends on avionics mfr’s <strong>for</strong>te -<br />

98<br />

©1995-1997 F.M.G. Dörenberg


ATC/ATM<br />

FMS<br />

Functional Integration<br />

AT FADEC<br />

AP/AL<br />

FD<br />

FBW<br />

Sec. FC<br />

FBW<br />

Prim. FC<br />

SERVOS<br />

SERVOS<br />

- center of integration depends on avionics mfr’s <strong>for</strong>te -<br />

99<br />

©1995-1997 F.M.G. Dörenberg


Integration of CatIII Autoflight Computers<br />

A300<br />

N1 Limit<br />

Auto Throttle<br />

Test Computer<br />

Pitch Trim<br />

Yaw Damper<br />

Logic Computer<br />

Longitudinal<br />

Computer<br />

Lateral<br />

Computer<br />

x1<br />

x1<br />

x2<br />

x2<br />

x2<br />

x2<br />

x2<br />

x2<br />

A310<br />

A300-600<br />

TCC<br />

FMC<br />

FAC<br />

FCC<br />

ref.: ”Is new technology a friend or foe?”, editorial in Aerospace World, April 1992, pp. 33-35<br />

x1<br />

x2<br />

x2<br />

x2<br />

Airbus AFCS example:<br />

1 analog <strong>and</strong> 3 digital generations<br />

A320<br />

FAC<br />

FMGC<br />

x2<br />

A330/340<br />

x2 FMGEC x2<br />

14 7 4 2<br />

100<br />

©1995-1997 F.M.G. Dörenberg


<strong>Integrated</strong> Flight & Thrust Control <strong>Systems</strong><br />

Examples:<br />

• <strong>Modular</strong> Flight Control & Guidance Computer<br />

(EFCS by BGT/Germany)<br />

• Propulsion Controlled Aircraft (PCA)<br />

(MDC/NASA, Boeing)<br />

• Towards multi-axis thrust vectoring (civil)<br />

(NASA-LaRC, Calcor Aero <strong>Systems</strong>, Aeronautical Concept of Exhaust Ltd.)<br />

ref.: E.T. Raymond, C.C. Chenoweth: “Aircraft flight control actuation system design”, SAE, ‘93, 270 pp., ISBN 1-56091-376-2<br />

ref.: Hughes, D., Dornheim, M.A.: “United DC-10 Crashes in Sioux City, Iowa,” Aviation Week & Space Technology, July 24, 1989, pp. 96-97<br />

ref.: Dornheim, M.A.: "Throttles l<strong>and</strong> "disabled" jet," Aviation Week & Space Technology, September 4, 1995, pp. 26-27<br />

ref.: Devlin, B.T., Girts, R.D.: "MD-11 Automatic Flight System," Proc. 11th DASC, Oct. 1992, pp. 174-177 & IEEE AES <strong>Systems</strong> Magazine, March 1993, pp. 53-56<br />

ref.: Kolano, E.: “Fly by fire”, Flight International, 20 Dec. ‘95, pp. 26-29<br />

ref.: Norris, G.: “Boeing may use propulsion control on 747-500/600X”, Flight Int’l, 2-8 Oct. 1996, p. 4<br />

ref.: “Engine nozzle design - a variable feast?”, editorial in Aircraft Technology Engineering & Maintenance, Oct./Nov. 1995, pp. 10-11<br />

101<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Flight Control & Guidance Computer<br />

FMGC<br />

FMC FGC<br />

A320 "baseline"<br />

ELAC<br />

SEC<br />

FAC<br />

SFCC<br />

FCDC<br />

FMC<br />

Flight Mgt<br />

All Airbus LRUs: dual internal, dissimilar s/w<br />

A330/340: 3x FCPC, 2x FCSP, replacing ELACs & SECs<br />

integration<br />

"50-100 Pax", high-end BizAv<br />

FC/FG<br />

ref.: D. Brière, P. Traverse: “Airbus A320/330/340 electrical flight controls - a family of fault tolerant systems”, Proc. 23rd FTCS, Toulouse/F, June ‘93, pp. 616-623<br />

FCGC<br />

102<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Flight Control & Guidance Computer<br />

FMGC<br />

FMC<br />

Autoflight<br />

Σ 52 MCU<br />

FGC<br />

Flight Ctrl:<br />

Σ 50 MCU<br />

ELAC<br />

SEC<br />

FAC<br />

SFCC<br />

FCDC<br />

FC/FG total:<br />

11 LRUs<br />

= 24 lanes, incl. 20 PSUs<br />

= 50 MCU volume<br />

FMC<br />

Flight Mgt:<br />

Σ 12 MCU<br />

modular<br />

integration<br />

FCGC<br />

FC/FG total:<br />

2 cabinets<br />

= 12 LRMs, 4 PSMs<br />

= 18 MCU volume<br />

103<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Flight Control & Guidance Computer<br />

BGT Bodenseewerk<br />

Gerätetechnik GmbH<br />

<strong>Integrated</strong> flight control & guidance functions:<br />

• primary flight control (FBW), incl. backup<br />

• secondary flight control (FBW)<br />

• high-lift flight control (slat/flap FBW)<br />

• flight envelope protection<br />

• auto pilot w. CatIIIb auto-l<strong>and</strong><br />

• flight director<br />

• auto throttle<br />

ref.: D.T. McRuer, D.E. Johnson: “Flight control systems: properties <strong>and</strong> problems - Vol. 1 & 2”, Feb. ‘75, 165 pp. & 145 pp., NASA CR-2500/2501<br />

ref.: D. McRuer, I. Ashkenas, D. Graham: “Aircraft dynamics <strong>and</strong> automatic control”, Princeton Univ. Press, ‘73, 784 pp., ISBN 0-691-08083-6<br />

ref.: J. Roskam: “Airplane flight dynamic <strong>and</strong> automatic flight controls - Part 1 & 2”, Roskam A&E Corp., 1388 pp., LoC Card no. 78-31382<br />

ref.: R.J. Bleeg: “<strong>Commercial</strong> jet transport fly-by-wire architecture consideration”, Proc. 8th DASC, San Jose/CA, Oct. ‘88, pp. 399-406<br />

104<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Flight Control & Guidance Computer<br />

Current FCGC-program development status:<br />

• demonstrator program in cooperation with DASA<br />

• simulator <strong>and</strong> A340-rig tests: ongoing since 1Q91<br />

• flight test scheduled <strong>for</strong> 1Q98 on VFW614 test bed<br />

• certification: primary flight control only<br />

(incl. dynamic task-reconfig concept)<br />

• development & test program: full-function FCGC<br />

BGT Bodenseewerk<br />

Gerätetechnik GmbH<br />

105<br />

©1995-1997 F.M.G. Dörenberg


photo: courtesy<br />

VFW-614<br />

Returned to service 1Q96 as test-bed <strong>for</strong> the BGT/DASA EFCS Program<br />

106<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Flight Control & Guidance Computer<br />

Goals:<br />

•low cost<br />

•no reduction in safety & per<strong>for</strong>mance vs.<br />

conventional architectures<br />

•safely dispatchable with any single module failed<br />

•safely dispatchable with any two modules failed<br />

(reduced per<strong>for</strong>mance)<br />

•significantly reduced weight/size/power<br />

BGT Bodenseewerk<br />

Gerätetechnik GmbH<br />

107<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Flight Control & Guidance Computer<br />

• significant reduction of hardware: :<br />

� integration of functions, enabled by computing per<strong>for</strong>mance (mixed<br />

criticality levels!)<br />

� → reduced amount of interfacing (computer ↔ computer, lane ↔ lane)<br />

• more efficient use of retained hardware:<br />

� more paths through system: move away from rigid lane structure<br />

� resource sharing, multi-use I/O hardware<br />

� no single-thread operation → reduced output h/w redundancy<br />

� graceful degradation (shedding of lower criticality functions (FG) to retain<br />

higher (FC))<br />

• lower cost hardware:<br />

� no “ARINC-65X” backplane databus, connectors, module lever<br />

• strict separation of I/O from computational functions<br />

• dissimilarity<br />

BGT Bodenseewerk<br />

Gerätetechnik GmbH<br />

Concept:<br />

108<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Flight Control & Guidance Computer<br />

System architecture: 2 modular FCGCs<br />

•per FCGC:<br />

� 2 dual Computing Modules (CPMs)<br />

� 2 dual I/O Modules (IOM type “A”):<br />

– one mainly <strong>for</strong> PFC, the other mainly <strong>for</strong> FG<br />

� 2 dual I/O Modules (IOM type “B”):<br />

– one mainly <strong>for</strong> Hi-Lift <strong>and</strong> Maintenance<br />

– the other mainly <strong>for</strong> PFC/SFC, <strong>and</strong><br />

– can act as “NGU” minimum-PFC backup<br />

� 2 or 3 Power Supply Modules (dep. on dispatch req’s)<br />

� A429 inter-FCGC, 10 Mbs serial inter-module<br />

� A650 cabinet <strong>for</strong>m factor, shorter LRMs<br />

BGT Bodenseewerk<br />

Gerätetechnik GmbH<br />

- all modules are dual → fail-passive -<br />

109<br />

©1995-1997 F.M.G. Dörenberg


<strong>Modular</strong> Flight Control & Guidance Computer<br />

2x CPM<br />

(identical)<br />

X-puter +<br />

PowerPC<br />

4x IOM<br />

PowerPC +<br />

GP µP<br />

BGT Bodenseewerk<br />

Gerätetechnik GmbH<br />

FCGC (x2)<br />

FC FG<br />

(FC)<br />

A A B B<br />

- FCGC internal architecture -<br />

ref.: R. Reichel: “<strong>Modular</strong> flight control <strong>and</strong> guidance computer”,<br />

Proc. 6th ERA Avionics Conf., London/UK, Dec. ‘92, 9 pp.<br />

110<br />

©1995-1997 F.M.G. Dörenberg


FCGC redundancy management - examples<br />

FC FG<br />

(FC)<br />

A A B B<br />

Fault Free<br />

BGT Bodenseewerk<br />

Gerätetechnik GmbH<br />

FC FG<br />

(FC)<br />

A A B B<br />

A A B B<br />

FG<br />

(FC)<br />

FC FG<br />

(FC)<br />

A A B B<br />

- elevator control reconfiguration in response to module failures -<br />

- CPM failure -<br />

111<br />

©1995-1997 F.M.G. Dörenberg


FCGC redundancy management - examples<br />

FG<br />

(FC)<br />

FC FG<br />

(FC)<br />

A A B B A A B B A A B B A A B B<br />

BGT Bodenseewerk<br />

Gerätetechnik GmbH<br />

FG<br />

(FC)<br />

FC FG<br />

(FC)<br />

- elevator control reconfiguration in response to module failures -<br />

- CPM + IOM failure -<br />

112<br />

©1995-1997 F.M.G. Dörenberg


FCGC redundancy management - examples<br />

A A B B<br />

FG<br />

(FC)<br />

BGT Bodenseewerk<br />

Gerätetechnik GmbH<br />

FC FG<br />

(FC)<br />

A A B B<br />

A A B B<br />

FG<br />

(FC)<br />

A A B B<br />

- elevator control reconfiguration in response to module failures -<br />

- CPM + IOM + CPM failure -<br />

FG<br />

(FC)<br />

113<br />

©1995-1997 F.M.G. Dörenberg


lliedSignal<br />

A E R O S P A C E<br />

<strong>Integrated</strong> <strong>and</strong> <strong>Modular</strong> Avionics<br />

• Introduction<br />

• Why change avionics?<br />

• Integration<br />

• <strong>Modular</strong>ization<br />

�� AlliedSignal programs<br />

• Future .....


lliedSignal<br />

A E R O S P A C E<br />

AlliedSignal Programs<br />

• <strong>Integrated</strong> Cockpit Avionics<br />

• <strong>Integrated</strong> Hazard Avoidance System<br />

• <strong>Integrated</strong> Utilities System


lliedSignal<br />

A E R O S P A C E<br />

<strong>Integrated</strong> Cockpit Avionics<br />

• ARIA joint venture of AlliedSignal CAS<br />

with Russian partner NIIAO<br />

� ARIA = American-Russian <strong>Integrated</strong> Avionics<br />

� NIIAO = “Scientific Research Institute of Aircraft<br />

Equipment”<br />

� gov’t owned, frmr. part of “Flight Research Institute”<br />

� located in Zhukovsky, Aviation City near Moscow<br />

� ARIA JV since 3Q92<br />

� ARIA JV office in Moscow since 4Q93<br />

• first program: Beriev BE-200<br />

� amphibious multi-role jet aircraft<br />

� primary role: fire fighting (12 m 3 )


lliedSignal<br />

A E R O S P A C E<br />

Beriev BE-200: Russian multi-role amphib


Business Partner<br />

Design Bureaux<br />

Production Plants<br />

Airlines<br />

Private Operators<br />

lliedSignal<br />

A E R O S P A C E<br />

CIS Aviation Industry<br />

- business environment as seen by AlliedSignal -<br />

Issues Positives<br />

Negatives<br />

• 4 major OEMs<br />

• several active programs<br />

• some CIS gov’t funding<br />

• 16 major facilities<br />

• mixed military/civil<br />

production<br />

• privatization process<br />

on-going<br />

• Aeroflot remains<br />

national carrier<br />

• over 200 new airlines<br />

• critical need <strong>for</strong> biz-jet<br />

operations<br />

• no domestic producer<br />

• real industry<br />

• good design capability<br />

• skilled labor<br />

• access to raw material<br />

• know the end- user<br />

• high dem<strong>and</strong> <strong>for</strong> capacity<br />

• over 200 new airlines<br />

• growing market<br />

• OEMs addressing the<br />

neeed<br />

• lack of market <strong>for</strong>eacst<br />

• excess design capacity<br />

• physical & managerial<br />

separation from production<br />

• lack of customer support<br />

network<br />

• excess capacity in work<strong>for</strong>ce<br />

<strong>and</strong> facilities<br />

• updated production equipment<br />

required<br />

• large fleet under-utilized<br />

• in need of updating<br />

• lack of support facilities<br />

• customer image problems<br />

• biz-jet infrastructure not in<br />

place<br />

• aging fleet of YAK-40s<br />

ref.: K.R. Dilks: “Modernization of the Russian Air Traffic Control/ Air Traffic Management System”, Journal of Air Traffic Control, Jan/Mar ‘94, pp. 8-15<br />

ref.: V.G. Afanasiev: “The business opportunities in Russia: the new Aeroflot - Russian international airlines”, presented at 2nd Annual Aerospace-Aviation<br />

Executive Symp., Arlington/VA, Nov. ‘94, 5 pp.


lliedSignal<br />

A E R O S P A C E<br />

Kiev<br />

•AN<br />

Taganrog<br />

•BE<br />

GMT + 3 h<br />

Moscow<br />

•AS/ARIA<br />

• YAK<br />

•TU<br />

•IL<br />

• NIIAO<br />

Saratov<br />

• YAK mfg<br />

CIS Aviation Industry<br />

Kazan<br />

•TU mfg<br />

Novosibirsk<br />

• AN mfg<br />

design bureau<br />

Note: map shows CIS + Ukraine<br />

Irkutsk<br />

•BE mfg<br />

• Beta Air<br />

airframe production facility


lliedSignal<br />

A E R O S P A C E<br />

Time from 1 st Flight to Certification<br />

USA Europe CIS<br />

B-737-200 8<br />

B-737-300 9<br />

B-737-400 7<br />

B-737-500 10<br />

B-747 10<br />

B-747-400 9<br />

B-757 10<br />

B-767 10<br />

B-777 10<br />

DC-10 11<br />

MD-80 10<br />

MD-11 10<br />

Average 10 mo.<br />

A-300 17<br />

A-310 11<br />

A-320 12<br />

A-330 17<br />

A-340 11<br />

Average 14 mo.<br />

BAe-41 14<br />

BAe-125 12<br />

BAe-146 20<br />

Average 15 mo.<br />

Falcon-50 27<br />

Falcon-900 18<br />

Average 22 mo.<br />

IL-86 48<br />

IL-96 51<br />

IL-114 57-69<br />

TU-154 40<br />

TU-204 60<br />

Yak-42 66<br />

Average 55 mo.


AlliedSignal<br />

h/w<br />

AlliedSignal<br />

h/w + core s/w<br />

AlliedSignal<br />

OTS<br />

from<br />

RMU-2<br />

to<br />

Displays<br />

lliedSignal<br />

A E R O S P A C E<br />

cp<br />

to I/O-3<br />

ARIA-200 system architecture<br />

WX-RDR PFD ND EICAS EICAS ND PFD<br />

brightness<br />

I/O<br />

2 OM<br />

I/O<br />

AP<br />

AP<br />

PS FW DC + PS<br />

PS VS<br />

I/O I/O<br />

+<br />

DC FW PS<br />

1<br />

AT<br />

AT 3 4<br />

Cabinet nr. 1 to Flt Ctl<br />

Cabinet nr. 2<br />

VHF ADF<br />

ILS MLS<br />

TCAS<br />

opt.<br />

Sensors<br />

ADC-1 AHRS-1<br />

RA<br />

to<br />

IOM-2/4<br />

Display<br />

System<br />

6"x8"<br />

AM-LCD's<br />

VOR<br />

DME<br />

TACAN<br />

opt.<br />

source sel. EFIS cp EICAS cp FC cp<br />

source sel.<br />

from A/C <strong>Systems</strong><br />

XPDR<br />

HF<br />

opt.<br />

Flight & Radio Management<br />

cp<br />

cp<br />

to CNS-2 to CNS-1<br />

to CNS-1 RMU-1<br />

RMU-2<br />

to CNS-2<br />

FMS/GPS-1 FMS/GPS-2<br />

to/from<br />

Engine Ctl<br />

to IOM-1/2/3/4<br />

to FSM-1/2<br />

cp<br />

DATA<br />

LOADER<br />

(portable)<br />

cp<br />

cp<br />

to Audio<br />

System<br />

opt.<br />

opt.<br />

opt.<br />

ACARS<br />

XPDR<br />

HF<br />

from<br />

A/C <strong>Systems</strong><br />

CNS suite nr. 1 CNS suite nr. 2<br />

VOR ADF VHF<br />

RA<br />

to<br />

IOM-1/3<br />

Alt<br />

+<br />

IAS<br />

DME<br />

ADI<br />

RMI<br />

Stdby Instr.<br />

Sensors<br />

AHRS-2<br />

ADC-2<br />

to I/O-2<br />

ILS<br />

from<br />

RMU-1<br />

ref.: F. Dörenberg, L. LaForge: “An Overview of AlliedSignal’s Avionics Development in the CIS“, IEEE AES <strong>Systems</strong> Magazine, Feb. ‘95, pp. 8-12


lliedSignal<br />

A E R O S P A C E<br />

ARIA-200 <strong>Integrated</strong> <strong>Modular</strong> Cabinets<br />

PS FW DC I/O I/O OM FC PS<br />

PS FW DC I/O I/O VS FC PS<br />

PS = Power Supply<br />

I/O = I/O Module<br />

DC = EICAS Data Concentrator Module<br />

VS = Voice Synthesizer Module<br />

Cabinet-1<br />

Cabinet-2<br />

FC = Computer Module <strong>for</strong> Auto-Flight (AP/AT)<br />

OM = Computer Module <strong>for</strong> On-Board Maintenance<br />

FW = Computer Module <strong>for</strong> Flight Warning


lliedSignal<br />

A E R O S P A C E<br />

ARIA-200 avionics<br />

cabinet<br />

• Mechanical structure <strong>and</strong> modules con<strong>for</strong>m to ARINC 650<br />

� volume ≈ 2/3 of AIMS<br />

� weight ≈ 60% of AIMS<br />

• Uses 3 st<strong>and</strong>ardized modules:<br />

� Power Supply Module<br />

� Computer Module (CM)<br />

� Input/Output Module (IOM)<br />

• Module-module communication: high speed A429 backplane<br />

• Power consumption: < 400W total (115 V ac & 27 V dc )<br />

• Cooled by integral fans


lliedSignal<br />

A E R O S P A C E<br />

ARIA-200 avionics<br />

cabinet<br />

• Maximized design re-use <strong>for</strong> reduced development risk<br />

� processor design<br />

� I/O design<br />

� BIT circuitry<br />

� Ada real-time exec<br />

� AlliedSignal graphics development tool suite<br />

� common manufacturing process<br />

� fewer part-numbers<br />

• Identical computer module <strong>for</strong> multiple functions:<br />

� Flight Warning<br />

� Flight Control: AP & AT<br />

� On-Board Maintenance<br />

• I/O consolidation<br />

� simplifies DU <strong>and</strong> FMS/MCDU


minus database flash memory<br />

minus DPRAMs<br />

minus I/F-board connectors<br />

lliedSignal<br />

A E R O S P A C E<br />

One Processor Board Design<br />

Processor Board <strong>for</strong> I/O-Module<br />

Processor Board <strong>for</strong> Computer-Module


lliedSignal<br />

A E R O S P A C E<br />

Two Interface Board Designs<br />

CM-Interface Board discrete out<br />

analog in<br />

x-channel<br />

comparator logic<br />

(flt ctl module only)<br />

DC/DC<br />

conversion<br />

discrete in<br />

A429 I/O<br />

3x(4+1)


lliedSignal<br />

A E R O S P A C E<br />

Two Interface Board Designs<br />

IOM-Interface Board DC/DC<br />

conversion<br />

analog<br />

in & out<br />

A429 I/O<br />

8x(4+1)


lliedSignal<br />

A E R O S P A C E<br />

Computer Module (CM) “s<strong>and</strong>wich”<br />

CM-Processor Board<br />

CM-Interface Board


lliedSignal<br />

A E R O S P A C E<br />

ARIA-200 Computer Module - technical data -<br />

• module = computer board + interface board<br />

• SMT<br />

•<br />

(exc. connectors & hold-up capacitors)<br />

processor:<br />

•<br />

486 DX 33 @ 25 MHz<br />

inputs/outputs:<br />

� ARINC429 in & out:16+5<br />

� discrete in & out: 48+12<br />

•<br />

� RS-232: 1 (shop maint.)<br />

memory:<br />

� 512 kBRAM<br />

� 256 KB Boot RAM<br />

� Flash (program mem & database)<br />

� 32kB NVM<br />

• software loadable via ARINC-615<br />

• 1AMU* width<br />

• application:<br />

� auto-flight (x2)<br />

� flight warning (x2)<br />

� on-board maintenance (x1)<br />

* 1 AMU-width = 1 MCU-width<br />

= 1/8 ATR-width = 1.1 inch


lliedSignal<br />

A E R O S P A C E<br />

Input/Output Module (IOM) “s<strong>and</strong>wiches”<br />

IOM-Processor Board<br />

IOM-Interface Board<br />

IOM-Processor Board<br />

IOM-Interface Board


lliedSignal<br />

A E R O S P A C E<br />

ARIA-200 I/O Module - technical data -<br />

• module = 2x {computer board + interface board}<br />

• SMT<br />

•<br />

(exc. connectors & hold-up capacitors)<br />

processors:<br />

•<br />

486 DX 33 @ 25 MHz<br />

inputs/outputs:<br />

� ARINC429 in & out: 2x (36+9)<br />

� discrete in & out: 2x (22+8)<br />

•<br />

� RS-232: 1+1 (shop maint.)<br />

memory:<br />

� RAM<br />

� Boot<br />

� Flash (program mem & database)<br />

•<br />

� NVM<br />

software loadable via<br />

•<br />

ARINC-615<br />

3AMUwidth<br />

• application:<br />

� to DUs, FDR, FCMs, FWMs, OMM, IOMs<br />

� from a/c systems, CNS, EIS control panels


lliedSignal<br />

A E R O S P A C E<br />

Russian Trivia<br />

• Russians are generally well educated, many speak English,<br />

they know <strong>and</strong> love their culture<br />

• 80% of Muscovites have a weekend datcha near Moscow<br />

• Nothing ever gets finished in Russia<br />

• From the “provinces” it can take 3 hours to get a phone call<br />

to Moscow<br />

• Russians love dogs<br />

• Vodka plays a significant role in the Russian way of life<br />

• Life expectancy <strong>for</strong> a Russian male is 63 years<br />

• Somebody in Moscow collects manhole covers<br />

• The women are not short <strong>and</strong> stout in black head scarves,<br />

they are surprisingly attractive


lliedSignal<br />

A E R O S P A C E<br />

AlliedSignal Programs<br />

• <strong>Integrated</strong> Cockpit Avionics<br />

• <strong>Integrated</strong> Hazard Avoidance System<br />

<strong>Integrated</strong> Hazard Avoidance System<br />

• <strong>Integrated</strong> Utilities System<br />

1


lliedSignal<br />

A E R O S P A C E<br />

* all accidents (hull loss + fatal)<br />

Excludes:<br />

• Sabotage<br />

• Military action<br />

• Turbulence injury<br />

• Evacuation injury<br />

Load,<br />

taxi,<br />

unload<br />

Takeoff Initial<br />

climb<br />

Accidents* vs. flight phase<br />

Flaps retracted<br />

Percentage of accidents<br />

Climb Cruise Descent Initial<br />

approach<br />

Exposure percentage based on a flight duration of 1.5 hours<br />

1% 1% 14% 57% 11% 12% 3% 1%<br />

Exposure, percentage of flight time<br />

Nav<br />

Fix<br />

Final<br />

approach L<strong>and</strong>ing<br />

4.8% 12.8% 7.4% 6.4% 5.7% 6.2% 6.6% 19.7% 30.3%<br />

- worldwide commercial jet fleet, all acidents 1965-1994 -<br />

ref.: Boeing <strong>Commercial</strong> Airplane Group “Statistical Summary of Commericial Jet Aircraft Accidents - Worldwide operations 1959-<br />

Outer<br />

Marker<br />

50%<br />

2


lliedSignal<br />

A E R O S P A C E<br />

Hazards external to aircraft<br />

• Terrain<br />

• In-Air<br />

• On-Ground<br />

• On-Aircraft<br />

3


lliedSignal<br />

A E R O S P A C E<br />

Hazards external to aircraft<br />

• Terrain:<br />

� Controlled Flight Into Terrain (CFIT):<br />

• worldwide, a leading cause of fatal accidents involving<br />

commercial air transports<br />

• usually during approach phase of flight (3% departure),<br />

usually while decending at normal flight-path angle<br />

• 25% VFR (esp. night time)<br />

• 65% IFR (esp. non-precision with step-down fixes)<br />

� currently lacking: flight deck info in intuitive <strong>for</strong>mat<br />

ref.: D. Carbaugh, S. Cooper: “Avoiding Controlled Flight Into Terrain”, Boeing Airliner, April-June ‘96, pp. 1-11<br />

ref.: D. Hughes: “CFIT task <strong>for</strong>ce to develop simulator training aid”, AV&ST, July 10, ‘95, pp. 22, 35, 38<br />

4


lliedSignal<br />

A E R O S P A C E<br />

Hazards external to aircraft<br />

• In-Air:<br />

� atmospheric:<br />

• turbulence (inc. Clear Air Turbulence, CAT)<br />

• windshear/micro-bursts<br />

• precipitation (convective cells, tornadoes, hail, dry hail)<br />

• icing conditions (super-cooled liquid water)<br />

• wake vortex<br />

� environmental:<br />

• volcanic ash<br />

� traffic:<br />

• other aircraft (all classes)<br />

• birds<br />

ref.: J. Townsend: “Low-altitude wind shear, <strong>and</strong> its hazard to aviation”, Nat’l Academy, Washington/DC, 1983<br />

ref.: L.S. Buurma: “Long-range surveillance radars as indicators of bird numbers aloft”, Israeli J. of Zoology, Vol. 41, ‘95, pp. 21-236<br />

5


lliedSignal<br />

A E R O S P A C E<br />

Hazards to aircraft (cont’d)<br />

• On-Ground:<br />

� runway incursions<br />

� other aircraft<br />

� vehicles<br />

� animals<br />

� other obstacles<br />

• On-Aircraft:<br />

� fire, smoke<br />

� wing ice<br />

6


lliedSignal<br />

A E R O S P A C E<br />

12,000<br />

10,000<br />

8,000<br />

Aircraft<br />

6,000<br />

Annual<br />

departures<br />

(Millions)<br />

4,000<br />

2,000<br />

0<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Accident rates of US scheduled airlines (Part 121):<br />

1 per 2,500 M miles (‘95); 1 per 1,250 M miles (94)<br />

1 per 4.2 M departures (95); 1 per 2M (94)<br />

Jet aircraft in service & annual departures<br />

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94<br />

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94<br />

- worldwide operations 1965-1994 -<br />

ref.: Boeing <strong>Commercial</strong> Airplane Group “Statistical Summary of Commericial Jet Aircraft Accidents - Worldwide operations 1959-<br />

11,852<br />

14.6<br />

20<br />

Accidents<br />

per million<br />

departures<br />

(annual rate)<br />

10<br />

Accident rates of US scheduled airlines (Part 125):<br />

1 per 333 M miles (95); 1 per 200 M miles (94)<br />

1 per 1.75 M departures (95); 1per 1.2M (94)<br />

0<br />

7


lliedSignal<br />

A E R O S P A C E<br />

Projection<br />

• stable accident rates + more aircraft + more traffic → more accidents<br />

• extrapolation of past ten years’ worldwide accident rates <strong>and</strong> expected<br />

fleet growth:<br />

� one jet transport hull loss every week* by the year 2010<br />

� unless accident rates (=safety) improve.<br />

• accident rates will improve, such that fatality rate is stable**:<br />

� safety is the relative freedom frombeing subject to uncontrolled hazards: potential<br />

or existing unplanned conditions/events that can result in death, injury, illness,<br />

damage to, or loss of equipment or property, or damage to the environment.<br />

� safety is state in which the risk (real or perceived) < upper limit of acceptable risk<br />

� limit is driven by whoever has to pay (in whatever <strong>for</strong>m) <strong>for</strong> the consequences:<br />

equipment owners/operators, crew & pax, underwriters, society, etc.<br />

� risk must also be seen vis-à-vis the benefit derived from the risky function or<br />

activity (here: air transport aviation).<br />

- air traffic is not getting inherently more dangerous -<br />

ref.: C.A. Shifrin: ‘Aviation safety takes center stage worldwide”, AW&ST, 4 Nov 1996, pp. 46-48<br />

ref.: “The dollars <strong>and</strong> sense of risk management <strong>and</strong> airline safety”, Flight Safety Digest, Vol. 13, No. 12, Dec. ‘94, pp. 1-6<br />

* 1 per 4 - 7 days<br />

** number of fatalities p.a. has been<br />

stable since 1947 (Bateman’s Law)<br />

8


lliedSignal<br />

A E R O S P A C E<br />

AlliedSignal flight-safety products: core technology<br />

• Traffic Collision Avoidance System<br />

� TCAS II + Mode-S Transponder (active: up to 40 nm; planned: passive up to<br />

100 nm)<br />

• Weather Radar (incl. Doppler <strong>for</strong> turbulence)<br />

• Windshear detection<br />

� predictive/<strong>for</strong>ward looking (via WX radar remote sensing; upto 5 nm, > 10 sec)<br />

� reactive (in GPWS, based on airmass accels + hor./vert. wind changes)<br />

• Terrain detection: Ground Proximity Warning System<br />

� RadAlt-based GPWS<br />

� Enhanced GPWS (EGPWS= GPWS + terrain d-base)<br />

• Flight recorders<br />

� (SS)CVR, (SS)FDR<br />

• Smoke detection<br />

ref.: D. Esler: “Trend monitoring comes of age”, Business & <strong>Commercial</strong> Aviation, July ‘95, pp. 70-<br />

75<br />

ref.: P. Rickey: “VCRs <strong>and</strong> FDRs”, Avionics Magazine, March ‘96, pp. 34-38<br />

9


lliedSignal<br />

A E R O S P A C E<br />

Terrain Avoidance<br />

� GPWS Functionality<br />

• Modes 1- 4<br />

• Mode 5 (Glide Slope)<br />

• Mode 6 (Altitude Callouts <strong>and</strong> Bank Angle)<br />

� plus Terrain Clearance Floor<br />

• around airports, aircraft in l<strong>and</strong>ing config<br />

• terrain database + position info<br />

� plus Forward Looking Terrain Avoidance<br />

• terrain database + position info<br />

� plus Situational Awareness/ Terrain Display<br />

• terrain database + position info<br />

• radar returns (Map Mode)<br />

10


lliedSignal<br />

A E R O S P A C E<br />

20<br />

15<br />

10<br />

5<br />

0<br />

16<br />

Loss of<br />

control<br />

in flight<br />

Worldwide Fatal Accidents 1988-1995<br />

17<br />

1 1<br />

CFIT Fire Midair<br />

collision<br />

7<br />

3<br />

2<br />

Excludes<br />

• Sabotage<br />

• Military action<br />

Number of accidents (left-h<strong>and</strong> scale)<br />

Number of fatalities (right-h<strong>and</strong> scale)<br />

L<strong>and</strong>ing Ice/<br />

snow<br />

4<br />

Windshear Fuel Runway<br />

exhaustion incursion<br />

- CFIT accounts <strong>for</strong> majority of fatal commercial airplane accidents -<br />

ref.: D. Carbaugh, S. Cooper: “Avoiding Controlled Flight Into Terrain”, Boeing Airliner Magazine, April-June 1996, pp. 1-11<br />

3<br />

5<br />

Other<br />

1200<br />

900<br />

600<br />

300<br />

0<br />

11


lliedSignal<br />

A E R O S P A C E<br />

Accidents<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Worldwide CFIT Accidents 1945-1995<br />

USA<br />

Part 121/125<br />

*no data prior to '64<br />

Rest of<br />

World*<br />

USA<br />

GPWS<br />

1974<br />

ICAO<br />

GPWS<br />

1979<br />

0<br />

1945 50 55 60 65 70 75 80 85 90<br />

Year<br />

- introduction of GPWS has reduced CFIT risk -<br />

ref.: D. Carbaugh, S. Cooper: “Avoiding Controlled Flight Into Terrain”, Boeing Airliner Magazine, April-June 1996, pp. 1-11<br />

commercial airplanes only<br />

12


lliedSignal<br />

A E R O S P A C E<br />

CFIT ACCIDENTS PER YEAR<br />

World-wide civil CFIT accidents - turbo engine a/c<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

7<br />

World-wide<br />

commercial jet<br />

CFIT accidents<br />

1988-1995<br />

Regional Corporate Air Taxi →<br />

21 21<br />

6<br />

16<br />

Large <strong>Commercial</strong> Jets<br />

3 ↓ 2<br />

88 89 90 91 92 93 94 95<br />

YEAR ENDING<br />

Not GPWS<br />

equipped<br />

GPWS<br />

Warning<br />

Activated<br />

11<br />

19<br />

7<br />

12<br />

16<br />

28<br />

5<br />

35<br />

4<br />

26<br />

5<br />

Late warning,<br />

or improper<br />

pilot response<br />

13


lliedSignal<br />

A E R O S P A C E<br />

EGPWS color coding scheme - simplified<br />

Aircraft Elevation<br />

+2000’<br />

+1000’<br />

-500’<br />

(variable)<br />

-1000’<br />

-2000’<br />

0<br />

14


lliedSignal<br />

A E R O S P A C E<br />

Terrain map on Nav display<br />

display<br />

mode:<br />

WX vs. Terr<br />

15


lliedSignal<br />

A E R O S P A C E<br />

Terrain threat on Nav display<br />

SURROUNDING<br />

TERRAIN<br />

(shades of green,<br />

yellow & red)<br />

“CAUTION TERRAIN”<br />

Caution Area<br />

(solid yellow)<br />

“TERRAIN AHEAD -<br />

PULL UP!”<br />

Warning Area<br />

(solid red)<br />

16


lliedSignal<br />

A E R O S P A C E<br />

ref.: freeflight (moving map software <strong>for</strong> laptop PC), FreeFlight Inc, Pasadena, CA<br />

Terrain display - 3-D vs. 2-D<br />

17


lliedSignal<br />

A E R O S P A C E<br />

World-wide terrain data base<br />

• End of “Cold War” helped provide 30 arc second data <strong>for</strong> ≈ 65%<br />

of the world<br />

• Coverage has grown to 85 % of l<strong>and</strong> mass<br />

• Includes 90% of world’s airports<br />

• Validation by Flight <strong>and</strong> Simulation<br />

• Terrain info: compressed into 20 MB flash memory<br />

World-wide runway data base<br />

• Purchased from Jeppesen<br />

• All runways ≥ 3500 feet in length<br />

• Currently 4,750 airports <strong>and</strong> 6,408 runways<br />

• Runway info: Lat/Long of center, length, bearing, elevation<br />

18


lliedSignal<br />

A E R O S P A C E<br />

Pink: 15 arcsec ≈ ¼nm<br />

Red: 30 arcsec<br />

EGPWS Terrain Database (7/30/96, TSO Release)<br />

Orange: 60 arcsec<br />

Yellow: 120 arcsec<br />

Green: 5 arcmin (enroute)<br />

Blue: missing data<br />

Brown: Dig. Chart of the World<br />

19


lliedSignal<br />

A E R O S P A C E<br />

50.00<br />

0.00<br />

50.00<br />

EGPWS Runway Database<br />

-150.00 -100.00 -50.00 0.00 50.00 100.00 150.00<br />

- 4815 airports world-wide (runways ≥ 3500 ft) -<br />

20


lliedSignal<br />

A E R O S P A C E<br />

≤ ¼nm<br />

f(dx to airport)<br />

α<br />

\<br />

Enhanced GPWS functions<br />

∠α = f(dx to airport, speed, turnrate,..)<br />

look-ahead distance<br />

CENTERTINE<br />

POINTS ALONG GROUNDTRACK<br />

centerline: points along groundtrack<br />

plus: lead-angle during turns<br />

PLUS A LEAD ANGLE DURING TURNS<br />

• Look-ahead alert <strong>and</strong> warning (60 sec, instead of 10-30 sec)<br />

• Terrain-clearance independent of a/c l<strong>and</strong>ing configuration<br />

• Situational display of threatening terrain<br />

21


lliedSignal<br />

A E R O S P A C E<br />

Emerging technologies, incl. AlliedSignal developments<br />

• Detection of:<br />

� Wing ice (refinement)<br />

� Clear Air Turbulence (passive IR radiometry)<br />

� Wake vortex<br />

� Volcanic ash<br />

• Advanced X-b<strong>and</strong> radar:<br />

� derived from current WX/Windshear Radar<br />

• Runway incursion detection<br />

• Terrain detection (Forward Looking GPWS)<br />

• L<strong>and</strong>ing aid (with d-base): runway ID, approach<br />

guidance<br />

• Icing conditions (based on Z refl of supercooled liquid H 2 0)<br />

• Synthetic vision system<br />

� IR doppler (improved CatII vision)<br />

22


lliedSignal<br />

A E R O S P A C E<br />

IHAS: integration of safety avionics<br />

terrain database<br />

display interface<br />

a/c position<br />

GPWS<br />

TCAS II<br />

Mode-S Mode<br />

WX/Windshear<br />

Radar<br />

1996 ..................... 1999 .......<br />

EGPWS<br />

Warning<br />

& Caution<br />

IHAS<br />

- a logical integration of numerous safety-avionics LRUs -<br />

23


lliedSignal<br />

A E R O S P A C E<br />

Master Warn Light<br />

Stick<br />

Shaker<br />

L & R<br />

WARNING<br />

CAUTION<br />

WARNING<br />

CAUTION<br />

Aural Warn<br />

Speaker<br />

Master Warn Light<br />

Aural Warn<br />

Speaker<br />

“Safety Avionics” - federated baseline<br />

Caution & Warning<br />

Electronics<br />

-Right -<br />

Caution & Warning<br />

Electronics<br />

-left-<br />

Discrete &<br />

Analog<br />

Inputs<br />

WX Radar<br />

Antenna<br />

ATC TPR / Mode S<br />

Waveguide<br />

Ant.<br />

Ctlr<br />

ATC TPR / Mode S<br />

Sw<br />

WX Radar CP<br />

Other Aircraft <strong>Systems</strong><br />

Waveguide<br />

TCAS Processor<br />

RADAR<br />

RADAR<br />

Coax Switches<br />

TCAS/ATC CP<br />

Antennas<br />

GPWS CP<br />

GND PROX<br />

Top ATC<br />

Antenna<br />

Bottom ATC<br />

OVRD<br />

GPWS<br />

A453<br />

Relay<br />

WX/Terr<br />

Displ.<br />

24


lliedSignal<br />

A E R O S P A C E<br />

Stick Shaker<br />

L & R<br />

Aural Warn Speaker<br />

Master Warn Light<br />

WARNING<br />

CAUTION<br />

Master Warn Light<br />

WARNING<br />

CAUTION<br />

Aural Warn Speaker<br />

“Safety Avionics”- IHAS baseline<br />

Top<br />

Safety CP<br />

IHAS<br />

IHAS<br />

Dir. Ant. Bottom<br />

4 4<br />

IHAS - L<br />

IHAS - R<br />

Top Bottom<br />

Omni Ant.<br />

A453<br />

Other Aircraft <strong>Systems</strong><br />

- major reduction in complexity -<br />

High Speed<br />

Dig. Buses<br />

Coax<br />

Coax<br />

• Antenna Ctlr<br />

• R/T switching<br />

• RF front-ends<br />

part of antenna<br />

drive unit<br />

WX<br />

Radar<br />

Antenna<br />

25


lliedSignal<br />

A E R O S P A C E<br />

Advantages of IHAS approach<br />

• Added-value from safety point of view:<br />

� greater degree of protection through sharing &<br />

integrating of in<strong>for</strong>mation<br />

� reduced cockpit confusion through “smart”<br />

alerting<br />

• based on total situational awareness<br />

• proper prioritization of visual & aural alerts<br />

• minimize misinterpretation of (sometimes conflicting<br />

<strong>and</strong> potentially misleading) multiple alerts<br />

• reduction of crew workload during critical moments<br />

� optimization of hazards display<br />

ref.: J.A. Donoghue: “Toward integrating safety”, Air Transport World, 11/95, p. 98-99<br />

cont’d →<br />

26


lliedSignal<br />

A E R O S P A C E<br />

Advantages of IHAS approach (cont’d)<br />

� lower weight*: ≈ 50 - 70%**<br />

� lower volume*: ≈ 50 - 60%**<br />

� lower power*: ≈ 40 - 70%**<br />

� lower installation cost (parts & labor)<br />

• reduced wiring<br />

• fewer connectors<br />

• fewer trays<br />

• elimination of some ATC antennas<br />

• elimination of radar waveguide<br />

� higer system availability (more reliable, redundancy)<br />

� lower LCC<br />

- all the advantages of IMA (to OEMs & airlines) -<br />

ref.: J.A. Donoghue: “Toward integrating safety”, Air Transport World, 11/95, p. 98-99<br />

*compared to equivalent<br />

federated suite on 777<br />

**depends on config<br />

27


lliedSignal<br />

A E R O S P A C E<br />

• Open architecture<br />

IHAS design goals<br />

• Support software Level “A” (RTCA/DO-178B)<br />

• Simultaneously support lower software levels<br />

• Minimize complexity at “A” level<br />

• Provide <strong>for</strong> incremental system evolution<br />

• Hold down cost of changes<br />

28


lliedSignal<br />

A E R O S P A C E<br />

$<br />

$$<br />

$$$<br />

Reducing the impact of change<br />

• Application<br />

� code / algorithm changes<br />

� I/O details (in current channels)<br />

� execution threads<br />

• K_EXEC<br />

� processor time allocation<br />

� partition window positioning<br />

� connection of channels to partitions<br />

• BIC Tables<br />

� channel b<strong>and</strong>width allocations<br />

� node transmit permissions<br />

- change containment to lower cost of system changes -<br />

29


lliedSignal<br />

6<br />

A E R O S P A C E<br />

RDR-4B<br />

WX/Windshear Radar<br />

W X<br />

R adar<br />

IHAS integrates “safety” sub-systems<br />

T<br />

C<br />

A<br />

S<br />

A<br />

T<br />

C<br />

RF + DSP<br />

Modules<br />

D ual<br />

C P<br />

M<br />

D ual<br />

C P<br />

M<br />

Central<br />

Processing<br />

Modules<br />

TCAS-II<br />

I<br />

O<br />

M<br />

I<br />

O<br />

M<br />

I/O<br />

Modules<br />

D ual<br />

P<br />

S<br />

M<br />

Power<br />

Supplys<br />

Module<br />

s<br />

p are<br />

Mode-S<br />

Transponder<br />

s<br />

p are<br />

E-GPWS<br />

Enhanced Gnd Prox<br />

Warning System<br />

IHAS<br />

Warning<br />

Computer<br />

30


lliedSignal<br />

A E R O S P A C E<br />

a/c data<br />

&<br />

power<br />

dir.<br />

ant.<br />

Baselines: conventional vs. IHAS<br />

omni<br />

ant.<br />

Ant. drive<br />

E-GPWS TCAS Mode-S Radar<br />

Power Bus<br />

PSM CPM IOM<br />

a/c power IOM<br />

a/c data<br />

TCAS +<br />

Mode-S<br />

special I/O<br />

&<br />

processing<br />

Flight<br />

Warning<br />

Computer<br />

Ant. drive<br />

Radar<br />

special I/O<br />

&<br />

processing<br />

Backplane Data Bus<br />

• OASYS + special modules <strong>for</strong><br />

Radar <strong>and</strong> TCAS/Mode-S<br />

processing<br />

• integrated TCAS/Mode-S<br />

• IOMs shared by all functions<br />

• CPM shared by all functions<br />

• E-GPWS<br />

• Fault Warning Computer<br />

• general processing <strong>for</strong> TCAS,<br />

Mode-S, Radar<br />

• integration of “safety” in<strong>for</strong>mation<br />

31


lliedSignal<br />

A E R O S P A C E<br />

IHAS characteristics<br />

• Interfaces:<br />

� digital: ARINC-429 <strong>and</strong> 629<br />

� analog: as required <strong>for</strong> specific aircraft<br />

� inter-modular backplane bus: modified ARINC-659<br />

� RF: 2 TCAS/Mode-S antennas (shared aperture, directional)<br />

� power: multiple 115 V ac <strong>and</strong> 28 V dc<br />

• Mechanical:<br />

� LRM <strong>for</strong>m-factor: ARINC-600<br />

� connectors: RF <strong>and</strong> modified ARINC-600<br />

- conceptual -<br />

32


lliedSignal<br />

A E R O S P A C E<br />

IHAS generic LRMs<br />

• Central Processing Module (CPM):<br />

� functions:<br />

• I/O <strong>and</strong> bus control<br />

• DSP-function control<br />

• system redundancy management<br />

� fault-tolerant<br />

� software loadable on-board<br />

• Digital Signal Processors (DSPs):<br />

� function: per<strong>for</strong>ming all signal processing<br />

� multiple DSP LRMs (redundancy)<br />

� hi-speed serial I/F <strong>for</strong> unique functions (radar, TCAS)<br />

� software loadable on-board<br />

- conceptual modular allocation -<br />

cont’d →<br />

33


lliedSignal<br />

A E R O S P A C E<br />

IHAS generic LRMs<br />

(cont’d)<br />

• Input/Output Modules (IOMs):<br />

� functions:<br />

• all external interfaces<br />

• display processors<br />

• audio output<br />

� multiple LRMs (redundancy)<br />

� fault-tolerant<br />

• Power Supply Module (PSU):<br />

� functions:<br />

• power input conditioning<br />

• power interrupt transparency<br />

• dc/dc up-conversion <strong>and</strong> distribution to all LRMs<br />

� multiple power sources (ac & dc)<br />

- conceptual modular allocation -<br />

34


lliedSignal<br />

A E R O S P A C E<br />

Partition Execs<br />

Thread schedulers, driven by event/priority/deadline;<br />

executes strictly within a partition created by K-Exec<br />

User-Mode<br />

software<br />

Kernel-Mode<br />

software<br />

Processor<br />

<strong>and</strong> I/O<br />

hardware<br />

App 1<br />

Node Software Architecture<br />

App 2<br />

App 3<br />

P-Exec 1 P-Exec 1 P-Exec 1<br />

P-Exec 2<br />

- modified “scheduler activation” type exec -<br />

ref.: A.S. Tanenbaum: “Distributed Operating <strong>Systems</strong>”, Prentice Hall, 1995, 614 pp., ISBN 0-13-219908-29<br />

App 4<br />

K-Exec<br />

Hardware<br />

Shared Function Libraries<br />

Shared functions in “execute-only”<br />

memory may be used by any partition<br />

App 5<br />

BIT<br />

Kernel Exec<br />

Simple, deterministic, roundrobin<br />

scheduler <strong>and</strong> partition<br />

management<br />

Lib. 1<br />

Lib. 2<br />

Lib. 3<br />

Host CPU & supporting logic<br />

Interrupt system, MMU, I/O<br />

35


lliedSignal<br />

A E R O S P A C E<br />

P1<br />

Node architecture<br />

External I/O External I/O External I/O<br />

IPU IPU Special IOM Generic IOM Generic IOM<br />

Special H/W<br />

P2 P3 P4 P5 P3 P6 P7 P8 P9 P10<br />

K-Exec K-Exec K-Exec K-Exec K-Exec<br />

Bus I/F Bus I/F Bus I/F Bus I/F Bus I/F<br />

Fault-tolerant Backplane Databus<br />

36


lliedSignal<br />

A E R O S P A C E<br />

Processor selection criteria*<br />

• processing throughput<br />

� VAX-MIPs, Whet/Drystones, SPEC95, etc.<br />

� don’t start with top-of-line (you may out-grow it be<strong>for</strong>e next gen is available = EOL)<br />

• processor architecture & support<br />

� must have believable roadmap <strong>for</strong> development of architecture (no AMD29K)<br />

� life-cycle of avionics >> PCs<br />

• embeddedness<br />

� desired: minimum number of external components, i.e., component integration<br />

� counters, timers (incl. watchdog)<br />

� cache<br />

� DRAM refresh<br />

� floating point unit<br />

� memory management unit<br />

� serial port UART<br />

� JTAG port <strong>for</strong> debug, BIT, shop test, software load<br />

• operating voltage<br />

� 5, 3.3, 2.5, 2.2, 1.8, etc. Vdc<br />

- desired: cheap, low-power embedded µP that does ∞ -loop in 10 msec -<br />

*not priotitized,<br />

n-exhaustive list<br />

37


lliedSignal<br />

A E R O S P A C E<br />

Processor selection criteria - cont’d<br />

• power consumption<br />

� desired: < 0.5 W (no 35 W Pentium ® Pro if using 4-10 µPs per cabinet or LRU)<br />

• temperature range<br />

• cache (instruction & data) size <strong>and</strong> level<br />

� L2/L3 may not be desired<br />

• memory management<br />

� virtual addresssing (page based)<br />

• error checking capability (e.g., bus parity)<br />

• exception & interrupt h<strong>and</strong>ling<br />

� at Kernel & Application Exec level<br />

� at application level<br />

• availability <strong>for</strong> integration<br />

� eventually: processor-die + memory + peripherals + bus I/F into single ASIC<br />

- hold-off actual selection as long as possible -<br />

38


lliedSignal<br />

A E R O S P A C E<br />

Processor selection criteria - cont’d<br />

• support <strong>for</strong> multi-processor configuration<br />

� synchronization<br />

� fault detection<br />

� redundancy management<br />

• in-house experience with processor family<br />

� design<br />

� compilers, debuggers, emulators, etc.<br />

� development/maintenance<br />

• portability of existing/legacy software<br />

� incl. device driver & O/S implications<br />

• tools <strong>and</strong> supporting vendors<br />

� robust compilers (validated) , linkers, debuggers, etc. (so-so <strong>for</strong> Intel)<br />

� real-time O/S<br />

• cost<br />

� recurring cost of complete processor core<br />

� development/maintenance<br />

• availability of evaluation boards & simulators<br />

ref.: M. Slater: “The microprocessor today”, IEEE Micro, Dec. 1996, pp. 32-44<br />

39


lliedSignal<br />

A E R O S P A C E<br />

but<br />

OASYS Backplane Databus<br />

• derived from ARINC-659 st<strong>and</strong>ard:<br />

� semi-duplex, serial, multi-drop, broadcast<br />

� table driven, deterministic, distributed control<br />

� fault tolerant, high integrity<br />

• same integrity<br />

• same availability<br />

• higher b<strong>and</strong>width<br />

• reduced complexity:<br />

� fewer operational modes (simplicity, dev., V&V, cert.)<br />

� simpler message protocol<br />

� simpler hardware<br />

• easier to change & add applications:<br />

� need <strong>for</strong>, <strong>and</strong> cost of changing bus traffic configuration<br />

• easier to integrate system (debug, dev.)<br />

• less costly<br />

ref.: K. Hoyme, K. Driscoll: “SAFEbus ”, Proc. 11th DASC, Seattle/WA, Oct. 1992, pp. 68-72<br />

40


lliedSignal<br />

A E R O S P A C E<br />

Backplane databus: backbone of the system<br />

• connects all processing nodes in the system<br />

• integration of numerous conventional point-to-point<br />

<strong>and</strong> broadcast databuses between LRUs<br />

• (time-)shared resource:<br />

• bus must provide fault tolerance (redundancy, distributed control, etc.)<br />

• bus interfaces must provide a high-integrity front-end<br />

• bus & bus protocol must ensure robust partitioning, while<br />

supporting cost-effective development, upgrade & addition of<br />

applications<br />

• supports multi-node architecture<br />

41


lliedSignal<br />

A E R O S P A C E<br />

Node architecture - generic processing module<br />

sets of<br />

redundant<br />

bus lines<br />

Clock<br />

Table<br />

Mem<br />

Clock<br />

µP<br />

DPRAM<br />

Bus I/F<br />

Controller<br />

- frame synchronized pair -<br />

µP<br />

DPRAM<br />

Bus I/F<br />

Controller<br />

Clock<br />

Clock<br />

Table<br />

Mem<br />

42


lliedSignal<br />

A E R O S P A C E<br />

sets of<br />

redundant<br />

bus lines<br />

Node architecture - generic I/O module<br />

Table<br />

Mem<br />

Clock<br />

µP<br />

DPRAM<br />

Bus I/F<br />

Controller<br />

analog, discrete, digital, audio<br />

I/F I/F<br />

FIFO<br />

Clock Clock<br />

Bus I/F<br />

Controller<br />

Table<br />

Mem<br />

43


lliedSignal<br />

A E R O S P A C E<br />

Resource partitioning in all nodes: time & space<br />

- the need <strong>for</strong> partitioning is driven by<br />

sharing of processing <strong>and</strong> communication resources -<br />

• Space partitioning:<br />

• guarantees integrity of allocated program & data<br />

memory space, registers, dedicated I/O<br />

• Time partitioning:<br />

• guarantees timely access to allocated (shared)<br />

processing & communication b<strong>and</strong>width<br />

• determinstic execution<br />

- at functional level, an integrated system with a robust chain of partitioning<br />

looks like a “virtual” federated system -<br />

44


lliedSignal<br />

A E R O S P A C E<br />

Growth Potential<br />

� Wake-vortex prediction<br />

� Wing-ice detection<br />

� Clear Air Turbulence detection<br />

� Volcanic ash detection<br />

� Enhanced Vision System (EVS)<br />

- expansion of IHAS baseline by integrating additional flight safety functions -<br />

45


lliedSignal<br />

A E R O S P A C E<br />

IHAS: stepping stone towards an integrated<br />

Enhanced Situational Awareness System (ESAS) ....<br />

EGPWS<br />

TCAS II<br />

Mode-S<br />

Warn & Caution<br />

WX/Windshear<br />

Radar<br />

Enh. TCAS<br />

IHAS<br />

Cond. & Perf.<br />

Monitoring<br />

Volc. Ash<br />

Wake Vortex<br />

Radar<br />

Terrain & Obst.<br />

Sensing<br />

ref.: F. George “Enhanced TCAS”, Business & <strong>Commercial</strong> Aviation, Oct. 96, pp. 60-63<br />

Dry-Hail Dry Hail<br />

HUD<br />

CAT<br />

Radar Posn.<br />

Correlation<br />

Imaging<br />

Sensors<br />

EVS<br />

ESAS<br />

1999 .................………...................... 2005 .....<br />

46


lliedSignal<br />

A E R O S P A C E<br />

Flight Operations Quality Assurance Tool (FOQA)<br />

�Accidents are not frequent enough to measure safety<br />

through accident rates<br />

�Absence of accidents does not necessarily imply “safety”<br />

�IHAS can monitor safety parameters <strong>for</strong> statistically<br />

�meaningful measurement of “Merit of Safety Quality”<br />

• relative safety<br />

• how close to hazardous condition<br />

• how often<br />

• statistical only: not traceable to particular flights<br />

• can be used to indentify unsafe SIDs/STARs, ATC procedures,<br />

etc.<br />

47


lliedSignal<br />

A E R O S P A C E<br />

Probability of<br />

CFIT<br />

Ex.: Safety Margin Prediction <strong>for</strong> CFIT<br />

Terrain<br />

Clearance<br />

Probability<br />

0<br />

3 o Glideslope<br />

Nominal<br />

Terrain Clearance<br />

Runway<br />

- similar statistical process as done <strong>for</strong> autol<strong>and</strong> cert. -<br />

48


lliedSignal<br />

A E R O S P A C E<br />

Unified AlliedSignal IMA approach<br />

• Necessity <strong>for</strong> SBUs/SBEs to have IMA:<br />

� response to RFIs<br />

� competitive reasons<br />

• Single concept <strong>for</strong> multiple SBUs/SBEs:<br />

� IHAS approach with Application Specific I/O Modules<br />

� single-company & generic solution towards Customer<br />

• Reduced NRE across applications:<br />

� re-use of backplane, modules, circuit design, O/S, BIT, V&V, etc.<br />

� fewer specific test equipment<br />

� sharing / pooling of resources from various SBUs/SBEs<br />

• Reduced RE:<br />

� economies of scale <strong>for</strong> “generic” modules <strong>and</strong> backplane<br />

� fewer partnumbers (documentation, spares, test equipm., etc.)<br />

� interchangeability of modules across applications<br />

• Enhanced functionality, safety, <strong>and</strong> utility:<br />

� e.g., integration of in<strong>for</strong>mation (e.g., IHAS “smart alerting”)<br />

- benefits to Customer <strong>and</strong> to AlliedSignal -<br />

49


lliedSignal<br />

A E R O S P A C E<br />

“common” “specific”<br />

IOM<br />

CPM<br />

(dual)<br />

PSM<br />

(dual)<br />

Bus<br />

+<br />

Mech<br />

O/S<br />

Maint S/W<br />

BIT S/W<br />

Unified AlliedSignal IMA approach<br />

IHAS<br />

Utilities<br />

Control IMA<br />

Com/Nav<br />

IMA<br />

- maximum re-use of common resources -<br />

Radar RF/DSP<br />

TCAS RF/DSP<br />

Appl. S/W<br />

tbd<br />

tbd<br />

50


lliedSignal<br />

A E R O S P A C E<br />

AlliedSignal Programs<br />

• <strong>Integrated</strong> Cockpit Avionics<br />

• <strong>Integrated</strong> Hazard Avoidance System<br />

• <strong>Integrated</strong> Utilities System<br />

1


lliedSignal<br />

A E R O S P A C E<br />

CNS Radios<br />

Comm Mgt<br />

Displays<br />

Data Concentr.<br />

Air Data &<br />

Inertial Ref<br />

On-Board Maint<br />

Pax Comm.<br />

Pax Entertain.<br />

Condition Mon.<br />

Flight Warning<br />

Flight Safety<br />

- FDR, CVR<br />

- TCAS<br />

- GPWS<br />

- WX<br />

FMS<br />

AP/AT<br />

Perf Mgt<br />

Typical transport aircraft systems<br />

Bleed Air<br />

Bleed Leak Det<br />

Avionics Cooling<br />

Cargo Fire Prot<br />

Eng. Fire Prot<br />

Smoke Detect<br />

Anti-Ice<br />

Cabin Air<br />

- pressure<br />

- conditioning<br />

Environmental Control<br />

PFCS<br />

SFCS<br />

AFS<br />

Avionics Flight Control<br />

Elec Pwr Gen<br />

Elec Pwr Distr<br />

Load Mgt<br />

Windshld Heat<br />

DC sensors<br />

Lighting<br />

- external<br />

- flight deck<br />

- cabin<br />

Cargo H<strong>and</strong>ling<br />

Potable Water<br />

Lavs & Waste<br />

Galley<br />

Escape System<br />

Oxygen<br />

Electrical<br />

Hyd Supply<br />

Control Surface<br />

Actuation<br />

L<strong>and</strong>ing Gears<br />

Steering<br />

Brakes<br />

Engine Control<br />

Thermal Mgt<br />

Thrust Reverse<br />

Fuel Control<br />

APU Control<br />

Propulsion<br />

Payload Hydro-Mechanical<br />

Hydro Mechanical<br />

ref.: D. Parry: “Electrical Load Management <strong>for</strong> the 777”, Avionics Magazine, Feb. ‘95, pp. 36-38<br />

ref.: “Avionics on the Boeing 777, Part 1-11”, Airline Avionics, May ‘94 - June ‘95<br />

ref.: M.D.W. McIntyre, C.A. Gosset: “The Boeing 777 fault tolerant air data inertial reference system ”, Proc. 14th DASC, Boston/MA, Nov. ‘95, pp. 178-183<br />

ref.: G. Bartley: “Model 777 primary flight control system”, Boeing Airliner Magazine, Oct/Dec ‘94, pp. 7-17<br />

ref.: R.R. Hornish: “777 autopilot flight director system”, Proc. 13th DASC, Phoenix/AZ, Nov. ‘94, pp. 151-156<br />

2


lliedSignal<br />

A E R O S P A C E<br />

Typical Environmental Control System<br />

3


Signal Inputs:<br />

• air data<br />

• heat load on/off<br />

• load shedding<br />

• throttle setting<br />

• air/gnd status<br />

• fuel/coolant temp<br />

• flow/temp/press<br />

dem<strong>and</strong><br />

lliedSignal<br />

A E R O S P A C E<br />

Typical Environmental Control System<br />

Sub-system Functions:<br />

• engine starting<br />

• bleed-air temp/press regulation<br />

• cabin pressure<br />

• cabin cooling<br />

• anti-ice, de-ice, de-fog<br />

• cooling hydr/electr/mech power devices<br />

• avionics cooling<br />

Signal Outputs:<br />

• valve drives<br />

• actuator drives<br />

• temp/flow/press<br />

• fault/warning<br />

• fuel flow recirc.<br />

dem<strong>and</strong><br />

Internal Sensors: Internal Actuators:<br />

Physical Inputs:<br />

• bleed/APU air<br />

• hydr fluid/coolant<br />

• electr. power<br />

• pneum. servo pwr<br />

• ram air<br />

• fuel<br />

• temperature<br />

• pressure<br />

• air flow<br />

• fluid flow<br />

• humidity<br />

• angular speed<br />

• ang./lin. position<br />

• valves<br />

– motor<br />

– solenoid<br />

• compressors<br />

– motor, turbine<br />

– air-fan<br />

• fluid pump<br />

• other EM devices<br />

Physical Outputs:<br />

• air flow at suitable<br />

temp & press<br />

• coolant flow at<br />

suitable temp &<br />

press<br />

• O2, N2 flow<br />

• APU air<br />

- multi-variable, multi-channel control -<br />

4


lliedSignal<br />

A E R O S P A C E<br />

<strong>Integrated</strong> Utilities System<br />

Environmental control:<br />

• very I/O intensive:<br />

� up to ≈ 90 sensors<br />

� up to ≈ 60 effectors<br />

• wide variety of I/O:<br />

� sensors: pressures, temperatures, flows, speeds, humidity<br />

� effectors: valves, compressors, pumps, ejectors, other EM devices<br />

� even next generation will still have many analog I/Os<br />

• involves switching high levels of electrical power:<br />

� 25 - 100 kW<br />

� precludes long cables: switching-electronics close to (or bolted onto) engine<br />

• future engines:<br />

� electrical start instead of air (requires > 100 kW!)<br />

� bleed-air system will be deleted through mech. integration (civil only)<br />

5


Environmental Control System (ECS) - technology trends<br />

<strong>Integrated</strong> Utilities<br />

<strong>Integrated</strong> <strong>Systems</strong><br />

Microprocessor/<br />

Software<br />

Hybrid Analog Digital<br />

Solid State Analog<br />

Magnetic Amplifier<br />

lliedSignal<br />

A E R O S P A C E<br />

System<br />

Complexity<br />

DC9<br />

C5A<br />

DC-10 DC 10<br />

747<br />

F-15 15<br />

F-18 18 C/D<br />

B757/767<br />

�� MD-11 MD 11<br />

777<br />

� B767 EBAS<br />

A330/340<br />

1960 1970 1980 1990 2000<br />

B-2<br />

A320<br />

V-22 22<br />

ICECS<br />

F-22 22<br />

F-18 18 E/F<br />

ref.: “Jane’s Avionics, 1992-1993”, Jane’s In<strong>for</strong>mation Group Inc., 664 pp., ISBN 0-7106-0990-6<br />

ref.: “Jane’s All the World’s Aircraft, 1993-1994”, Jane’s In<strong>for</strong>mation Group Inc., 733 pp., ISBN 0-7106-1066-1<br />

�� JAST<br />

6


lliedSignal<br />

A E R O S P A C E<br />

- Components of AlliedSignal F-22 ATF IECS -<br />

- over 120 control channels -<br />

7


AlliedSignal MD-11 ECS Controller <strong>and</strong> Sensors<br />

lliedSignal<br />

A E R O S P A C E<br />

8


Related utilities sub-systems that require control at or near the engine<br />

lliedSignal<br />

A E R O S P A C E<br />

CNS Radios<br />

Comm Mgt<br />

Displays<br />

Data Concentr.<br />

Air Data &<br />

Inertial Ref<br />

On-Board Maint<br />

Pax Comm.<br />

Pax Entertain.<br />

Condition Mon.<br />

Flight Warning<br />

Flight Safety<br />

- FDR, CVR<br />

- TCAS<br />

- GPWS<br />

- WX<br />

FMS<br />

AP/AT<br />

Perf Mgt<br />

Bleed Air<br />

Bleed Leak Det<br />

Avionics Cooling<br />

Cargo Fire Prot<br />

Eng. Fire Prot<br />

Smoke Detect<br />

Anti-Ice<br />

Cabin Air<br />

- pressure<br />

- conditioning<br />

Environmental Control<br />

PFCS<br />

SFCS<br />

AFS<br />

Avionics Flight Control<br />

Elec Pwr Gen<br />

Elec Pwr Distr<br />

Load Mgt<br />

Windshld Heat<br />

DC sensors<br />

Lighting<br />

- external<br />

- flight deck<br />

- cabin<br />

Electrical<br />

Cargo H<strong>and</strong>ling<br />

Potable Water<br />

Lavs & Waste<br />

Galley<br />

Escape System<br />

Oxygen<br />

- technology demonstration -<br />

Propulsion<br />

Hyd Supply<br />

Control Surface<br />

Actuation<br />

L<strong>and</strong>ing Gears<br />

Steering<br />

Brakes<br />

Engine Control<br />

Thermal Mgt<br />

Thrust Reverse<br />

Fuel Control<br />

APU Control<br />

Payload Hydro-Mechanical<br />

Hydro Mechanical<br />

9


Environmental Control & Thermal Management System<br />

Engine<br />

APU<br />

Ground<br />

Source<br />

Power<br />

Source<br />

Aircraft<br />

Computers<br />

Flight<br />

Deck<br />

lliedSignal<br />

A E R O S P A C E<br />

Bleed<br />

Air<br />

dem<strong>and</strong><br />

dem<strong>and</strong><br />

dem<strong>and</strong><br />

Diagnostics<br />

Controls<br />

Selector<br />

Displays<br />

Anti-Ice<br />

De-Ice<br />

Air<br />

Cycle<br />

Unit<br />

Vapor<br />

Cycle<br />

Unit<br />

Windows<br />

Cabin<br />

Temp<br />

Equip<br />

Loads<br />

Thermal<br />

Mgmt<br />

Fuel<br />

Cabin<br />

Pressure<br />

avionics<br />

radar<br />

hydraulics<br />

electr. power<br />

10


A/C<br />

Loads<br />

lliedSignal<br />

A E R O S P A C E<br />

J/IST Suite Consensus Demonstration Architecture<br />

Fuel<br />

Engine<br />

Oil<br />

ref.: J/IST RFP<br />

Engine<br />

Bleed-Air<br />

APU<br />

Other<br />

Sub-system<br />

Controllers<br />

FADEC<br />

T/EMM<br />

Controller<br />

Electr. Power<br />

Distribution<br />

External<br />

Power<br />

- mechanical integration <strong>and</strong> controls integration -<br />

Combustor<br />

Heat Exchanger<br />

Starter/Generator<br />

On same shaft:<br />

• APU<br />

• starter/generator<br />

• bleed-air compressor<br />

11


lliedSignal<br />

A E R O S P A C E<br />

<strong>Integrated</strong> <strong>Modular</strong> Utilities Control System<br />

ECS<br />

Cabin Pressure<br />

Vapor Cycle Sys.<br />

Bleed Air<br />

APU<br />

Electric Power<br />

Hydraulic Sys.<br />

Power<br />

Supply<br />

Sensors &<br />

Actuators<br />

CPU<br />

Module<br />

Power<br />

Electronics<br />

Digital<br />

Interface<br />

Other<br />

Functions<br />

Conventional Controls <strong>Integrated</strong> Thermal/Environmental Control<br />

- mechanical integration <strong>for</strong>ces controls integration -<br />

12


lliedSignal<br />

A E R O S P A C E<br />

Integration of controls<br />

• <strong>Integrated</strong> control system has higher criticality<br />

• So, (more) fault tolerance required<br />

* MAFT is not limited to 4 nodes<br />

• T/EMM Controller is based on MAFT: Multi-computer<br />

Architecture <strong>for</strong> Fault Tolerance:<br />

� a plat<strong>for</strong>m of 4* semi-autonomous computer nodes (lanes)<br />

� connected by a serial-link broadcast bus network<br />

� each of the 4 nodes (lanes) is partitioned into a Computing<br />

Module <strong>and</strong> an I/O Module<br />

� the computing module is partitioned into an Applications<br />

Processor <strong>and</strong> an RTEM (Real-Time Executive Module)<br />

co-processor<br />

ref.: C.J. Walter, R.M. Kieckhafer, A.M. Finn: “MAFT: a Multicomputer Architecture <strong>for</strong> Fault-Tolerance in Real-Time Control <strong>Systems</strong>”, Proc. IEEE Real Time<br />

<strong>Systems</strong> Symp., San Diego/CA, Dec. ‘85, 8 pp.<br />

ref.: C.J. Walter: “MAFT: an architecture <strong>for</strong> reliable fly-by-wire flight control”, proc. 8th DASC, San Jose/CA, Oct. ‘88, pp. 415-421<br />

ref.: L. Lamport, R. Shostak, M. Pease: “The Byzantine Generals Problem”, ACM Trans. on Programming Languages & <strong>Systems</strong>, Vol. 4, No. 3, July ‘82, pp. 382-401<br />

ref.: M. Barborak, M. Malek, A. Dahbura: “The Consensus Problem in Fault-Tolerant Computing”, ACM Computing Surveys, Vol. 25, No. 2, June ‘93, pp. 171-220<br />

13


lliedSignal<br />

A E R O S P A C E<br />

RTEM<br />

AP<br />

IOP<br />

RTEM-based system<br />

fully connected broadcast network<br />

(repeated <strong>for</strong> all nodes)<br />

RTEM<br />

AP<br />

IOP<br />

RTEM<br />

AP<br />

IOP<br />

RTEM<br />

AP<br />

IOP<br />

system busses<br />

14


lliedSignal<br />

A E R O S P A C E<br />

MAFT/RTEM<br />

• MAFT: original theory & concepts developed <strong>and</strong> patented by<br />

Bendix Aerospace Technology Center, Columbia/MD (1970s)<br />

• Concept:<br />

� fault tolerant co-processor which provides RedMan functions<br />

<strong>for</strong> real-time mission-critical systems<br />

� dedicated h/w, makes overhead functions transparent to APs:<br />

looks like peripheral (memory mapped or I/O port)<br />

� deterministic, design-<strong>for</strong>-validation (certification)<br />

� to reduce system development, validation cost<br />

� supports dissimilar AP µPs & N-Version s/w to protect<br />

against generic faults<br />

� makes no assumptions regarding types of faults/errors to be<br />

tolerated: any fault/error is possible, no matter how malicious<br />

15


lliedSignal<br />

A E R O S P A C E<br />

Real-Time Executive Module (RTEM)<br />

• Hardware-implemented executive (overhead)<br />

functions associated with redundancy mgmt:<br />

� fault-tolerant inter-channel communication<br />

� fault-tolerant inter-channel synchronization<br />

� voting<br />

� error detection, isolation, recovery<br />

� dynamic system reconfiguration<br />

• faulty channel exclusion<br />

• healthy channel readmission<br />

� fault tolerant task scheduling<br />

� RTEM-AP interface<br />

• Provides mathematically provable correctness<br />

16


lliedSignal<br />

A E R O S P A C E<br />

Global consistency<br />

• Basis <strong>for</strong> reliability in a distributed fault-tolerant system<br />

• Must be established on all critical system parameters<br />

• Two <strong>for</strong>ms of agreement:<br />

� “Byzantine Agreement” (exact agreement) on boolean data<br />

• Agreement: all healthy lanes agree on contents of every message<br />

sent.<br />

• Validity: all healthy lanes agree on contents of messages sent by<br />

any other healthy lane, as originally sent.<br />

� “Approximate Agreement” (interactive consistency) on<br />

numerical data<br />

• Agreement: all healthy lanes eventually (within acceptable time,<br />

after multiple rounds of vote/exchange/vote) agree on values that<br />

are within an acceptable deviance “ε” of each other, ∀ ε > 0<br />

• Validity: the voted value obtained by each healthy lane must be<br />

within the range of initial values generated by the healthy lanes.<br />

- the ability of non-faulty lanes to reach agreement despite presence of<br />

(some) faulty lanes -<br />

17


lliedSignal<br />

A E R O S P A C E<br />

Analog I/O<br />

RTEM-based node<br />

RTEM<br />

Applications<br />

Processor<br />

Input/Output<br />

Processor<br />

fully connected<br />

broadcast network<br />

Discrete I/O<br />

system<br />

bus(es)<br />

18


from all other nodes +<br />

wrap from own node<br />

lliedSignal<br />

A E R O S P A C E<br />

RTEM block-diagram<br />

Message<br />

Checker<br />

Fault<br />

Tolerator<br />

Voter<br />

Transmitter<br />

Synchronizer<br />

Task<br />

Scheduler<br />

Task<br />

Communicator<br />

to all other nodes<br />

to/from<br />

applications<br />

processor<br />

19


lliedSignal<br />

A E R O S P A C E<br />

Real-Time Executive Module (RTEM)<br />

• Transmitter + Receivers + Message Checker:<br />

� fault-tolerant inter-channel communication<br />

• Voter:<br />

� Approximate (with deviance limit), or Boolean<br />

• Task Scheduler:<br />

� event driven, priority based, globally verified (inc. WDT)<br />

� allows wide variety of execution times & iteration rates<br />

• Synchronizer:<br />

� loose-sync (frame based), periodic resync (exchange, vote,<br />

correct local clocks = distr. FT global clock)<br />

• Fault Tolerator:<br />

� collects inputs from all error detection mechanisms (≈ 25),<br />

<strong>and</strong> generates error reports (voted)<br />

20


lliedSignal<br />

A E R O S P A C E<br />

RTEM Prototype Board - VME 6U<br />

21


lliedSignal<br />

A E R O S P A C E<br />

Recvr (x4)<br />

X-mitter (x1)<br />

Msg Chkr<br />

Mem Mgt<br />

Task<br />

Sched<br />

Flt Tol.<br />

Buf. Ctl<br />

Seq<br />

RTEM Prototype Board<br />

RX/TX Conn.<br />

Voter<br />

Sync<br />

22


lliedSignal<br />

A E R O S P A C E<br />

MAFT/RTEM Hardware Integration<br />

TTL-version MAFT<br />

mid-’80s<br />

2x3x7 ft cabinet<br />

Single-Chip RTEM<br />

≈ 80k gates FPGA<br />

5x FPGA Chip Set<br />

VME 6U<br />

RTEM Prototype Board<br />

mid-’90s<br />

23


21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

lliedSignal<br />

A E R O S P A C E<br />

C<strong>and</strong>idate systems <strong>for</strong> <strong>Integrated</strong> Utilities<br />

Air Conditioning<br />

Autoflight<br />

Communications<br />

Electric Power<br />

Equipment/Furnishings<br />

Fire Protection<br />

Flight Controls<br />

Fuel<br />

Hydraulic Power<br />

Ice <strong>and</strong> Rain Protection<br />

�<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

38<br />

45<br />

49<br />

Indicating/Recording <strong>Systems</strong><br />

L<strong>and</strong>ing Gear<br />

Lights<br />

Navigation<br />

Oxygen<br />

Pneumatic System<br />

Water/Waste<br />

- airframe systems by ATA chapter -<br />

Central Maintenance System<br />

Airborne Auxiliary Power<br />

� indicates c<strong>and</strong>idate system<br />

24


1<br />

<strong>Integrated</strong> <strong>and</strong> <strong>Modular</strong> Avionics<br />

• Introduction<br />

• Why change avionics?<br />

• Integration<br />

• <strong>Modular</strong>ization<br />

�� Future .....<br />

©1997 F.M.G. Dörenberg


2<br />

Some thoughts on the future ........<br />

� further cost reduction<br />

• avionics NRC: systems & software<br />

engineering, architecture/integration<br />

• production RC<br />

� deletion of avionics<br />

• GPS “sole means of nav” by 2010 in USA<br />

• demise of NDB, VOR, DME, ILS<br />

� additional avionics & functions<br />

• ATN, GPS, CMS, FBW, ESAS, ....<br />

� consolidation/integration of avionics<br />

� more datalinking<br />

• ADS, WX cont’d →<br />

ref.: A. Gerold: “The Federal Radionavigation Plan”, Avionics Magazine, May 1996, pp. 34-35<br />

©1997 F.M.G. Dörenberg


3<br />

FANS: Future Air Navigation System<br />

©1997 F.M.G. Dörenberg


4<br />

Future ........ (cont’d)<br />

• device density <strong>and</strong> per<strong>for</strong>mance<br />

• system complexity <strong>and</strong> size<br />

• remote electronics:<br />

� end-to-end digitalization<br />

� interfacing & computing closer to data<br />

source or to point of application<br />

� “smart” sensors, actuators, skins, etc.<br />

• st<strong>and</strong>ard real-time operating systems<br />

� application transparency to hardware<br />

� strict partitioning<br />

ref.: M. Rodriguez, M. Stemig: “Evolution of embedded avionics operating systems”, presented at DASC-95, Boston/MA, Nov. ‘95, 5 pp.<br />

cont’d →<br />

©1997 F.M.G. Dörenberg


5<br />

Component <strong>and</strong> System Per<strong>for</strong>mance trends<br />

Note: curves not necessarily drawn to scale<br />

"now-ish"<br />

Processing & Memory<br />

Density<br />

ref.: G. Stix: "Toward 'point One' - Trends in Semiconductor Manufacturing," Scientific American, February 1995, pp. 90-95<br />

ref.: G.D. Hutcheson, J.D. Hutcheson: "Technology <strong>and</strong> Economics in the Semiconductor Industry," Scientific American, January 1996, pp. 54-62<br />

Level of Functional<br />

Integration<br />

Reliability<br />

System<br />

Cost<br />

Power<br />

Weight<br />

Volume<br />

time<br />

©1997 F.M.G. Dörenberg


6<br />

NUM BER OF TRANSISTORS PER CHIP<br />

9<br />

10<br />

8<br />

10<br />

7<br />

10<br />

6<br />

10<br />

5<br />

10<br />

4<br />

10<br />

4K<br />

1K<br />

4004<br />

TIME FRAMES FOR<br />

LITHOGRAPHY SYSTEMS<br />

CONTACT ALIGNERS<br />

PROXIMITY ALIGNERS<br />

PROJECTION ALIGNERS<br />

FIRST G-LINE STEPPERS<br />

ADVANCED G-LINE STEPPERS<br />

FIRST I-LINE STEPPERS<br />

ADVANCED I-LINE STEPPERS<br />

FIRST DEEP-UV STEPPERS<br />

8080<br />

6800<br />

68000<br />

16K<br />

64K<br />

8086<br />

80286<br />

POWER PC 601<br />

80486<br />

256K<br />

68030<br />

68020 80386<br />

INTEL MICROPROCESSOR<br />

MOTOROLA MICROPROCESSOR<br />

SIZE OF MEMORY (DRAM) IN BITS<br />

YEAR OF AVAILABILITY<br />

ref.: G.D. Hutcheson, J.D. Hutcheson: "Technology <strong>and</strong> Economics in the Semiconductor Industry," Scientific American, January 1996, pp. 54-62<br />

ref.: M. Slater: “The microprocessor today”, IEEE Micro, Dec. 1996, pp. 32-44<br />

68040<br />

80786<br />

80786<br />

PENTIUM<br />

PRO<br />

POWER PC 604<br />

PENTIUM<br />

10<br />

1970 '72 '74 '76 '78 '80 '82 '84 '86 '88 '90 '92 '94 '96 '98 2000<br />

3<br />

1M<br />

POWER PC 620<br />

4M<br />

16M<br />

64M<br />

256M<br />

Exponential<br />

increase of<br />

transistor density<br />

Current range: 10 6 → 50x10 6<br />

transistor per chip; can be used to:<br />

• increase per<strong>for</strong>mance (PC µPs)<br />

<strong>and</strong>/or<br />

• integrate more functions with<br />

µP <strong>and</strong> evolve towards<br />

complete system-on-chip<br />

(embedded applications)<br />

©1997 F.M.G. Dörenberg


7<br />

Component <strong>and</strong> System Per<strong>for</strong>mance trends<br />

Die size<br />

Technology size<br />

Mips<br />

MHz<br />

RAM<br />

ROM<br />

Price<br />

Power<br />

Transistors<br />

Wafer size<br />

ref.: EE Times, May 22, ‘95, p. 16<br />

- DSP integration through the decades -<br />

1982 1992 2002<br />

50 mm<br />

3 µ<br />

5 Mips<br />

20 MHz<br />

144 words<br />

1.5k words<br />

$150<br />

250 mW/Mips<br />

50k transistors<br />

3-in wafer<br />

50 mm<br />

0.8 µ<br />

40 Mips<br />

80 MHz<br />

1k words<br />

4k words<br />

$15<br />

12.5 mW/Mips<br />

500k transistors<br />

6-in wafer<br />

50 mm<br />

0.25 µ<br />

400 Mips<br />

200 MHz<br />

16k words<br />

1.5M words<br />

$1.50<br />

0.25 mW/Mips<br />

5M transistors<br />

12-in wafer<br />

source: Texas Instruments<br />

- further price/per<strong>for</strong>mance improvements to be expected -<br />

©1997 F.M.G. Dörenberg


8<br />

Future ........ (cont’d)<br />

• new, certifiable bi-directional databuses:<br />

– integrate databuses → reduce wiring & h/w<br />

ARINC-629 ASICs & coupler very expensive<br />

– SAE Avionics <strong>Systems</strong> Div.: 2 Gbit/s<br />

serial/parallel databus iniative “Unified Network<br />

Interconnect”, based on IEEE SCI<br />

– NASA/Industry AGATE initiative: ECHELON<br />

databus<br />

• new, simpler, af<strong>for</strong>dable backplane bus:<br />

– ARINC-659 h/w <strong>and</strong> ARINC-650 connectors<br />

very expensive<br />

ref.: C. Adams: “Emerging Databus St<strong>and</strong>ards”, Avionics Magazine, March ‘96, pp. 18-25<br />

ref.: K. Hoyme, K. Driscoll: “SAFEbus TM ”, Proc. 11th DASC, pp. 68-72<br />

ref.: “Automated cockpits special report - Part 1 & 2”, Aviation Week & Space Technology, Jan 30 ‘95, pp. 52-65, Feb. 6 ‘95, pp. 48-55<br />

©1997 F.M.G. Dörenberg


9<br />

Future ........ (cont’d)<br />

• improved human factors (safety)<br />

• “open st<strong>and</strong>ard” LRMs, LRM → BFE?<br />

• electrical power: 270 Vdc, Vac, battery backup?<br />

• HOL source code ownership?<br />

• “more electric” aircraft ? (e.g., development of powerful rare-earth PM motors)<br />

• full-time APUs (much higher APU rel., APU bleed-air → more efficient engines)<br />

• new processor architectures (e.g., “wormhole computer”?)<br />

• ??<br />

©1997 F.M.G. Dörenberg


10<br />

CNS Radios<br />

Comm Mgt<br />

Displays<br />

Data Concentr.<br />

Air Data &<br />

Inertial Ref<br />

On-Board Maint<br />

Pax Comm.<br />

Pax Entertain.<br />

Condition Mon.<br />

Flight Warning<br />

Flight Safety<br />

- FDR, CVR<br />

- TCAS<br />

- GPWS<br />

- WX<br />

FMS<br />

AP/AT<br />

Perf Mgt<br />

Future ........ (cont’d)<br />

Bleed Air<br />

Bleed Leak Det<br />

Avionics Cooling<br />

Cargo Fire Prot<br />

Eng. Fire Prot<br />

Smoke Detect<br />

Anti-Ice<br />

Cabin Air<br />

- pressure<br />

- conditioning<br />

Environmental Control<br />

PFCS<br />

SFCS<br />

AFS<br />

Avionics Flight Control<br />

Elec Pwr Gen<br />

Elec Pwr Distr<br />

Load Mgt<br />

Windshld Heat<br />

DC sensors<br />

Lighting<br />

- external<br />

- flight deck<br />

- cabin<br />

Cargo H<strong>and</strong>ling<br />

Potable Water<br />

Lavs & Waste<br />

Galley<br />

Escape System<br />

Oxygen<br />

Electrical<br />

Engine Control<br />

Thermal Mgt<br />

Thrust Reverse<br />

Fuel Control<br />

APU Control<br />

Propulsion<br />

Hyd Supply<br />

Control Surface<br />

Actuation<br />

L<strong>and</strong>ing Gears<br />

Steering<br />

Brakes<br />

Payload Hydro-Mechanical<br />

Hydro Mechanical<br />

6-7 7 IMAs + remotes<br />

©1997 F.M.G. Dörenberg


11<br />

150 k<br />

↑<br />

Total airplane<br />

signal interfaces<br />

(digital words / labels<br />

& analog)<br />

100 k<br />

50 k<br />

System Complexity <strong>and</strong> Size - trends -<br />

747-200<br />

System<br />

Complexity<br />

747-400<br />

777-200<br />

757/767-200<br />

0<br />

1970 1980<br />

Year<br />

1990<br />

↑<br />

↑<br />

installed<br />

software<br />

100 MB<br />

80 MB<br />

20 MB<br />

10 MB<br />

System<br />

Size<br />

2x every 2 years<br />

A310<br />

partially driven<br />

by Ada req't<br />

A320<br />

A330/340<br />

747-400<br />

777-200<br />

747-200<br />

757/767-200<br />

Apollo<br />

0<br />

1970 1975 1980 1985 1990<br />

Year<br />

1995<br />

ref.: P. Gartz: “<strong>Systems</strong> Engineering,” tutorial at 13th & 14th DASC, Boston/MA, Nov. 1995; ref.: Airbus Industries (pers. conv.)<br />

ref.: P. Gartz: “Trends in avionics systems architecture”, presented at 9th DASC, Virginia Beach/VA, Oct. ‘90, 23 pp.<br />

ref.: P. Pelton, K. Scarborough.: “<strong>Systems</strong> Engineering Experiences from the 777 AIMS program,” proc. 14th AIAA/IEEE DASC, Boston/MA, Nov. 1995<br />

↑<br />

> 2M SLOCs<br />

©1997 F.M.G. Dörenberg


12<br />

150k<br />

↑<br />

Total airplane<br />

signal interfaces<br />

(digital words / labels<br />

& analog)<br />

100k<br />

50k<br />

747-200<br />

System complexity - trends -<br />

757/767-200<br />

747-400<br />

0<br />

1970 1980 1990<br />

ref.: P. Gartz: “<strong>Systems</strong> Engineering,” tutorial at 13th & 14th DASC, Boston/MA, Nov. 1995; ref.: Airbus Industries (pers. conv.)<br />

ref.: P. Gartz: “Trends in avionics systems architecture”, presented at 9th DASC, Virginia Beach/VA, Oct. ‘90, 23 pp.<br />

ref.: P. Pelton, K. Scarborough.: “<strong>Systems</strong> Engineering Experiences from the 777 AIMS program,” proc. 14th AIAA/IEEE DASC, Boston/MA, Nov. 1995<br />

777-200<br />

©1997 F.M.G. Dörenberg


13<br />

100 MB<br />

80 MB<br />

20 MB<br />

10 MB<br />

747-200<br />

Apollo<br />

System size - trends -<br />

2x every 2 years<br />

A310<br />

757/767-200<br />

A320<br />

747-400<br />

A330/340<br />

0<br />

1970 1980 1990<br />

partially driven<br />

by Ada req.<br />

ref.: P. Gartz: “<strong>Systems</strong> Engineering,” tutorial at 13th & 14th DASC, Boston/MA, Nov. 1995; ref.: Airbus Industries (pers. conv.)<br />

ref.: P. Gartz: “Trends in avionics systems architecture”, presented at 9th DASC, Virginia Beach/VA, Oct. ‘90, 23 pp.<br />

ref.: P. Pelton, K. Scarborough.: “<strong>Systems</strong> Engineering Experiences from the 777 AIMS program,” proc. 14th AIAA/IEEE DASC, Boston/MA, Nov. 1995<br />

777-200<br />

©1997 F.M.G. Dörenberg


14<br />

source: BCAG<br />

Source Lines of Code<br />

(kSLOCs)<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Software Size - example: 777-200<br />

490<br />

AIMS<br />

415<br />

CMS<br />

377<br />

CNI<br />

278<br />

ECS<br />

230<br />

ELEC<br />

Total: 2.1 MSLOCs<br />

combined Elec/Mech 634k > AIMS<br />

168<br />

Flt Ctl<br />

126<br />

Mech/Hyd<br />

49<br />

Flt Deck<br />

- mech/elec systems SLOC combined is larger than AIMS -<br />

excl. BFE equipment<br />

30<br />

Prop<br />

©1997 F.M.G. Dörenberg


15<br />

System Complexity <strong>and</strong> Size<br />

Typical large jetliner:<br />

� ≈ 8,000 inputs & outputs<br />

� these I/Os interface to ≈ 700 peripheral units<br />

at various parts of the aircraft<br />

� ≈ 90 different avionics units<br />

� ≈ 160 microprocessors (≈ 8 types)<br />

� adding/changing of avionics is complicated &<br />

expensive<br />

� many flight-deck switches & controls<br />

(e.g., 250 on 747-400, down from 900 on 747-200)<br />

source: Airbus Industries<br />

©1997 F.M.G. Dörenberg


16<br />

Avionics interconnection system*<br />

• Example: Boeing 747<br />

� some 1,500 circuit breakers<br />

� 200,000 individually marked lengths of cable<br />

� total ≈ 225 km (140 miles)<br />

� 400,000 connections<br />

� 14,000 connectors<br />

� 3,000 splices<br />

� 35,000 ring terminals<br />

� over 1,000,000 individual parts<br />

� “system” accounts <strong>for</strong> ≈ 10% of a/c price tag<br />

ref.: A. Emmings: “Wire power”, British Airways World Engineering, Iss. 8, July/Aug. ‘95, pp. 40-<br />

* exc. main power feeds<br />

©1997 F.M.G. Dörenberg


17<br />

Given:<br />

Extrapolation ......<br />

• 777 processing power ≈ equivalent to<br />

1,000 x 486<br />

Assuming:<br />

• Moore’s Law (2x every 18 months)<br />

Hence:<br />

• “single-processor” 777 within 15 years....<br />

“Computers in the future may weigh no more than 1.5 tons”<br />

Popular Mechanics magazine, 1949<br />

- <strong>for</strong>ecasting the wonders of modern technology -<br />

ref.: Gordon Moore, 1966, on per<strong>for</strong>mance, complexity, <strong>and</strong> number of transistors per<br />

13<br />

©1997 F.M.G. Dörenberg


18<br />

Enabling technologies<br />

• Components<br />

• Architectures<br />

• Communication<br />

• Design / development processes<br />

- bottom line: technology, people, processes -<br />

©1997 F.M.G. Dörenberg


19<br />

Enabling technologies<br />

- components -<br />

� integration (incl. RF)<br />

� miniaturization, high-density packaging,<br />

improved chip-to-package size efficiency<br />

(Multi Chip Module, Chip-On-Board, Flip-Chip,<br />

Chip-Scale- Package, 3-D stacking, etc.)<br />

� high temperature electronics (THE, e.g. SiC)<br />

� fault-tolerant electronics (FTE), chip-level<br />

redundancy<br />

� chip & inter-chip BIT<br />

ref.: G. Derman: “Interconnects & Packaging - Part 1: Chip-Scale Packages”, EE Times, 26 Feb. ‘96, pp. 41,70-72<br />

ref.: T. DiStefano, R. Marrs: “Building on the surface-mount infrastructure”, EE Times, 26 Feb. ‘96, pp. 49<br />

ref.: HITEN (High Temp. Electronics Network)“Aerospace applications of High Temperature Electronics”, 13 May ‘96, http://www.hiten.com/hiten/categories/aero<br />

ref.: S. Birch: “The hot issue of aerospace electronics”, SAE Aerospace Engineering, July ‘95, pp. 4-6<br />

ref.: J.A. Sparks: “High temperature electronics <strong>for</strong> aerospace applications”, proc. ERA Avionics Conf., London,Nov./Dec. ‘94, pp. 8.2.1-8.2.5<br />

©1997 F.M.G. Dörenberg


20<br />

Enabling technologies<br />

- components -<br />

• MCMs:<br />

� reduced size, increased per<strong>for</strong>mance<br />

� low inductive/capacitive parasitics<br />

� lower supply noise & ground bounce<br />

� very expensive (mfg & test)<br />

� 3-D stacking (e.g., memory) poses thermal problems<br />

� military niche market <strong>for</strong> time being<br />

PCB<br />

PCB<br />

thru-hole<br />

device<br />

thru-hole<br />

device<br />

MCM<br />

MCM<br />

ref.: J.H. Mayer: “Pieces fall into place <strong>for</strong> MCMs”, Military & Aerospace Electronics, 20 March ‘96, pp. 20-<br />

substrate<br />

SMT device<br />

SMT device<br />

©1997 F.M.G. Dörenberg


Enabling technologies<br />

- drivers <strong>for</strong> high-volume = low-cost components -<br />

• (mobile) PC <strong>and</strong> Com industry :<br />

� circuit integration & packaging<br />

� PC-Card: highest density PCB technology (PCMCIA)<br />

� powerful general-purpose processors<br />

• Automotive industry:<br />

� high temperature electronics<br />

� coming: ruggedized “laptop” LCDs*<br />

(temp/vibe/sunlight environment similar to aviation application)<br />

* there is no reason why (smart) Display Units cannot<br />

be reduced to the size of notebook PC<br />

©1997 F.M.G. Dörenberg


22<br />

Electronics evolution<br />

©1997 F.M.G. Dörenberg


23<br />

Enabling technologies<br />

- design / development -<br />

• Integration causes a shift in responsibilities:<br />

� component suppliers → circuit integrators<br />

� hardware designers → chip/module integrators<br />

� avionics suppliers → system integrators<br />

©1997 F.M.G. Dörenberg


24<br />

Examples of integration at component level<br />

• processor modules<br />

• power supply modules<br />

• RF modules<br />

• I/O modules<br />

©1997 F.M.G. Dörenberg


25<br />

236-pin<br />

connector<br />

Example: PC mother-board in a module<br />

photo: courtesy Seiko/Epson via S-MOS <strong>Systems</strong> Inc, San Jose/CA<br />

8.5 cm (3 3/8 in.)<br />

5.4 cm<br />

(2 1/8 in.)<br />

Cardio-486, 5/96<br />

486DX2/DX4<br />

25-100 MHz<br />

up to 32 MB RAM<br />

up to 4 MB Flash<br />

512 kB VRAM<br />

256 kB BIOS ROM<br />

LCD/RGB SVGA<br />

IDE Hard/Floppy Dr<br />

Keyboard ctlr<br />

Power Mgt<br />

Complete<br />

486 PC AT<br />

with PC-card<br />

<strong>for</strong>m factor<br />

(frmr PCMCIA)<br />

©1997 F.M.G. Dörenberg


26<br />

Example: integrated power supply modules<br />

28 → 5 Vdc/dc converter (100 W)<br />

ADDC02805S<br />

3.8 cm<br />

(1½ in.)<br />

7 cm (2 3/4 in.)<br />

ref.: D. Maliniak: “<strong>Modular</strong> dc-dc converter sends power density soaring”, Electronic Design, Aug. 21 ‘95, pp. 59-<br />

photo: courtesy Analog Devices, Norwood/MA, 1996<br />

©1997 F.M.G. Dörenberg


27<br />

Example: integrated X-b<strong>and</strong> power module<br />

6x HFET MMIC @ 12 W<br />

13 dB gain<br />

400 MHz b<strong>and</strong>w.<br />

Texas Instruments transmitter module<br />

> 30% PAE (9.5-9.9 GHz)<br />

built-in modulator<br />

built-in gate regulator<br />

ref.: J. Sweder et al.: “Compact, reliable 70-watt X-b<strong>and</strong> power module with greater than 30-percent PAE”, proc. MTT symposium, June 1996<br />

waveguide output<br />

MTBF > 400k hrs<br />

6.5 x 3.8 x 0.5 cm (2½ x 1.1 x 0.2 in.)<br />

©1997 F.M.G. Dörenberg


28<br />

ref.: DDC (ILC Data Device Corp.) databook 1996<br />

Example: integrated discrete-to-digital interface<br />

DD-03201<br />

•Inputs:<br />

• 96 non-redundant, or<br />

• 32 triplex inputs<br />

•Configurable:<br />

• 28V/Open<br />

• 28V/Gnd, or<br />

• Open/Gnd<br />

•Interface:<br />

• µP or<br />

• A429 output<br />

•Programmable debounce<br />

•BIST<br />

•MTBF @ 64° C, est.:<br />

• 270,000 hrs (96 in)<br />

• 333,000 hrs (32 in)<br />

•Size: 2.8x2.8 cm (1.1 x 1.1”)<br />

©1997 F.M.G. Dörenberg


29<br />

Cold-Cathode Field Emission Displays (FEDs)<br />

Anode<br />

Red phosphor<br />

Cathode<br />

Red sub-pixel Green sub-pixel<br />

Glass face plate<br />

Individual pixel<br />

Green phosphor<br />

Cathode conductor<br />

Glass<br />

Column line<br />

Microtips<br />

Blue sub-pixel<br />

Blue phosphor<br />

Indium-ten-oxide layer<br />

Gate row line +<br />

Resistive<br />

layer<br />

- CRT per<strong>for</strong>mance & image quality in low-power flat-panel display -<br />

(emerging challenge to AM-LCDs?)<br />

ref.: ”FED up with LCDs?”, Portable Design, March ‘96, pp. 20-25<br />

©1997 F.M.G. Dörenberg


30<br />

AIMS:<br />

47”x18”x9.6”<br />

111 lbs<br />

“PCMCIA” vs. AIMS Avionics Cabinet<br />

“PCMCIA”:<br />

6.5”x4.5”x3.0”<br />

2 lbs<br />

©1997 F.M.G. Dörenberg


31<br />

Enabling technologies<br />

- component integration issues -<br />

� more components become “complex”* (not<br />

100% analyzable or 100% testable)<br />

� hardware-near-software<br />

* not necessarily high gate count<br />

� must apply design assurance to devices &<br />

tools, as already req’d <strong>for</strong> software (DO-<br />

178); but who will do this <strong>for</strong> COTS?<br />

ref.: RTCA DO-180<br />

ref.: BCAG: "777 Application Specific <strong>Integrated</strong> Circuits (ASIC) Certification Guideline," Boeing Doc. 18W001; also: RTCA Paper No. 535-93/SC180-11, December 1993<br />

ref.: Honeywell <strong>Commercial</strong> Flight <strong>Systems</strong>: "ASIC Development <strong>and</strong> Verification Guidelines," Honeywell Spec. DS61232-01 Rev A, January 1993; also: RTCA Paper No. 536-93/SC180-12<br />

ref.: Harrison, L.H., Saraceni, P.J.: "Certification Issues <strong>for</strong> Complex Digital Hardware," Proc. 13th AIAA/IEEE DASC, Phoenix/AZ, Nov. 1994, pp. 216-220<br />

©1997 F.M.G. Dörenberg


32<br />

Enabling technologies<br />

- architectures -<br />

� dynamic resource allocation<br />

� move away from brute <strong>for</strong>ce redundancy<br />

� scalable redundancy (GenAv ↔ AT)<br />

� partitioning<br />

©1997 F.M.G. Dörenberg


33<br />

Resource Partitioning<br />

- part of system architecture <strong>and</strong> safety strategy -<br />

• Physical <strong>and</strong> logical organization of a system such that:<br />

� a partition does not contaminate an other’s data & code<br />

storage areas, or I/O<br />

� failure of a resource that is shared by multiple partitions<br />

does not affect flight safety<br />

� failure of a dedicated partition-resource does not cause<br />

adverse effects in any other partition<br />

� failure of a partition does not reduce the timely access to<br />

shared resources by other partitions<br />

- architectural means <strong>for</strong> providing isolation of functionally independent resources,<br />

<strong>for</strong> fault containment & isolation, <strong>and</strong> potential reduction of verification ef<strong>for</strong>t -<br />

ref.: RTCA DO-178, DO-180<br />

©1997 F.M.G. Dörenberg


34<br />

Resource Partitioning (cont’d)<br />

• Partitions cannot be trusted:<br />

� an independent protection mechanism must be provided<br />

against breaches of partitioning<br />

� all failures of the protection mechanism must be detectable<br />

• Advantages of partitioning:<br />

� provides an effective means to meet safety req’s<br />

� maximizes ability to detect & contain errors/faults<br />

� allows partitions to be updated & certified separately<br />

� allows re-V&V to be limited to changed partition<br />

� allows incremental & parallel design, test, integration<br />

� supports cost-effective development, cert., maint., updates<br />

� allows mixed-criticality (not within same partition!)<br />

� provides flexibility in responding to evolving system req’s<br />

ref.: M.J. Morgan: “<strong>Integrated</strong> modular avionics <strong>for</strong> next-generation commercial airplanes”, IEEE AES Magazine, Vol. 6, No. 9, Aug. ‘91, pp. 9-12<br />

©1997 F.M.G. Dörenberg


35<br />

Enabling technologies<br />

- communication -<br />

� fiber-optic communication (incl. on-chip)<br />

� low(er) cost multi-directional databus<br />

� air-ground, air-air<br />

ref.: M. Paydar: “Air-ground data links offer operational benefits as well as new possibilities”, ICAO Journal, May 1997, pp.13-15<br />

©1997 F.M.G. Dörenberg


36<br />

Enabling technologies<br />

- design / development -<br />

� capturing complete set of validated req’s<br />

� software auto-code<br />

� software V&V<br />

� hardware V&V (DO-180: hardware-nearsoftware,<br />

“complex” hardware)<br />

� EMI/Lightning certification<br />

� re-use<br />

ref.: NATO AGARD Advisory Report 274: “Validation of flight critical control systems”, Dec. ‘91, 91 pp., ISBN 92-835-0650-2<br />

©1997 F.M.G. Dörenberg


37<br />

High<br />

Medium<br />

Low<br />

Enabling technologies<br />

Influence<br />

on<br />

Outcome<br />

Requirements<br />

- design / development -<br />

Design,<br />

Development<br />

Test<br />

Cost to Fix<br />

Problems<br />

Production &<br />

Deployment<br />

- it clearly pays to do the right thing up front* -<br />

ref.:Port, O., Schiller, Z., King, R.W.: “A smarter way to manufacture,” Business Week, April 30, 1990, pp. 110-117<br />

10,000<br />

1,000<br />

100<br />

10<br />

1<br />

* but plan <strong>for</strong> inevitable need<br />

to correct/change req’s, as<br />

insight into the need <strong>and</strong> the<br />

“best” solution grows during<br />

development (<strong>and</strong> customer<br />

changes its mind)<br />

©1997 F.M.G. Dörenberg


38<br />

Equivalent<br />

Maturity Level<br />

World Class - 3<br />

Structured - 2<br />

Defined - 1<br />

Undefined - 0<br />

Enabling technologies<br />

Percentage of<br />

Surveyed firms<br />

17<br />

- design & development -<br />

36<br />

36<br />

(141 companies total)<br />

52<br />

Return-on-Sales p.a.<br />

1987-1991<br />

0.5%<br />

4.7%<br />

6.7%<br />

Sample<br />

Average<br />

4%<br />

Sales Growth p.a.<br />

1987-1991<br />

9.3% 16%<br />

8.1%<br />

7.3%<br />

5.1%<br />

Sample<br />

Average<br />

8%<br />

- business per<strong>for</strong>mance is linked to engineering maturity level -<br />

ref.: “Excellence in quality management”, McKinsey & Co., Inc., 1992<br />

ref.: Dion, R.: “Process improvement <strong>and</strong> the corporate balance sheet”, IEEE Software, Vol. 10, No. 4, July 1993, pp. 28-35<br />

©1997 F.M.G. Dörenberg


39<br />

Enabling technologies<br />

� s/w ≈ 2/3 of system development cost: prime<br />

area <strong>for</strong> improvement<br />

� systems engineering to provide req’s set:<br />

• F 3 I, per<strong>for</strong>mance (inc. timing), technology, etc.<br />

• complete, validated, traceable, consistent, unambiguous<br />

� eliminate errors via (V&V-ed) autocode<br />

� st<strong>and</strong>ard libraries of software modules (re-use)<br />

� automated V&V tools<br />

ref.: EIA Interim Std 632 “<strong>Systems</strong> Engineering”, Dec. 1994<br />

ref.: IEEE 1220 Std <strong>for</strong> Appl. <strong>and</strong> Mgt of the <strong>Systems</strong> Engineering Process, Dec. 1994<br />

- certified software is too expensive -<br />

©1997 F.M.G. Dörenberg


40<br />

“Programming today is a race<br />

between software engineers striving<br />

to build bigger <strong>and</strong> better idiot-proof<br />

programs, <strong>and</strong> the universe trying to<br />

produce bigger <strong>and</strong> better idiots.<br />

So far, the universe is winning.”<br />

Rich Cook, comedian<br />

©1997 F.M.G. Dörenberg


1<br />

BOOKS<br />

BIBLIOGRAPHY<br />

F.J. Redmill (ed.): “Dependability of critical computer systems - 1”, 1988, 292 pp., ITP Publ., ISBN 1-85166-203-0<br />

D.P. Siewiorek, R.S. Swarz (eds.): “Reliable computer systems”, 2 nd ed., Digital Press, ‘92, 908 pp., ISBN 1-55558-075-0<br />

M.R. Lyu (ed.): “Software fault tolerance”, Wiley & Sons, ‘95, 337 pp., ISBN 0-471-95068-8<br />

B.W. Johnson: “Design <strong>and</strong> analysis of fault tolerant systems”, Addision-Wesley, ‘89, 584 pp., ISBN 0-201-07570-9<br />

“25th Anniversary Compendium of Papers from Symposium on Fault Tolerant Computing”, IEEE Comp. Society Press, ‘96, 300 pp., ISBN 0-8186-7150-5<br />

N. Suri, C.J. Walter, M.M. Hugue (eds.): “Advances in ultra-reliable distributed systems”, IEEE Comp. Society Press, ‘95, 476 pp., ISBN 0-8186-6287<br />

M. Pecht (ed.): “Product reliability, maintainability, <strong>and</strong> supportability h<strong>and</strong>book”, CRC Press, ‘95, 413 pp., ISBN 0-8493-9457-0<br />

H.E Rol<strong>and</strong>, B. Moriarty: “System safety engineering <strong>and</strong> management”, 2 nd ed., Wiley & Sons, ‘90, 367 pp., ISBN 0-471-61816-0<br />

G.L. Fuller: "Underst<strong>and</strong>ing HIRF - High Intensity Radiated Fields," publ. by Avionics Communications, Inc., Leesburg, VA, 1995, 123 pp., ISBN 1-885544-05-7<br />

J. Curran: “Trends in advanced avionics”, Iowa State Univ. Press, ‘92, 189 pp., ISBN 0-8138-0749-2<br />

J.R. Newport: “Avionic system design”, CRC Press, ‘94, 332 pp., ISBN 0-8493-2465-3<br />

C.R. Spitzer: “Digital Avionics <strong>Systems</strong> - Principles <strong>and</strong> Practices”, 2 nd ed., McGraw-Hill, ‘93, 277 pp., ISBN 0-07-060333-2<br />

I.C. Pyle: “Developing safety systems - a guide using Ada”, Prentice Hall, ‘91, 254 pp., ISBN 0-13-204298-3<br />

E.T. Raymond, C.C. Chenoweth: “Aircraft flight control actuation system design”, SAE, ‘93, 270 pp., ISBN 1-56091-376-2<br />

D.T. McRuer, D.E. Johnson: “Flight control systems: properties <strong>and</strong> problems - Vol. 1 & 2”, 165 pp. & 145 pp., NASA CR-2500 & -2501<br />

D. McRuer, I. Ashkenas, D. Graham: “Aircraft dynamics <strong>and</strong> automatic control”, Princeton Univ. Press, ‘73, 784 pp., ISBN 0-691-08083-6<br />

J. Roskam: “Airplane flight dynamics <strong>and</strong> automatic flight controls - Part 1 & 2”, Roskam A&E Corp., 1388 pp., Library of Congress Card No. 78-31382<br />

NATO Advisory Group <strong>for</strong> Aerospace R&D : “AGARD Advisory Report 274 - Validation of Flight Critical Control <strong>Systems</strong>”, dec. ‘91, 126 pp., ISBN 92-835-0650-2<br />

C.A. Clarke, W.E. Larsen: “Aircraft Electromagnetic Compatibility”, feb. ‘85, 155 pp., DOT/FAA/CT-88/10; same as Chapter 11 of Digital <strong>Systems</strong> Validation H<strong>and</strong>book<br />

Vol. II<br />

R.A. Sahner, K.S. Trivedi, A. Puliafito: “Per<strong>for</strong>mance <strong>and</strong> reliability analysis of computer systems”, Kluwer Academic Publ., 1995, ISBN 0-7923-9650-2<br />

E.L. Wiener, D.C. Nagel (eds.): “Human factors in aviation”, Academic Press, 1988, 684 pp., ISBN 0-12-750031-6<br />

Reliability Analysis Center (RAC) of the DoD In<strong>for</strong>mation Analysis Center (1-800-526-4802):<br />

“The Reliability Sourcebook 'How <strong>and</strong> Where to Obtain R&M Data <strong>and</strong> In<strong>for</strong>mation,” RAC Order Code: RDSC-2, periodic updates<br />

“Practical Statistical Analysis <strong>for</strong> the Reliability Engineer,” RAC Order Code: SOAR-2<br />

“RAC Thermal Management Guidebook,” RAC Order Code: RTMG<br />

“Developing Reliability Goals/Requirements”, October 1996, 34 pp., RAC Order Code: RBPR-2<br />

“Designing <strong>for</strong> Reliability”, October 1996, 74 pp., RAC Order Code: RBPR-3<br />

“Measuring Product Reliability”, September 1996, 47 pp., RAC Order Code: RBPR-5<br />

“Reliability Toolkit: <strong>Commercial</strong> Practices”, RAC Order Code: CPE<br />

“Fault Tree Analysis Application Guide", RAC Order Code: FTA<br />

“Failure Mode, Effects <strong>and</strong> Criticality Analysis", RAC Order Code: FMECA<br />

© 1997 F.M.G. Dörenberg


2<br />

ARTICLES (referenced in presentation slides)<br />

A.D. Welliver: “Higher-order technology: adding value to an airplane,” Boeing publ., presented to Royal Aeronautical Society, London, Nov. 1991<br />

Anon.:“Is new technology friend or foe?” editorial, Aerospace World, April 1992, pp. 33-35<br />

B. Fitzsimmons: “Better value from integrated avionics?” Interavia Aerospace World, Aug. 1993, pp. 32-36<br />

ICARUS Committee: “The dollars <strong>and</strong> sense of risk management <strong>and</strong> airline safety”, Flight Safety Digest, Dec. ‘94, pp. 1-6<br />

P. Parry: “Who’ll survive in the aerospace supply sector?”, Interavia, March ‘94, pp. 22-24<br />

R. Ropelewski, M. Taverna: “What drives the development of new avionics?”, Interavia, Dec. ‘94, pp. 14-18, Jan. ‘95, pp. 17-18<br />

A. Smith: “Cost <strong>and</strong> benefits of implementing the new CNS/ATM systems”, ICAO Journal, Jan/Feb ‘96, pp. 12-15, 24<br />

K. O’Toole: “Cycles in the sky”, Flight In’l, 3-9 July 1996, p. 24<br />

C.A. Shifrin: “FAA paints upbeat air travel picture”, AW&ST, March 11 ‘96, pp. 30-31<br />

J. Moxon: “Outrageous ATC charges anger European regional”, Flight Int’l, 23-29 Oct 1996, p. 12<br />

P. Condom: “Is outsourcing the winning solution?” Interavia Aerospace World, Aug. 1993, pp. 34-36<br />

Anon.: “The guide to airline costs”, Aircraft Technology Engineering & Maintenance, Oct/Nov ‘95, pp. 50-58<br />

C.T. Leonard: “How mechanical engineering issues affect avionics design”, Proc. IEEE NAECON, Dayton/OH, ‘89, pp. 2043-2049<br />

B. Rankin, J. Allen: “Maintenance Error Decision Aid”, Boeing Airliner, April-June ‘96, pp. 20-27<br />

P. Gartz, “<strong>Systems</strong> Engineering,” tutorial at 13th & 14th AIAA/IEEE DASC<br />

C. Spitzer, “Digital Avionics - an International Perspective,” IEEE AES Magazine, Vol. 27, No. 1, Jan. ‘92, pp. 44-45<br />

T.H. Robinson , R. Farmer, E. Trujillo: “<strong>Integrated</strong> Processing,” presented at 14th AIAA/IEEE DASC, Boston/MA, Nov. 1995<br />

L.J. Yount, K.A. Kiebel, B.H. Hill: “Fault effect protection <strong>and</strong> partitioning <strong>for</strong> fly-by-wire/fly-by-light avionics systems”, Proc. 5th AIAA/IEEE Computers in Aerospace Conf., Long<br />

Beach/CA, ‘85, 10 pp.<br />

D. Prasad, J. McDermid, I. W<strong>and</strong>: “Dependability terminology: similarities <strong>and</strong> differences”, IEEE AES Magazine, Jan. ‘96, pp. 14-20<br />

A. Avizienis, J.-C. Laprie: “Dependable computing: from concepts to design diversity”, Proc. of the IEEE, Vol. 74, No. 5, May ‘86, pp. 629-638<br />

J.H. Lala, R. Harper: “Architectural principles <strong>for</strong> safety-critical real-time applications”, Proc. of the IEEE, Vol. 82, No. 1, Jan. ‘94, pp. 25-40<br />

J.-C. Laprie, J. Arlat, C. Beounes, K. Kanoun, C. Hourtolle: “Hardware- <strong>and</strong> software-fault tolerance: definition <strong>and</strong> analysis of architectural solutions”, Proc. 17th Symp. on Fault Tolerant<br />

Computing, Pittsburg/PA, July ‘87, pp. 116-21<br />

J.F. Meredith: "Fault Tolerance as a Means of Achieving Extended Maintenance Operation," Proc. 1994 ERA Avionics Conf. <strong>and</strong> Exhib. "<strong>Systems</strong> Integration - is the sky the limit?", London,<br />

Nov./Dec. 1994, pp. 11.8.1-11.8.9, ERA Report 94-0973<br />

F. Wang, K. Ramamritham: “Determining the redundancy levels <strong>for</strong> fault tolerant real-time systems”, IEEE Trans. on Computers, Vol. 44, No. 2, Feb. ‘95, pp. 292-301<br />

P.S. Babcock: "An introduction to reliability modeling of fault-tolerant systems," Charles Stark Draper Lab. Report CSDL-R-1899<br />

J. Rushby: “Critical system properties: survey <strong>and</strong> taxonomy”, Reliability Engineering <strong>and</strong> System Safety, Vol. 43, 1994, pp. 189-219<br />

M. McElvany Hugue: “Fault Type Enumeration <strong>and</strong> Classification”, ONR-910915-MCM-TR9105, 26 pp.<br />

J.B. Bowles: “A survey of reliability-prediction procedures <strong>for</strong> microelectronic devices”, IEEE Trans. on Reliability, Vol. 41, No. 1, March ‘92, pp. 2-12<br />

S.F. Morris: “Use <strong>and</strong> Application of MIL-HDBK-217”, J. of the IES, Nov/Dec ‘90, pp. 40-46<br />

D. McRuer, D. Graham: “Eighty years of flight control: Triumphs <strong>and</strong> Pitfalls of the <strong>Systems</strong> Approach”, J. Guidance <strong>and</strong> Control, Vol. 4, No. 4, Jul/Aug ‘81, pp. 353-362<br />

R.W. Butler, G.B. Finelli: “The infeasibility of Quantifying the Reliability of Life-Critical Real-Time Software”, IEEE Trans. on Software Engineering, Vol. SE-19, No. 1, Jan. ‘93, pp. 3-12<br />

P. Seidenman, D. Spanovich: “Building a better black box”, Aviation Equipment Maintenance, Feb. ‘95, pp. 34-36<br />

M. Doring: “Measuring the cost of dependability”, Boeing Airliner Magazine, July-Sept 1994, pp. 21-25<br />

D. Galler, G. Slenski: “Causes of electrical failures”, IEEE AES <strong>Systems</strong> Magazine, Aug. ‘91, pp. 3-8<br />

P. Gartz: “Trends in avionics systems architecture”, presented at the 9th DASC, Virginia Beach/VA, Oct. ‘90, 23 pp.<br />

M. Lambert: “Maintenance-free avionics offered to airlines”, Interavia, Oct. ‘88, pp. 1088-1089<br />

© 1997 F.M.G. Dörenberg


3<br />

M.L. Shooman: "A study of occurrence rates of EMI to aircraft with a focus on HIRF," Proc. 12th DASC, Seattle/WA, October 1993, pp. 191-194<br />

W. Reynish: “Three systems, One st<strong>and</strong>ard?”, Avionics Magazine, Sept. ‘95, pp. 26-28<br />

D. Hughes: “USAF, GEC-Marconi test ILS/MLS/GPS receiver”, AW&ST, Dec. 4 ‘95, pp. 96<br />

R.S. Prill, R. Minarik: “Programmable digital radio common module prototypr”, Proc. 13th DASC, Phoenix/AZ, Nov. ‘94, pp. 563-567<br />

B.D. Nordwall: “HIRF threat to digital avionics less than expected”, AW&ST, Feb. 14, ‘94, pp. 52-54<br />

M.J. Morgan: “<strong>Integrated</strong> modular avionics <strong>for</strong> next-generation commercial aircraft”, IEEE AES <strong>Systems</strong> Magazine, Aug. ‘91, pp. 9-12<br />

D.C. Hart: “A Primer on IMA”, Avionics, April 1994, pp. 30-41<br />

D.C. Hart: “<strong>Integrated</strong> <strong>Modular</strong> Avionics - Part I - V” Avionics, May 1991, pp. 28-40, November 1991, pp. 25-29<br />

D. Rollema: “German WW II Communications Receivers - Technical Perfection from a Nearby Past”, Part 1-3, CQ, Aug/Oct 1980, May 1981<br />

A.O. Bauer: “Receiver <strong>and</strong> transmitter development in Germany 1920-1945”, presented at IEE Int’l Conf. on 100 Years Radio, London/UK, Sept. ‘95.<br />

H.-J. Ellissen: “Funk- u. Bordsprechanlagen in Pantzerfahrzeugen”, Die deutschen Funknachrichtenanlagen bis 1945, B<strong>and</strong> 3”, Molitor Verlag, ‘91, ISBN-3-928388-01-0<br />

R.J. Staf<strong>for</strong>d: “IMA cost <strong>and</strong> design issues”, Proc. ERA Avionics Conf., London/UK, Dec. ‘92, pp. 1.4.1-1.4.9<br />

P.J. Prisaznuk: “<strong>Integrated</strong> <strong>Modular</strong> Avionics”, proc. IEEE NAECON-92, Dayton/OH, May 1992, pp. 39-45<br />

J.R. Todd: “Integrating controls <strong>and</strong> avionics on commercial aircraft”, proc. IEEE NAECON-92, Dayton/OH, May 1992, pp. 46-62<br />

R. Little: “Advanced avionics <strong>for</strong> military needs”, Computing & Control Engineering Journal, January 1991, pp. 29-34<br />

R.D. Trowern: “Designing an Inflight Entertainment System”, Avionics Magazine, Oct. ‘94, pp. 46-49<br />

D. Hughes, M.A. Dornheim: “United DC-10 crash in Sioux City, Iowa”, AW&ST, July 24, ‘89, pp. 96-97<br />

M.A. Dornheim: “Throttles l<strong>and</strong> “disabled” jet”, AW&ST, Sept. 4, ‘95, pp. 26-27<br />

B.T. Devlin, R.D. Girts: “MD-11 Automatic Flight System”, Proc. 11th DASC, Oct. ‘92, pp. 174-177; also: IEEE AES Magazine, March ‘93, pp. 53-56<br />

E. Kolano: “Fly by fire”, Flight International, Dec. 20, ‘95, pp. 26-29<br />

G. Norris: “Boeing may use propulsion control on 747-500/600X”, Flight Int’l, 2-8 Oct ‘96, p. 4<br />

Anon.: “Engine nozzle design - a variable feast?”, Aircraft Technology Engineering & Maintenance, Oct/Nov ‘95, pp. 10-11<br />

B. Gal-Or: “Civilizing military thrust vectoring flight control”, Aerospace America, April ‘96, pp. 20-21<br />

D. Brière, P. Traverse: “Airbus A320/330/340 electrical flight controls - a familiy of fault tolerant systems”, Proc. 23rd FTCS, Toulouse/F, June ‘93, pp. 616-23<br />

R.J. Bleeg: "<strong>Commercial</strong> JetTransport Fly-By-Wire Architecture Considerations," Proc. AIAA/IEEE 8th DASC, San Jose/CA, October 1988, pp. 309-406<br />

R. Reichel: “<strong>Modular</strong> flight control <strong>and</strong> guidance computer”, Proc. 6th ERA Avionics Conf., London/UK, Dec. ‘92, 9 pp.<br />

K.R. Dilks: “Modernization of the Russian Air Traffic Control/ Air Traffic Management System”, Journal of Air Traffic Control, Jan/Mar ‘94, pp. 8-15<br />

V.G. Afanasiev: “The business opportunities in Russia: the new Aeroflot - Russian international airlines”, presented at 2nd Annual Aerospace-Aviation Executive Symp., Arlington/VA,<br />

Nov. ‘94, 5 pp<br />

F. Dörenberg, L. LaForge: “An Overview of AlliedSignal’s Avionics Development in the CIS“, IEEE AES <strong>Systems</strong> Magazine, Feb. ‘95, pp. 8-12.<br />

S.L. Pelton, K.D. Scarbrough: “Boeing systems engineering experiences from the 777 AIMS program”, presented at 14th AIAA/IEEE DASC, Boston/MA, Nov. 1995, 10 pp.<br />

D. Parry: “Electrical Load Management <strong>for</strong> the 777”, Avionics Magazine, Feb. ‘95, pp. 36-38<br />

Anon.: “Avionics on the Boeing 777, Part 1-11”, Airline Avionics, May ‘94 - June ‘95<br />

M.D.W. McIntyre, C.A. Gosset: “The Boeing 777 fault tolerant air data inertial reference system ”, Proc. 14th DASC, Boston/MA, Nov. ‘95, pp. 178-183<br />

G. Bartley: “Model 777 primary flight control system”, Boeing Airliner Magazine, Oct/Dec ‘94, pp. 7-17<br />

R.R. Hornish: “777 autopilot flight director system”, Proc. 13th DASC, Phoenix/AZ, Nov. ‘94, pp. 151-156<br />

C.J. Walter, R.M. Kieckhafer, A.M. Finn: “MAFT: a Multicomputer Architecture <strong>for</strong> Fault-Tolerance in Real-Time Control <strong>Systems</strong>”, Proc. IEEE Real Time <strong>Systems</strong> Symp., San<br />

Diego/CA, Dec. ‘85, 8 pp.<br />

C.J. Walter: “MAFT: an architecture <strong>for</strong> reliable fly-by-wire flight control”, proc. 8th DASC, San Jose/CA, Oct. ‘88, pp. 415-421<br />

L. Lamport, R. Shostak, M. Pease: “The Byzantine Generals Problem”, ACM Trans. on Programming Languages & <strong>Systems</strong>, Vol. 4, No. 3, July ‘82, pp. 382-401<br />

M. Barborak, M. Malek, A. Dahbura: “The Consensus Problem in Fault-Tolerant Computing”, ACM Computing Surveys, Vol. 25, No. 2, June ‘93, pp. 171-220<br />

J.A. Donoghue: “Toward integrating safety”, Air Transport World, Nov. ‘95, pp. 98-99<br />

D. Carbaugh, S. Cooper: “Avoiding Controlled Flight Into Terrain”, Boeing Airliner, April-June ‘96, pp. 1-11<br />

M. Slater: “The microprocessor today”, IEEE Micro, Dec. 1996, pp. 32-44<br />

D. Hildebr<strong>and</strong>: “Memory protection in embedded systems”, Embedded <strong>Systems</strong> Programming, Dec. 1996, pp. 72-76<br />

D. Esler: “Trend monitoring comes of age”, Business & <strong>Commercial</strong> Aviation, July ‘95, pp. 70-75<br />

C.A. Shifrin: “Aviation safety takes center stage worldwide”, AW & ST, 4 Nov ‘96, pp. 46-48<br />

© 1997 F.M.G. Dörenberg


4<br />

M. Rodriguez, M. Stemig: “Evolution of embedded avionics operating systems”, presented at 14th AIAA/IEEE DASC, Boston/MA, Nov. 1995<br />

M. Tippins: “FMS Moving toward complete integration”, Professional Pilot, June 1993, pp. 48-52<br />

F.B. Murphy: “A perspective on the Autonomous Airplane operating in the Global Air Transportation System”, presented to ICCAIA, Everett/WA, March 1992, 13 slides<br />

J. Townsend: “Low-altitude wind shear, <strong>and</strong> its hazard to aviation”, Nat’l Academy, Washington/DC, 1983<br />

F. M.G. Doerenberg, A. Darwiche: "Application of the Bendix/King Multicomputer Architecture <strong>for</strong> Fault Tolerance in a Digital Fly-By-Wire Flight Control System," Proc.<br />

MIDCON/IEEE Technical Conf., Dallas, TX, Aug.-Sept. 1988, pp. 267-272<br />

L.H. Harrison, P.J. Saraceni: "Certification Issues <strong>for</strong> Complex Digital Hardware," Proc. 13th DASC, Phoenix/AZ, November 1994, pp. 216-220<br />

V. Riley: "What avionics engineers should know about pilots <strong>and</strong> automation," Proc. AIAA/IEEE 14th DASC, Boston/MA, November 1995, pp. 252-257<br />

R.W. Morris: "Increasing Avionic BIT Coverage Increases False Alarms," SAE Communications in Reliability, Maintainability, <strong>and</strong> Supportability, Vol. 1, No. 2, July 1994, pp. 3-8<br />

A. Gerold: “The Federal Radionavigation Plan”, Avionics Magazine, May ‘96, pp. 34-35<br />

Anon.: “Enhanced situation awareness technology <strong>for</strong> retrofit <strong>and</strong> advanced cockpit design”, Proc. Human Behavior Conf. at AEROTECH ‘92, SAE Publ, No. SP-933, 191 pp.<br />

Anon.: “Industrial-strength <strong>for</strong>mal specification techniques”, Proc. IEEE Workshop, Boca Raton/FL, April ‘95, IEEE Computer Society Press, 172 pp., ISBN 0-8186-7005-3<br />

Anon.: “Automated cockpits special report” Aviation Week & Space Technology, Part 1 (Jan. 30, ‘95, pp. 56-65), Part 2 (Feb. 6, ‘95, pp. 48-55)<br />

E.E. Rydell: “Avionics “backbone” interconnection <strong>for</strong> busing in the backplane: advantages of serial busing”, Proc. 13th DASC, Phoenix, AZ, Nov. 1994, pp. 17-22<br />

M. Rodriguez, M. Stemig: “Evolution of embedded avionics operating systems”, presented at DASC-95, Boston/MA, Nov. ‘95, 5 pp.<br />

P. Parry, C. Vincenti-Brown: “Window to the 21st century”, World Aerospace Development 1995, 41st Paris Airshow, Cornhill Publ. , pp. 27-33 , ISBN 1-85938-0409<br />

G. Stix: "Toward 'point One' - Trends in Semiconductor Manufacturing," Scientific American, February 1995, pp. 90-95<br />

G.D. Hutcheson, J.D. Hutcheson: "Technology <strong>and</strong> Economics in the Semiconductor Industry," Scientific American, January 1996, pp. 54-62<br />

C. Adams: “Emerging Databus St<strong>and</strong>ards”, Avionics Magazine, March ‘96, pp. 18-25<br />

K. Hoyme, K. Driscoll: “SAFEbus TM ”, Proc. 11th DASC, pp. 68-72<br />

A. Emmings: “Wire power”, British Airways World Engineering, Iss. 8, July/Aug. ‘95, pp. 40-43<br />

G. Derman: “Interconnects & Packaging - Part 1: Chip-Scale Packages”, EE Times, 26 Feb. ‘96, pp. 41,70-72<br />

T. DiStefano, R. Marrs: “Building on the surface-mount infrastructure”, EE Times, 26 Feb. ‘96, pp. 49<br />

S. Birch: “The hot issue of aerospace electronics”, SAE Aerospace Engineering, July ‘95, pp. 4-6<br />

J.A. Sparks: “High temperature electronics <strong>for</strong> aerospace applications”, proc. ERA Avionics Conf., London/UK, Nov./Dec. ‘94, pp. 8.2.1-8.2.5<br />

J.H. Mayer: “Pieces fall into place <strong>for</strong> MCMs”, Military & Aerospace Electronics, 20 March ‘96, pp. 20-22<br />

D. Maliniak: “<strong>Modular</strong> dc-dc converter sends power density soaring”, Electronic Design, Aug. 21 ‘95, pp. 59-63<br />

J. Sweder, et al.: “Compact, reliable 70-Watt X-b<strong>and</strong> power module with greater than 30-percent PAE”<br />

Anon.: ”FED up with LCDs?”, Portable Design, March ‘96, pp. 20-25<br />

K. Sewel: “FED technology threatens LCD in flat-panel race”, Military & Aerospace Electronics, Dec. 1996, p. 19<br />

BCAG: "777 Application Specific <strong>Integrated</strong> Circuits (ASIC) Certification Guideline," Boeing Doc. 18W001; also: RTCA Paper No. 535-93/SC180-11, December 1993<br />

Honeywell <strong>Commercial</strong> Flight <strong>Systems</strong>: "ASIC Development <strong>and</strong> Verification Guidelines," Honeywell Spec. DS61232-01 Rev A, January 1993; also: RTCA Paper No. 536-93/SC180-12<br />

O. Port, Z. Schiller, R.W. King: “A smarter way to manufacture,” Business Week, April 30, 1990, pp. 110-117<br />

R. Dion: “Process improvement <strong>and</strong> the corporate balance sheet”, IEEE Software, Vol. 10, No. 4, July 1993, pp. 28-35<br />

SAE 4761: Guidelines <strong>and</strong> methods <strong>for</strong> conducting the safety assessment process on civil airborne systems <strong>and</strong> equipment”, Dec. 1996<br />

ARINC 650: IMA Packaging <strong>and</strong> Interfaces<br />

ARINC 652: Guidance <strong>for</strong> Avionics Software Management<br />

ARINC 653: St<strong>and</strong>ard Application Software Environment <strong>for</strong> IMA<br />

ARINC 659: Backplane Data Bus<br />

ARINC 629: Multi-Transmitter Data Bus<br />

ARINC-754/755: (analog/digital MMR), ARINC-756 (GNLU)<br />

© 1997 F.M.G. Dörenberg

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!