15.11.2012 Views

marangoni convections in a horizontal porous layer ... - IJAMM

marangoni convections in a horizontal porous layer ... - IJAMM

marangoni convections in a horizontal porous layer ... - IJAMM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MARANGONI CONVECTIONS IN A HORIZONTAL POROUS LAYER<br />

SUPERPOSED BY A FLUID LAYER IN THE PRESENCE OF<br />

UNIFORM VERTICAL MAGNETIC FIELD AND SOLUTE<br />

R. T. Matoog 1 and Abdl-Fattah K. Bukhari 2<br />

1 Department of Mathematics. Faculty of teachers preparation. Makkah. Saudi Arabia<br />

Email: t ezat@yahoo.com<br />

1 Department of Mathematics. Fac. of Applied Sciences. Umm Al-Qura Univ. Makkah.<br />

Saudi Arabia<br />

Email: afb@uqu.edu.sa<br />

ABSTRACT<br />

Received 21 April 2008; accepted 18 May 2008<br />

A l<strong>in</strong>ear stability analysis applied to a system consist<strong>in</strong>g of a <strong>horizontal</strong> fluid <strong>layer</strong> overly<strong>in</strong>g a<br />

<strong>porous</strong> <strong>layer</strong> <strong>in</strong> the presence of uniform vertical magnetic field and solute on both <strong>layer</strong>s. Flow<br />

<strong>in</strong> <strong>porous</strong> medium is assumed to be governed by Darcy’s law, where as the flow <strong>in</strong> the fluid <strong>layer</strong><br />

is governed by Navier-Stokes equation. The Beavers-Joseph condition is applied at the <strong>in</strong>terface<br />

between the two <strong>layer</strong>s. Numerical solutions are obta<strong>in</strong>ed for stationary convection case us<strong>in</strong>g<br />

the method of expansion of Chebyshev polynomials. It is found that the spectral method has a<br />

strong ability to solve the multi-<strong>layer</strong>ed problem, the depth ratio has a strong effect and that the<br />

magnetic field has effect <strong>in</strong> this model.<br />

Keywords: Navier-Stokes equation, Darcy’s law, Chebyshev polynomials, Magnetic equations,<br />

Maragoni Convections, Magnetic field and solute, Non-dimensionalization.<br />

1 INTRODUCTION<br />

Thermal <strong>in</strong>stability theory has attracted considerable <strong>in</strong>terest and has been recognized as a problem<br />

of fundamental importance <strong>in</strong> many fields of fluid dynamics. The earliest experiments to<br />

demonstrate the onset of thermal <strong>in</strong>stability <strong>in</strong> fluids, are those of Benard (Benard 1900; Benard<br />

1901). Benard worked with very th<strong>in</strong> <strong>layer</strong>s of an <strong>in</strong>compressible viscous fluid, stand<strong>in</strong>g on leveled<br />

metallic plate ma<strong>in</strong>ta<strong>in</strong>ed at a constant temperature. The upper surface was usually free and<br />

be<strong>in</strong>g <strong>in</strong> contact with the air was at a lower temperature. In his experiments Benard deduced that<br />

a certa<strong>in</strong> critical adverse temperature gradient must be exceeded before <strong>in</strong>stability can set <strong>in</strong>.<br />

Rayleigh (Rayleigh 1916) provided a theoretical basis for Benard’s experimental results. He<br />

showed that the numerical value of the non-dimensional parameter. Jeffrey’s (Jeffreys 1930)<br />

showed that the onset of thermal <strong>in</strong>stability criterion derived for <strong>in</strong>compressible fluids could be<br />

used for compressible fluids under some certa<strong>in</strong> conditions on the adverse temperature gradient.<br />

Benard convection <strong>in</strong> the context of magneto hydrodynamic fluid has been exam<strong>in</strong>ed by<br />

Thompson (Thompson 1951) and Chandrasekhar (Chandrasekhar 1952) with a l<strong>in</strong>ear constitutive<br />

relationship between the magnetic field and the magnetic <strong>in</strong>duction. Nield (Nield 1968)<br />

considered the onset of salt-f<strong>in</strong>ger convection <strong>in</strong> a <strong>porous</strong> <strong>layer</strong>. Taunton et al., (Taunton and<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 35<br />

Lightfoot 1972) considered the thermohal<strong>in</strong>e <strong>in</strong>stability and salt-f<strong>in</strong>gers <strong>in</strong> a <strong>porous</strong> medium and<br />

solved the boundary value problem. Sun (Sun 1973) was the first to consider such a problem,<br />

and he used a shoot<strong>in</strong>g method to solve the l<strong>in</strong>ear stability equations. The results show that the<br />

critical Raleigh number <strong>in</strong> the <strong>porous</strong> <strong>layer</strong> decreases cont<strong>in</strong>uously as the thickness of the fluid<br />

<strong>layer</strong> is <strong>in</strong>creased. Nield (Nield 1977) formulated the problem with surface-tension effects at<br />

a deformable upper surface <strong>in</strong>clude and obta<strong>in</strong>ed asymptotic solution for small wave numbers<br />

for a constant heat-flux boundary condition. Sun (Sun 1973) and Nield (Nield 1977) used<br />

Darcy’s law <strong>in</strong> formulat<strong>in</strong>g the equations for <strong>porous</strong> <strong>layer</strong>. In Darcy’s low of motion <strong>in</strong> <strong>porous</strong><br />

mediums, the Darcy resistance term took the place of the Navier-Stokes viscose term while<br />

<strong>in</strong> modified Darcy’s law (Br<strong>in</strong>kman model) that suggested by Br<strong>in</strong>kman (Br<strong>in</strong>kman 1947a;<br />

Br<strong>in</strong>kman 1947b) the Navier-Stokes viscous term still exists. Chandrasekhar (Chandrasekhar<br />

1981) considered typical problems <strong>in</strong> hydrodynamic and hydro magnetic stability <strong>in</strong> his treatise.<br />

Somerton and Catton (Somerton and Catton 1982) have different formulation of the problem<br />

from Sun (Sun 1973) and Nield (Nield 1977) by <strong>in</strong>clusion Br<strong>in</strong>kman term <strong>in</strong> Darcy equation<br />

for the <strong>porous</strong> <strong>layer</strong> and solved the problem us<strong>in</strong>g Galerk<strong>in</strong> method. Hilles (Hills et al. 1983)<br />

and Maples & Poirier (Maples and Poirier 1984) discussed the stability of the boundary value<br />

problem of a thermo dynamical consistent model, the directional solidification of molten alloys<br />

as a <strong>layer</strong> of <strong>porous</strong> material of variable permeability which is separated from its melt by a<br />

mush zone of dendrites. Glicksman (Glicksman et al. 1986) described the <strong>in</strong>teraction between<br />

the solidify<strong>in</strong>g alloy and its melt by a doubly diffusive model. Chen & Chen (Chen and Chen<br />

1988) considered the multi-<strong>layer</strong> problem when the above <strong>layer</strong> is heated and salted from above,<br />

and solution of problem is obta<strong>in</strong>ed us<strong>in</strong>g a shoot<strong>in</strong>g method. Abdullah (Abdullah 1991) discussed<br />

the Benard convection <strong>in</strong> a non-l<strong>in</strong>ear magnetic field under the <strong>in</strong>fluence of vertical and<br />

non-vertical magnetic field for different boundary conditions. L<strong>in</strong>dsay & Ogden (L<strong>in</strong>dsay and<br />

Ogden 1992) worked <strong>in</strong> the implementation of spectral methods resistant to the generation of<br />

spurious Eigenvalues. Lamb (Lamb 1994) used expansion of Chebyshev polynomials <strong>in</strong>vestigate<br />

an Eigenvalue problem aris<strong>in</strong>g from a model discuss<strong>in</strong>g the <strong>in</strong>stability of the earth’s core.<br />

Bukhari (Bukhari 1996) studied the effects of surface-tension <strong>in</strong> a <strong>layer</strong> of conduct<strong>in</strong>g fluid with<br />

imposed magnetic field and obta<strong>in</strong>ed results when deformable and non-deformable free surface<br />

and he solved by us<strong>in</strong>g Chebyshev spectral method, and he obta<strong>in</strong>ed some different results from<br />

that of Chen & Chen (Chen and Chen 1988). Straughan (Straughan 2001) studied the thermal<br />

convection <strong>in</strong> fluid <strong>layer</strong> overly<strong>in</strong>g a <strong>porous</strong> <strong>layer</strong> and he considered when the problem of lower<br />

<strong>layer</strong> heated from below and surface tension driven on the free top boundary of upper <strong>layer</strong>.<br />

Also, <strong>in</strong> (Straughan 2002) he dealt with the same problem, consider<strong>in</strong>g the ratio depth of the<br />

relative <strong>layer</strong> also, <strong>in</strong>vestigated the effect of the variation of relevant fluid and <strong>porous</strong> material<br />

properties. Bukhari (Bukhari 2003a) applied the l<strong>in</strong>ear stability analysis <strong>in</strong> the system consist<strong>in</strong>g<br />

of a <strong>horizontal</strong> fluid <strong>layer</strong> overly<strong>in</strong>g a <strong>layer</strong> of a <strong>porous</strong> medium affected a vertical magnetic<br />

field on both <strong>layer</strong>s. The same author (Bukhari 2003b) applied the spectral Chebyshev polynomial<br />

method to obta<strong>in</strong> numerically the solution of a multi-<strong>layer</strong> system consist<strong>in</strong>g of the f<strong>in</strong>ger<br />

convection onset <strong>in</strong> a fluid <strong>layer</strong> overly<strong>in</strong>g a <strong>porous</strong> <strong>layer</strong>, and he studied the boundary value<br />

problem when the thermal Rayleigh number and the critical salt Rayleigh number for <strong>porous</strong><br />

<strong>layer</strong> are <strong>in</strong>creas<strong>in</strong>g due to heat<strong>in</strong>g and salt<strong>in</strong>g the lower of <strong>porous</strong> <strong>layer</strong>.<br />

In this paper we studies convective <strong>in</strong>stabilities <strong>in</strong> a <strong>horizontal</strong> multi-<strong>layer</strong> problem <strong>in</strong> the presence<br />

of uniform vertical magnetic field and solute. i.e., we shall consider the onset of thermal<br />

convection <strong>in</strong> a <strong>horizontal</strong> <strong>porous</strong> <strong>layer</strong> superposed by a fluid <strong>layer</strong> affected by a vertical magnetic<br />

field and solute. The flow <strong>in</strong> the <strong>porous</strong> <strong>layer</strong> is assumed to be governed by Dray’s law.<br />

The l<strong>in</strong>ear stability equations will be solved us<strong>in</strong>g expansion of Chebyshev polynomials. This<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


36 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

method is better suited to the solution of hydrodynamic stability problems than expansions <strong>in</strong><br />

other sets of orthogonal polynomials. Lanczos (Lanczos 1938) is the first presented of this<br />

method. This method have used and developed to solve ord<strong>in</strong>ary differential equations by Fox<br />

(Fox 1962), Fox and Parker (Fox and Parker 1968), Orszag (Orszag 1971a; Orszag 1971b).<br />

Chaves & Ortiz (Chaves and Ortiz 1968) applied it to a second order Eigenvalue problem with<br />

polynomial coefficients. Hassanien & El.Hawary (Hassanien and El-Hawary 1990) studied<br />

Chebyshev solution of lam<strong>in</strong>ar boundary <strong>layer</strong> flow. Bukhari (Bukhari 1996) has used this<br />

method to solve multi<strong>layer</strong>s region. Hassanien et. al., (Hassanien et al. 1996) studied axisymmetric<br />

stagnation flow on a cyl<strong>in</strong>der us<strong>in</strong>g series expansions of Chebyshev polynomials.<br />

2 MATHEMATICAL FORMULATION<br />

Consider the problem of two <strong>horizontal</strong> <strong>layer</strong>s L1 and L2 such that the bottom of the <strong>layer</strong> L1<br />

touches the top of the <strong>layer</strong> L2. A right handed system of Cartesian Coord<strong>in</strong>ates (xi, i = 1, 2, 3)<br />

is chosen so that the <strong>in</strong>terface is the plan x3 = 0, the top boundary of L1 is x3 = df + F (t, xα),<br />

and the lower boundary of L2 is x3 = −dm (see Fig. (1)). Suppose that the upper <strong>layer</strong> L1 is<br />

filled with an <strong>in</strong>compressible thermally and electrically conduct<strong>in</strong>g viscous fluid consist<strong>in</strong>g of<br />

melted solute which flow <strong>in</strong> it and is governed by Navier-Stokes equations, where as the lower<br />

<strong>layer</strong> is occupied by a <strong>porous</strong> medium permeated by the fluid which flow <strong>in</strong> it and is governed by<br />

Darcy’s law and is subjected to a uniform vertical magnetic field. Gravity g ¯ acts <strong>in</strong> the negative<br />

direction of x3, the heated and solutal from below.<br />

Figure 1: Schematic diagram of the problem.<br />

Convection is driven by temperature dependence of the fluid density and solut<strong>in</strong>g, and damped<br />

by viscosity. The Oberbeck-Bouss<strong>in</strong>eq approximation is used as density of the fluid is constant<br />

every where except <strong>in</strong> the body force term where the density is l<strong>in</strong>early proportional to<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 37<br />

temperature and solute concentration.<br />

ρf = ρ0[1 − α(T − T0) + α ′ (S − S0)], (1)<br />

where T denotes the Kelv<strong>in</strong> temperature of the fluid, S is the solute concentration, ρ0 is density<br />

of the fluid at T0 and S0, α (constant) is the thermal coefficient of volume expansion of the fluid<br />

and α ′ (constant) is the solut<strong>in</strong>g coefficient of volume expansion of the fluid.<br />

Furthermore, <strong>in</strong>compressibility of the fluid and the non-existence of magnetic monopoles require<br />

that V and B are both solenoidal vectors. Hence<br />

div V = Vi,i = 0, div B = Bi,i = 0. (2)<br />

Suppose also that the magnetization <strong>in</strong> the fluid is directly proportional to the applied field that<br />

the fluid behaves like an Ohmic conductor so that the magnetic field H, magnetic <strong>in</strong>duction B,<br />

current density J and electric field E are connected by the constitutive relations<br />

B = µm H, (3)<br />

J = σ (E + V × B), (4)<br />

and the Maxwell equations<br />

curl E = −∂B<br />

, (5)<br />

∂t<br />

J = 1<br />

curl H, (6)<br />

4π<br />

where µm (constant) is the magnetic permeability, σ is the electrical conductivity and the displacement<br />

current has been neglected <strong>in</strong> the second of these Maxwell equations as is customary<br />

<strong>in</strong> situations when free charge is <strong>in</strong>stantaneously dispersed. On tak<strong>in</strong>g the curl of equation (4)<br />

and replac<strong>in</strong>g the electric field by the Maxwell relation (5), the magnetic field H is now readily<br />

seen to satisfy the partial differential equation<br />

η curlcurl H = − ∂H<br />

∂t<br />

+ curl(V × H), (7)<br />

1<br />

where η = 4π σ µm is the electrical resistivity. In addition, the constant nature of µm makes<br />

the magnetic field H a solenoidal vector. Equation (7) is now reworked us<strong>in</strong>g standard vector<br />

identities to yield <strong>in</strong> sequence<br />

∂H<br />

∂t + (V · ∇)H = (H · ∇)V + η ∇2 H, (8)<br />

equation (8) describes the temporal evolution of magnetic field. Moreover, the relations (3),<br />

(4), (5) and (6) can be used to recast the Lorentz force J × B <strong>in</strong>to<br />

J × B = µm � 1<br />

(H · ∇)H −<br />

4π<br />

2 ∇H2� ,<br />

lead<strong>in</strong>g to the notion that the Lorentz force is derived from a magnetic stress tensor σ (m)<br />

ji . In<br />

view of the fact that<br />

(J × B)i = σ (m)<br />

ji,j<br />

µm �<br />

= HjHi −<br />

4π<br />

1<br />

2 H2 �<br />

δij ,j<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.<br />

(9)


38 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

so the govern<strong>in</strong>g equations of the fluid <strong>layer</strong> are<br />

�∂V f<br />

ρ0<br />

∂t + V �<br />

f · ∇V f = −∇Pf + µ∇ 2 V f + ρf g +<br />

¯ µmf<br />

4π (Hf · ∇Hf), (10)<br />

�∂Tf<br />

(ρ cp)f<br />

∂t + V �<br />

f · ∇Tf = kf∇ 2 Tf, (11)<br />

∂Sf<br />

∂t + V f · ∇Sf = Mf∇ 2 Sf, (12)<br />

∂H f<br />

∂t = (H f · ∇)V f − (V f · ∇)H f + ηf∇ 2 H f, (13)<br />

and the govern<strong>in</strong>g equations of the <strong>porous</strong> medium <strong>layer</strong> are<br />

ρ0 ∂V m<br />

ϕ ∂t = −∇Pm − µ<br />

K V m + ρf g +<br />

¯ µmm<br />

4π (Hm · ∇Hm), (14)<br />

∂Tm<br />

(ρ c)m<br />

∂t + (ρ cp)f V m · ∇Tm = km∇ 2 Tm, (15)<br />

ϕ ∂Sm<br />

∂t + V m · ∇Sm = Mm∇ 2 Sm, (16)<br />

∂H m<br />

∂t = (H m · ∇)V m − (V m · ∇)H m + ηm∇ 2 H m, (17)<br />

where PfPf + µmf<br />

8π H2 f , PmPm + µmm<br />

medium <strong>layer</strong>s respectively; ηf =<br />

8π H2 m are the modified pressure of the fluid and the <strong>porous</strong><br />

1<br />

4π σ µmf , ηm =<br />

1<br />

4π σ µmm<br />

are the electrical resistivity of the<br />

fluid and the <strong>porous</strong> <strong>layer</strong> respectively; V f, V m are the solenoidal and seepage velocity respectively;<br />

Tf, Tm are the Kelv<strong>in</strong> temperature of the fluid and <strong>porous</strong> medium <strong>layer</strong> respectively;<br />

Sf, Sm are solute concentration of the fluid and <strong>porous</strong> medium <strong>layer</strong> respectively; Mf, Mm are<br />

the mass diffusivity of the fluid and <strong>porous</strong> medium <strong>layer</strong> respectively; µmf, µmm are magnetic<br />

permeability of fluid and <strong>porous</strong> <strong>layer</strong> respectively; kf, km are the thermal conductivity of fluid<br />

and <strong>porous</strong> <strong>layer</strong> respectively; µ is the dynamic viscosity; K is the permeability; ϕ is the porosity<br />

and (ρ cp)f, (ρ c)m are the heat and overall heat capacity per unit volume of the fluid and<br />

<strong>porous</strong> medium <strong>layer</strong>s at constant pressure. In fact<br />

(ρ c)m = ϕ (ρ cp)f + (1 − ϕ) (ρ cp)m,<br />

where (ρ cp)m is the heat capacity per unit volume of the <strong>porous</strong> substrate.<br />

3 BOUNDARY CONDITIONS<br />

For the upper boundary we shall suppose x3 = d + F (t, xα) where t is the time with unit<br />

normal n = niei directed from the viscous fluid <strong>in</strong>to the passive <strong>in</strong>viscid fluid. So, the boundary<br />

conditions come from follow<strong>in</strong>g sources.<br />

General radiation conditions the heat and mass transfer:<br />

T,<strong>in</strong>i + L(T − T∞) = 0, (18)<br />

S,<strong>in</strong>i + C(S − S∞) = 0, (19)<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 39<br />

where L, C constants. Material surface particles of the fluid rema<strong>in</strong> on the surface at x3 =<br />

d + F (t, xα) and so<br />

dx3<br />

dt<br />

= ∂F<br />

∂t<br />

+ ∂F<br />

∂xα<br />

∂xα<br />

∂t ,<br />

this leads to the condition<br />

V3 − ∂F<br />

Vα =<br />

∂xα<br />

∂F<br />

. (20)<br />

∂t<br />

Magnetic condition s<strong>in</strong>ce the region x3 > df is electrically <strong>in</strong>sulat<strong>in</strong>g, then Bi = µmfHi is<br />

cont<strong>in</strong>uous across x3 = df and the magnetic field <strong>in</strong> x3 > df is irrotational, that is, derived<br />

from a potential function.<br />

Stress conditions which can be decomposed further <strong>in</strong>to the tangential and normal components<br />

respectively,<br />

τ(T, S) b α α = −P∞ − (P + µmf<br />

8π H2 f ) + 2 ρ0 νVi,j n<strong>in</strong>j + µmf<br />

8π (Hjnj) 2 , (21)<br />

τ,α = ρ0 ν(Vi,j + Vj,i) nj xi,α + µmf<br />

4π (Hjnj)(Hi xi,α), (22)<br />

where ν is k<strong>in</strong>ematics viscosity. At the <strong>in</strong>terface x3 = 0 we have<br />

Tf = Tm, Sf = Sm, kf<br />

−Pf + 2µ ∂ωf<br />

∂x3<br />

∂uf<br />

∂x3<br />

= αBJ<br />

√K (uf − um),<br />

∂Tf<br />

∂x3<br />

= km<br />

∂Tm<br />

∂x3<br />

, Mf<br />

= −Pm, Hf = Hm, kf<br />

∂νf<br />

∂x3<br />

∂Sf<br />

∂x3<br />

= αBJ<br />

√K (νf − νm),<br />

∂Hf<br />

∂x3<br />

= Mm<br />

= km<br />

∂Sm<br />

, ωf = ωm,<br />

∂x3<br />

∂Hm<br />

, (23)<br />

∂x3<br />

where ωf and ωm are the normal axial velocity components of the fluid <strong>in</strong> fluid <strong>layer</strong> and <strong>porous</strong><br />

medium <strong>layer</strong> respectively; uf, νf are the limit<strong>in</strong>g tangential component of the fluid velocity<br />

as the <strong>in</strong>terface is approached from the fluid <strong>layer</strong> L1, whereas um, νm are the same limit<strong>in</strong>g<br />

components of tangential fluid velocity as the <strong>in</strong>terface is approached from the <strong>porous</strong> <strong>layer</strong> L2;<br />

the last two boundary conditions <strong>in</strong> (23), discont<strong>in</strong>uities <strong>in</strong> shear velocity across the <strong>in</strong>terface<br />

are <strong>in</strong>herent, also they calls Beavers & Joseph (Beaver and Joseph 1967). αBJ is Beavers and<br />

Joseph constant.<br />

At the lower boundary x3 = −dm we have<br />

ωm(−dm) = 0, Tm(−dm) = Tl, Sm(−dm) = Sl, Bi = µmmHi be cont<strong>in</strong>uous. (24)<br />

At equilibrium case<br />

V f = 0, V m = 0, −∇Pf + ρf g ¯ = 0, −∇Pm + ρf g ¯ = 0,<br />

∇ 2 Tf = ∇ 2 Tm = 0, ∇ 2 Sf = ∇ 2 Sm = 0, F (t, xα), (25)<br />

∇ 2 H f = ∇ 2 H m = 0, H = (0, 0, H) : Hconstant.<br />

The boundary conditions <strong>in</strong> the exterior are<br />

Tf(df) = Tu, Tm(−dm) = Tl, Sf(df) = Su, Sm(−dm) = Sl, (26)<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


40 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

and the <strong>in</strong>terface conditions<br />

Tf(0) = Tm(0) , Sf(0) = Sm(0),<br />

∂Tf(0)<br />

kf<br />

∂x3<br />

∂Tm(0)<br />

= km ,<br />

∂x3<br />

∂Sf(0)<br />

Mf<br />

∂x3<br />

=<br />

∂Sm(0)<br />

Mm , Pf(0) = Pm(0), Hf(0) = Hm(0),<br />

∂x3<br />

(27)<br />

∂Hf(0)<br />

kf<br />

∂x3<br />

=<br />

∂Hm(0)<br />

km ,<br />

∂x3<br />

are the equilibrium of temperature field, solute concentration, hydrostatic pressure and magnetic<br />

field <strong>in</strong> the fluid <strong>layer</strong> and <strong>porous</strong> medium <strong>layer</strong> respectively, where<br />

Tf = T0 − (To − Tu) x3<br />

, Sf = S0 − (So − Su) x3<br />

, Pf = Pf(x3),<br />

df<br />

. H f = (0, 0, H), 0 ≤ x3 ≤ df;<br />

Tm = T0 − (To − Tu) x3<br />

, Sm = S0 − (So − Su) x3<br />

, Pm = Pm(x3),<br />

dm<br />

. H m = (0, 0, H), −dm ≤ x3 ≤ 0; (28)<br />

where the <strong>in</strong>terfacial temperature and solute concentration are determ<strong>in</strong>ed by the cont<strong>in</strong>uity of<br />

heat flux and solute flux respectively and take the values<br />

T0 = kf dm Tu + km df Tl<br />

kf dm + km df<br />

4 PERTURBED EQUATIONS<br />

df<br />

dm<br />

, S0 = Mf dm Su + Mm df Sl<br />

.<br />

Mf dm + Mm df<br />

Suppose that the equilibrium solution be perturbed by follow<strong>in</strong>g l<strong>in</strong>ear perturbation quantities<br />

V f = 0 + ν f, Pf = Pf(x3) + pf, H f = (0, 0, H) + h f,<br />

Tf = T0 − (T0 − Tu) x3<br />

+ θf, Sf = S0 − (S0 − Su) x3<br />

+ sf,<br />

df<br />

V m = 0 + ν m, Pm = Pm(x3) + pm, H m = (0, 0, H) + h m, (29)<br />

Tm = T0 − (Tl − T0) x3<br />

dm<br />

df<br />

+ θm, Sm = S0 − (Sl − S0) x3<br />

dm<br />

+ sm.<br />

Then we may verify that the L<strong>in</strong>earized version of equations (10), (11), (12) and (13) are<br />

�∂ν f<br />

ρ0<br />

∂t + ν �<br />

f · ∇νf = −∇pf + µ∇ 2 νf + ρ0 α θf g<br />

¯<br />

(ρ cp)f<br />

∂sf<br />

∂t + ν f ·<br />

− ρ0 α′ sf g ¯ + µmf<br />

4π<br />

df<br />

e3<br />

� Hf<br />

∂h f<br />

∂x3<br />

�<br />

+ hf · ∇hf , (30)<br />

�<br />

∂θf<br />

∂t + νf · � ∇θf − (T0 − Tu)<br />

df<br />

�<br />

∇sf − (S0 − Su)<br />

�<br />

= Mf∇ 2 sf, (32)<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.<br />

�<br />

e3<br />

�<br />

= kf∇ 2 θf, (31)


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 41<br />

∂hf ∂ν f<br />

= Hf<br />

∂t ∂x3<br />

+ (hf · ∇)νf − (νf · ∇)hf + ηf∇ 2 hf, (33)<br />

and equations (14), (15), (16) and (17) are<br />

ρ0<br />

ϕ<br />

∂ν m<br />

∂t = −∇pm − µ<br />

K νm + ρ0 α θm g<br />

¯<br />

∂θm<br />

(ρ c)m<br />

ϕ ∂sm<br />

∂t + ν m ·<br />

− ρ0 α′ sm g ¯ + µmm<br />

4π<br />

∂t + (ρ cp)f ν m ·<br />

�<br />

∇sm − (Sl − S0)<br />

� Hm<br />

�<br />

∇θm − (Tl − T0)<br />

dm<br />

e3<br />

∂h � m<br />

+ hm · ∇hm , (34)<br />

∂x3<br />

dm<br />

e3<br />

�<br />

= km∇ 2 θm, (35)<br />

�<br />

= Mm∇ 2 sm, (36)<br />

∂hm = Hm<br />

∂t<br />

∂ν m<br />

∂x3<br />

+ (hm · ∇)νm − (νm · ∇)hm + ηm∇ 2 hm, (37)<br />

where e3 is the unit vector <strong>in</strong> the x3−direction. νf, νm are solenoidal.<br />

The boundary conditions, on the upper boundary x3 = df + F (t, xα), the conditions (18), (19)<br />

and (20) become<br />

(n3 − 1)(Tu − T0) + df ni θ,i + Nu θf + Nu(Tu − T0) F<br />

(n3 − 1)(Su − S0) + df ni s,i + Nus sf + Nus(Su − S0) F<br />

ν 3 − ∂F<br />

∂xα<br />

df<br />

df<br />

= 0, (38)<br />

= 0, (39)<br />

να = ∂F<br />

, (40)<br />

∂t<br />

where Nu and Nus are Nusselt numbers<br />

Nu = Ldf, Nus = Cdf.<br />

The surface stress conditions (21), (22), the normal component and the tangential surface stress<br />

are<br />

τ(T, S)b α α = −pf + µmf<br />

8π<br />

− µmf<br />

− ρ0 g<br />

2df<br />

�<br />

(hjnj) 2 �<br />

+ 2Hfn3hjnj + ρ0 g F<br />

8π H2 f (1 − n 2 3) + 2ρ0 ν νi,j n<strong>in</strong>j<br />

�<br />

α(Tu − T0) − α′(Su − S0)<br />

�<br />

F 2 , (41)<br />

∂τ<br />

∂T T,α + ∂τ<br />

∂S S,α = ρ0ν(νi,j + νj,i)nj xi,α + µmf<br />

4π (Hfn3 + hjnj)(hi xi,α). (42)<br />

In (41) and (42), it is assumed that the derivative of the surface tension with respect to temperature<br />

and concentration are evaluated at<br />

T = Tu + (Tu − T0)d −1<br />

f F + θf, S = Su + (Su − S0)d −1<br />

f F + sf,<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


42 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

whereas the boundary conditions on the <strong>in</strong>terface x3 = 0 are<br />

θf = θm, sf = sm, kf<br />

−pf + 2µ ∂ωf<br />

∂x3<br />

∂uf<br />

∂x3<br />

= αBJ<br />

√K (uf − um),<br />

∂θf<br />

∂x3<br />

= km<br />

∂θm<br />

∂x3<br />

= −pm, hf = hm, kf<br />

∂νf<br />

∂x3<br />

, Mf<br />

∂hf<br />

∂x3<br />

∂sf<br />

∂x3<br />

= km<br />

= αBJ<br />

√K (νf − νm),<br />

= Mm<br />

and the boundary conditions on the lower boundary x3 = −dm<br />

∂sm<br />

, ωf = ωm,<br />

∂x3<br />

∂hm<br />

, (43)<br />

∂x3<br />

ωm(−dm) = 0, θm(−dm) = 0, sm(−dm) = 0, µmmHi is cont<strong>in</strong>uous. (44)<br />

5 NON-DIMENSIONALZATION<br />

We now non-dimensionalize the equations (30 − 33) and (34 − 37) by us<strong>in</strong>g the relations<br />

x = df ˆxf, t = d2 f<br />

sf = |So − Su| ν<br />

Mf<br />

λf<br />

ˆtf, ν f = ν<br />

ˆsf, pf = ρ0 ν 2<br />

d 2 f<br />

df<br />

For the fluid <strong>layer</strong>, and us<strong>in</strong>g the relations<br />

x = dm ˆxm, t = d2 m<br />

sm = |Sl − S0| ν<br />

Mm<br />

λm<br />

ˆtm, ν m = ν<br />

ˆsm, pm = ρ0 ν 2<br />

d 2 m<br />

ˆν f, θf = |To − Tu| ν<br />

ˆpf, h f = Hf λf<br />

dm<br />

ηf<br />

λf<br />

ˆθf,<br />

ˆν m, θm = |Tl − T0| ν<br />

ˆpm, h m = Hm λm<br />

For the <strong>porous</strong> medium <strong>layer</strong>. Where λf = kf<br />

(ρ cp)f and λm = km<br />

(ρ cp)f<br />

of the fluid <strong>layer</strong> and <strong>porous</strong> medium <strong>layer</strong> respectively.<br />

The equations (30 − 33) can be written <strong>in</strong> the form<br />

P −1 ∂ˆν f<br />

rf<br />

∂ˆtf<br />

∂ ˆ θf<br />

∂ˆtf<br />

1<br />

Lef<br />

∂ ˆ h f<br />

∂ˆtf<br />

ηm<br />

ˆh f. (45)<br />

λm<br />

+ ˆν f · ∇ˆν f = −∇ˆpf + ∇ 2 ˆν f + Raf ˆ θf e3 − Rasf ˆsf e3<br />

+ P −1<br />

rf Qf<br />

∂ ˆ h f<br />

∂ˆx3<br />

+ QfP −1<br />

rf<br />

ˆθm,<br />

ˆh m. (46)<br />

are the thermal diffusivity<br />

P −1<br />

mf (ˆ h f · ∇ ˆ h f), (47)<br />

+ Prf ˆν f · ∇ ˆ θf = sign(T0 − Tu) ωf + ∇ 2ˆ θf, (48)<br />

∂ˆsf<br />

∂ˆtf<br />

= Pmf<br />

+ Scf ˆν f · ∇ˆsf = sign(S0 − Su) ωf + ∇ 2 ˆsf, (49)<br />

∂ˆν f<br />

∂ˆx3<br />

+ ( ˆ h f · ∇)ˆν f − (ˆν f · ∇) ˆ h f + Pmf∇ 2ˆ hf, (50)<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 43<br />

where Prf, Pmf, Qf, Scf, Lef, Raf and Rasf are non-dimensional numbers denote the viscous<br />

Prandtl number, magnetic Prandtl number, Chandrasekhar number, Schmidet number, Lewis<br />

number, thermal Rayleigh number and solute Rayleigh number of the fluid <strong>layer</strong> where<br />

Prf = ν<br />

λf<br />

, Pmf = ηf<br />

λf<br />

Raf = α g d3 f |T0 − Tu|<br />

λf ν<br />

, Qf = µmf H2 f d2f , Scf =<br />

4π ρ0 ν ηf<br />

ν<br />

, Lef =<br />

Mf<br />

Mf<br />

,<br />

λf<br />

, Rasf = α′ g d3f |S0 − Su|<br />

,<br />

Mf ν<br />

the equations (34 − 37) can be written <strong>in</strong> the form<br />

P −1<br />

rm<br />

Da ∂ˆν m<br />

ϕ ∂ˆtm<br />

= −∇ˆpm − ˆν m + Ram ˆ θm e3 − Rasm ˆsm e3<br />

+ Qm P −1<br />

rmDa ∂ˆ hm + Qm Da P<br />

∂ˆx3<br />

−1<br />

rm P −1<br />

mm( ˆ hm · ∇ˆ hm), (51)<br />

Gm<br />

∂ ˆ θm<br />

∂ˆtm<br />

+ Prm ˆν m · ∇ˆ θm = sign(Tl − T0) ωm + ∇ 2ˆ θm, (52)<br />

ϕ<br />

Lem<br />

∂ˆsm<br />

∂ˆtm<br />

+ Scm ˆν m · ∇ˆsm = sign(Sl − S0) ωm + ∇ 2 ˆsm, (53)<br />

∂ˆ hm ∂ˆν m<br />

= Pmm + (<br />

∂ˆtm ∂ˆx3<br />

ˆ hm · ∇)ˆν m − (ˆν m · ∇) ˆ hm + Pmm∇ 2ˆ hm, (54)<br />

(ρ c)m<br />

where Gm = (ρ cp)f , Prm, Pmm, Qm, Scm, Lem, Da, Ram and Rasm are non-dimensional<br />

numbers denote the viscous Prandtl number, magnetic Prandtl number, Chandrasekhar number,<br />

Schmidet number, Lewis number, Darcy number, thermal Rayleigh number and solute Rayleigh<br />

number of the <strong>porous</strong> medium <strong>layer</strong> where<br />

Prm = ν<br />

λm<br />

Da = K<br />

d 2 m<br />

, Pmm = ηm<br />

λm<br />

, Qm = µmm H2 m d2 m<br />

, Scm =<br />

4π ρ0 ν ηm<br />

ν<br />

Mm<br />

, Ram = α g d3 m|Tl − T0| K<br />

λm ν<br />

, Lem = Mm<br />

,<br />

λm<br />

, Rasm = α′ g d3m|Sl − S0| K<br />

.<br />

Mm ν<br />

Us<strong>in</strong>g (45) and (46) <strong>in</strong> the upper boundary at x3 = 1 + f(t + xα) we obta<strong>in</strong><br />

sign(T0 − Tu)(1 − n3) + Prf ni ˆ θ,i + Nu � Prf ˆ θf − sign(T0 − Tu) f � = 0, (55)<br />

�<br />

sign(S0 − Su)(1 − n3) + Scf ni ˆs,i + Nus Scf ˆsf − sign(S0 − Su) f � = 0, (56)<br />

ˆν 3 − ∂f<br />

∂ˆxα<br />

ˆν α = P −1 ∂f<br />

rf ,<br />

∂t<br />

(57)<br />

lim<br />

x3→1− ˆhi = µ0<br />

µmf<br />

Cr −1 P −1<br />

rf<br />

lim<br />

x3→1 +<br />

∂φu<br />

∂ˆxi<br />

b α α = − ˆpf + 1<br />

2<br />

+ B0 Cr −1 P −1<br />

rf<br />

− 1<br />

2<br />

� −1 −1<br />

QfPrf Prf ( ˆ hjnj) 2 + 2n3 ˆ �<br />

hjnj<br />

1<br />

f −<br />

2 Qf Pmf(1 − n 2 3) + 2νi,j ˆ n<strong>in</strong>j<br />

�<br />

sign(T0 − Tu)P −1<br />

rf Raf − sign(S0 − Su)S −1<br />

cf Rasf Lef<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.<br />

�<br />

f 2 ,<br />

(58)<br />

(59)


44 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

−Ma<br />

�<br />

Prf ˆ<br />

�<br />

θ,α − sign(T0 − Tu) f,α<br />

Prf<br />

− Mas<br />

Scf<br />

�<br />

�<br />

Scfs,α ˆ − sign(S0 − Su) f,α<br />

= ( νi,j ˆ + νj,i) ˆ nj ˆxi,α + Qf ˆ hi ˆxi,α(n3 + P −1<br />

mf ˆ hj nj), (60)<br />

where φu is the non-dimensional magnetic potential function <strong>in</strong> the region x3 > 1 + f and Cr,<br />

B0, Ma & Mas are non-dimensional numbers denote the Crispation number, Bond number,<br />

thermal Marangoni number and solute Marangoni number where<br />

Cr = ρ0 ν λf<br />

df τ(Tu, Su) , B0 = ρ0 g d 2 f<br />

τ(Tu, Su) ,<br />

Ma = − ∂τ<br />

∂T<br />

df|T0 − Tu|<br />

ρ0 ν λf<br />

The middle boundary at x3 = 0<br />

, Mas = − ∂τ<br />

∂S<br />

df|S0 − Su|<br />

.<br />

ρ0 ν Mf<br />

ΥT ˆ θf(0) = εT ˆ θm(0), ΥS ˆsf(0) = εS sm(0), ˆ<br />

∂ ˆ θf(0)<br />

= εT<br />

∂ ˆx3<br />

∂ ˆ θm(0)<br />

,<br />

∂ ˆx3<br />

∂ ˆsf(0)<br />

∂ ˆx3<br />

=<br />

∂sm(0) ˆ<br />

εS , ˆωf(0) =<br />

∂ ˆx3<br />

ˆ ∂ ˆωf(0)<br />

d ωm(0), ˆ ˆpf(0) − 2<br />

∂ ˆx3<br />

= ˆ d2 Da ˆ pm(0),<br />

ˆhf(0) =<br />

1<br />

hm(0), ˆ<br />

ˆn εT<br />

∂ ˆ hf(0)<br />

=<br />

∂ ˆx3<br />

ˆ d<br />

ˆn ε2 T<br />

∂ ˆ<br />

∂ûf(0)<br />

∂ ˆx3<br />

=<br />

hm(0)<br />

,<br />

∂ ˆx3<br />

(61)<br />

ˆ d2 �<br />

αBJ 1<br />

√<br />

Da ˆd ûf(0)<br />

∂ ˆνf(0)<br />

∂ ˆx3<br />

=<br />

�<br />

− um(0) ˆ ,<br />

ˆ d2 �<br />

αBJ 1<br />

√<br />

Da ˆd ˆνf(0)<br />

�<br />

− νm(0) ˆ ,<br />

where<br />

ˆd = df<br />

, εT = λf<br />

dm<br />

λm<br />

ΥT = |T0 − Tu|<br />

|Tl − T0| = ˆ d<br />

Raf = ˆ d 4<br />

εT<br />

= kf<br />

, εS =<br />

km<br />

Mf<br />

, ˆn =<br />

Mm<br />

Hf ηm<br />

,<br />

Hm ηf<br />

, ΥS = |S0 − Su|<br />

|Sl − S0| = ˆ d<br />

ε 2 T Da Ram, Rasf = ˆ d 4<br />

εS<br />

, Prf = 1<br />

ε 2 S Da Rasm, Lef = εS<br />

The lower boundary at x3 = −1 the condition becomes<br />

ωm ˆ = 0, θm<br />

ˆ = 0, sm ˆ = 0, lim<br />

x3→1 +<br />

ˆh m = µ0<br />

µmm<br />

εT<br />

lim<br />

x3→1 −<br />

where φl is the non-dimensional magnetic potential function.<br />

6 LINEARIZED PROBLEM<br />

εT<br />

Lem.<br />

Prm,<br />

∂φl<br />

, (62)<br />

∂ˆxi<br />

The l<strong>in</strong>earized of equations is obta<strong>in</strong>ed by ignor<strong>in</strong>g all products, the powers more than first and<br />

by dropp<strong>in</strong>g hat the superscript ˆ ( ) for fluid <strong>layer</strong> the result<strong>in</strong>g<br />

P −1 ∂ν f<br />

rf<br />

∂tf<br />

= −∇pf + ∇ 2 νf + Raf θfe3 − Rasf sf e3 + Qf P −1 ∂hf rf , (63)<br />

∂x3<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


∂θf<br />

∂tf<br />

1<br />

Lef<br />

Pm −1<br />

f<br />

Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 45<br />

= ∇ 2 θf + ξT ωf, (64)<br />

∂sf<br />

∂tf<br />

∂h f<br />

∂tf<br />

= ∇ 2 sf + ξS ωf, (65)<br />

= ∂ν f<br />

∂x3<br />

+ ∇ 2 h f, (66)<br />

and for the <strong>porous</strong> medium <strong>layer</strong> the result<strong>in</strong>g<br />

Da<br />

ϕ Prm<br />

Gm<br />

ϕ<br />

Lem<br />

Pm −1<br />

m<br />

where<br />

∂θm<br />

∂tm<br />

∂ν m<br />

∂tm<br />

∂sm<br />

∂tm<br />

∂h m<br />

∂tm<br />

= −∇pm − ν m + Ram θme 3 − Rasm sm e 3 + Qm P −1<br />

rmDa ∂hm , (67)<br />

∂x3<br />

= ∇ 2 θm + ξT ωm, (68)<br />

= ∇ 2 sm + ξS ωm, (69)<br />

= ∂ν m<br />

∂x3<br />

ξT = sign(Tl − T0) = sign(T0 − Tu) =<br />

ξs = sign(Sl − S0) = sign(S0 − Su) =<br />

+ ∇ 2 h m, (70)<br />

� +1 when heat<strong>in</strong>g from below,<br />

−1 when heat<strong>in</strong>g from above.<br />

� +1 when solut<strong>in</strong>g from below,<br />

−1 when solut<strong>in</strong>g from above.<br />

The boundary conditions on the lower boundary x3 = −1 are unchanged except to clear superscript,<br />

but the l<strong>in</strong>earized upper boundary conditions<br />

Prf<br />

Scf<br />

∂θf<br />

+ Nu(Prf θf − ξT f) = 0,<br />

∂x3<br />

∂sf<br />

+ Nus(Scf sf − ξS f) = 0,<br />

∂x3<br />

ν 3 = P −1<br />

rf<br />

∂f<br />

∂t ,<br />

lim<br />

x3→1− hi = µ0<br />

µmf<br />

lim<br />

x3→1 +<br />

∂φu<br />

,<br />

∂xi<br />

Cr −1 P −1<br />

rf bαα = −pf + Qf P −1<br />

rf h3 + B0Cr −1 P −1<br />

rf<br />

∂ν3<br />

f + 2 ,<br />

∂x3<br />

−Ma P −1<br />

rf (Prf θ,α − ξT f,α) − Mas S −1<br />

cf (Scf s,α − ξSf,α) = ν3,α + ∂να<br />

∂x3<br />

+ Qfhα.<br />

To simplize the normal stress boundary condition on the <strong>in</strong>terface plane we will elim<strong>in</strong>ate hydrostatic<br />

pressure term, then by tak<strong>in</strong>g two-dimensional Laplacian of (61)6 we obta<strong>in</strong><br />

∆2pf(0) − 2 ∂<br />

∆2ωf(0) =<br />

∂x3<br />

ˆ d4 Da ∆2pm(0), (71)<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


46 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

s<strong>in</strong>ce<br />

∇νf = 0 −→ ∂uf<br />

∂x1<br />

∇ν m = 0 −→ ∂um<br />

∂x1<br />

+ ∂νf<br />

∂x2<br />

+ ∂νm<br />

∂x2<br />

= − ∂ωf<br />

,<br />

∂x3<br />

= − ∂ωm<br />

. (72)<br />

∂x3<br />

Then we take the divergence of equations (63) and (67) we get respectively<br />

∆2pf = 1<br />

Prf<br />

∆2pm = Da<br />

ϕ Prm<br />

∂ ∂ωf<br />

∂t ∂x3<br />

∂ ∂ωm<br />

∂t ∂x3<br />

2 ∂ωf<br />

− ∇ , (73)<br />

∂x3<br />

substitute from (74) and (73) <strong>in</strong>to (71) to get<br />

∂<br />

∂x3<br />

�<br />

∇ 2 ωf(0) − 1<br />

Prf<br />

+ ∂ωm<br />

, (74)<br />

∂x3<br />

∂ωf(0)<br />

∂t<br />

�<br />

+ 2∆2ωf(0) = − ˆ d4 �<br />

Da<br />

Da ϕ Prm<br />

∂<br />

+ 1<br />

∂t<br />

�<br />

∂ωm(0)<br />

. (75)<br />

∂x3<br />

Comb<strong>in</strong>e the Beavers and Joseph boundary conditions on the <strong>in</strong>terface plane (61)9 and (61)10<br />

by differentiate equations (61)9 and (61)10 with respect to x1 and x2 respectively, we get<br />

∂<br />

∂x3<br />

∂uf(0)<br />

∂x1<br />

= ˆ d αBJ<br />

√<br />

Da<br />

�<br />

∂uf(0)<br />

−<br />

∂x1<br />

ˆ d<br />

2 ∂um(0)<br />

∂x1<br />

∂ ∂νf(0)<br />

=<br />

∂x3 ∂x2<br />

ˆ d<br />

�<br />

αBJ ∂νf(0)<br />

√ −<br />

Da ∂x2<br />

ˆ d<br />

∂x2<br />

by add<strong>in</strong>g (76) to (77) and us<strong>in</strong>g (72) we get<br />

∂<br />

∂x3<br />

� αBJ<br />

√ Da<br />

ˆd ωf(0) − ∂ωf(0)<br />

�<br />

∂x3<br />

2 ∂νm(0)<br />

= ˆ d3 αBJ<br />

√<br />

Da<br />

�<br />

, (76)<br />

�<br />

, (77)<br />

∂ωm<br />

. (78)<br />

∂x3<br />

Recall that the magnetic field on <strong>in</strong>sulat<strong>in</strong>g material is irrotational and is derived from a potential<br />

function φ(t, xi) which is the solution of Laplace’s equation. Let φ = ψ(t, x3) e i(px1+qx2) then<br />

∂ 2 ψ<br />

∂x 2 3<br />

− a 2 ψ = 0, a 2 = p 2 + q 2 ,<br />

∂ψ<br />

∂x3<br />

→ 0 as |x3| → ∞,<br />

where a = � p 2 + q 2 the dimensionless wave number. Trivially φl and φu have functional form<br />

φl = Cl(t) e ax3 e i(px1+qx2) , φu = Cu(t) e −ax3 e i(px1+qx2) .<br />

When x3 < −1 then h = Cl(t) (ip, iq, a) and cont<strong>in</strong>uity of the magnetic <strong>in</strong>duction across<br />

x3 = −1 requires that<br />

h3,3 = 1<br />

µm<br />

b3,3 = −1<br />

µm<br />

bα,α = µ0<br />

µm<br />

a 2 Cl(t) = a<br />

µm<br />

b3 = ah3.<br />

With a similar argument on x3 = 1 + f(t, xα). Hence the magnetic boundary conditions are<br />

∂h3<br />

− am h3 = 0, x3 = −1,<br />

∂x3<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 47<br />

∂h3<br />

+ af h3 = 0, x3 = 1.<br />

∂x3<br />

We put ω = ν3, h = h3 and take the double curl of equation (63) and (67) to elim<strong>in</strong>ate<br />

hydrostatic pressure pf and pm respectively, and we take the third component for all equations<br />

of the system. Therefore, for the fluid <strong>layer</strong>, we get<br />

P −1<br />

rf<br />

∂θf<br />

∂tf<br />

1<br />

Lef<br />

∂<br />

∂tf<br />

∇ 2 ωf − QfP −1<br />

rf ∇2 Dhf = ∇ 4 ωf + Raf △2θf − Rasf △2sf,<br />

= ξT ωf + ∇ 2 θf,<br />

∂sf<br />

∂tf<br />

= ξSωf + ∇ 2 sf,<br />

P −1<br />

mf<br />

∂hf<br />

∂tf<br />

= ∇ 2 hf + Dωf.<br />

Also for the <strong>porous</strong> medium <strong>layer</strong> , we obta<strong>in</strong><br />

Da<br />

ϕ Prm<br />

Gm<br />

ϕ<br />

Lem<br />

P −1<br />

mm<br />

∂θm<br />

∂tm<br />

∂<br />

∂tm<br />

∂sm<br />

∂tm<br />

∂hm<br />

∂tm<br />

∇ 2 ωm − Qm P −1<br />

rmDa ∇ 2 Dhm = −∇ 2 ωm + Ram △2θm − Rasm △2sm,<br />

= ξT ωm + ∇ 2 θm,<br />

= ξSωm + ∇ 2 sm,<br />

= ∇ 2 hm + Dωm,<br />

where ∇ 2 is the 3-D Laplacian and ∆2 is the 2-D Laplacian.<br />

Now we look for solution of the form<br />

φ(t, xi) = φ(x3) e σt e i(px1+qx2) , φ = {ω, h, p, θ, s}.<br />

f(t, xα) = f0 e σt e i(px1+qx2) , f0 is constant.<br />

Thus the equation of fluid <strong>layer</strong> become<br />

σf P −1<br />

rf (D2 f − a 2 f) ωf − σf P −1<br />

mf Qf P −1<br />

rf Df hf = (D 2 f − a 2 f) 2 ωf<br />

− Raf a 2 f θf + Rasf a 2 f sf − Qf P −1<br />

rf D2 f ωf, (79)<br />

σf θf = ξT ωf + (D 2 f − a 2 f) θf, (80)<br />

σf<br />

Lef<br />

sf = ξS ωf + (D 2 f − a 2 f) sf, (81)<br />

σf P −1<br />

mf hf = (D 2 f − a 2 f) hf + Df ωf, (82)<br />

while the <strong>porous</strong> medium equations take the form<br />

−Da σm<br />

ϕ Prm<br />

(D 2 m − a 2 m) ωm − σm Da P −1<br />

mm Qm P −1<br />

rmDm hm = (D 2 m − a 2 m) ωm<br />

+ Ram a 2 m θm − Rasm a 2 m sm + Qm P −1<br />

rmDa D 2 m ωm, (83)<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


48 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

Gm σm θm = ξT ωm + (D 2 m − a 2 m) θm, (84)<br />

ϕ σm<br />

Lem<br />

sm = ξS ωm + (D 2 m − a 2 m) sm, (85)<br />

σm P −1<br />

mm hm = (D 2 m − a 2 m) hm + Dm ωm, (86)<br />

from these equations<br />

af = ˆ d am, σf = ˆ d 2<br />

εT<br />

σm,<br />

Dm = ∂<br />

; x3 ∈ [−1, 0], Df =<br />

∂x3<br />

∂<br />

; x3 ∈ [0, 1],<br />

∂x3<br />

where af and am are non-dimensional wave number <strong>in</strong> the fluid <strong>layer</strong> and <strong>porous</strong> medium <strong>layer</strong><br />

respectively, σf and σm are growth rates.<br />

As a preamble to the formulation of the f<strong>in</strong>al boundary conditions on x3 = 1, the pressure<br />

everywhere is given by the equation<br />

p = 1 � 3 2 −1<br />

D ω − a Dω + Q Pr D 2 h − σ P −1<br />

r Dω �<br />

a 2<br />

hence the boundary conditions on x3 = 1 are<br />

Prf Dfθf + Nu(Prfθf − ξT f0) = 0, (87)<br />

Scf Df sf + Nus(Scf sf − ξS f0) = 0, (88)<br />

ωf − σf P −1<br />

rf f0 = 0, (89)<br />

Dfhf + af hf = 0, (90)<br />

a 2 f(B0 + a 2 f)f0 − Cr Prf(D 3 fωf − 3a 2 f Dfωf − Qf P −1<br />

rf Dfωf) =<br />

= σf Cr(Qf P −1<br />

mf hf − Dfωf), (91)<br />

(D 2 f + a 2 f)ωf + Ma P −1<br />

rf (Prf θf − ξT f0)a 2 f<br />

+ Mas S −1<br />

cf (Scf sf − ξS f0)a 2 f = 0. (92)<br />

The middle boundary on x3 = 0, become<br />

ΥT θf = εT θm, ΥSsf = εS sm, Dfθf = εT Dmθm, Dfsf = εS Dmsm,<br />

ωf = ˆ d ωm,<br />

D 3 fωf − 3a 2 f Dfωf − σf<br />

hf =<br />

Dfhf =<br />

1<br />

ˆn εT<br />

ˆd<br />

ˆn ε 2 T<br />

hm,<br />

Prf<br />

Dfωf = − ˆ d4 �<br />

Da<br />

�<br />

σm + 1 Dmωm, (93)<br />

Da ϕ Prm<br />

Dmhm, αBJ<br />

√ ˆdDfωf − D<br />

Da<br />

2 fωf = ˆ d3 αBJ<br />

√ Dmωm.<br />

Da<br />

The lower boundary on x3 = −1 become<br />

ωm = 0, θm = 0, sm = 0, Dmhm − amhm = 0. (94)<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 49<br />

7 METHOD OF SOLUTION<br />

The first order Chebyshev spectral method is applied to solve the equations (79 − 86) with<br />

the relevant boundary conditions (87 − 94), and we map x3 ∈ [0, 1] and x3 ∈ [−1, 0] <strong>in</strong> to<br />

z ∈ [−1, 1] by the transformations z = 2x3 − 1 and z = 2x3 + 1 respectively, to obta<strong>in</strong><br />

∂<br />

∂x3<br />

= 2 ∂<br />

∂z , thus Df = Dm = 2 ∂<br />

∂z<br />

Let the variables y1, y2, . . . , y18 be def<strong>in</strong>ed by<br />

= D, z ∈ [−1, 1].<br />

y1 = ωf, y2 = Dfωf, y3 = D 2 fωf, y4 = D 3 fωf, y5 = θf,<br />

y6 = Dfθf, y7 = sf, y8 = Dfsf, y9 = hf, y10 = Dfhf,<br />

y11 = ωm, y12 = Dmωm, y13 = θm, y14 = Dmθm, y15 = sm,<br />

y16 = Dmsm, y17 = hm, y18 = Dmhm.<br />

Then the equations (79 − 86) can be rewritten <strong>in</strong> a system of eighteen ord<strong>in</strong>ary differential<br />

equations of first order, s<strong>in</strong>ce Df = Dm = D and if we put σm = σ then σf = ˆ d2 σ so that<br />

εT<br />

Eigenvalue problem can be reformulated <strong>in</strong> the form<br />

dY<br />

dz<br />

= AY + σBY, z ∈ [−1, 1]<br />

where A and B are real 18×18 matrices. The f<strong>in</strong>al Eigenvalue problem reduces to EX = σF X<br />

where matrices E and F have the block forms. The boundary conditions replace the Mth,<br />

2 Mth,. . ., 18 Mth. rows of E and F . First to make the boundary condition on x3 = 1 four<br />

condition. Its convenient to neglect<strong>in</strong>g f0 and neglect<strong>in</strong>g normal stress upper boundary. All<br />

boundary condition take the form<br />

y6 + Nu y5 = 0,<br />

y8 + Nus y7 = 0,<br />

y1 = 0,<br />

y3 + a 2 f y1 + a 2 f Ma y5 + a 2 f Mas y7 = 0,<br />

y10 + af y9 = 0,<br />

y1 − ˆ d y11 = 0, ΥT y5 − εT y13 = 0, ΥSy7 − εS y15 = 0, y6 − εT y14,<br />

y8 − εS y16 = 0, y4 − 3a 2 f y2 + ˆ d4 Da y12<br />

� ˆ2 d<br />

= σ<br />

y9 − 1<br />

ˆn εT<br />

y17 = 0, y10 − ˆ d<br />

ˆn ε 2 T<br />

y17 = 0, αBJ<br />

√<br />

Da<br />

εT Prf<br />

y11 = 0, y13 = 0, y15 = 0, y18 − amy17 = 0.<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.<br />

y2 − ˆ d 4<br />

ϕ Prm<br />

ˆdy2 − y3 − ˆ d3 αBJ<br />

√<br />

Da<br />

y12<br />

�<br />

,<br />

ˆdy12 = 0,


50 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

Figure 2: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> Ram and wave number<br />

<strong>in</strong> <strong>porous</strong> <strong>layer</strong> am for various of depth ratio when, Da = 4 × 10 −6 , Ma = 100, Mas = 10,<br />

Qm = 10, Rams = 50.<br />

8 RESULTS AND DISCUSSION<br />

The Eigenvalue problem (79 − 86) with boundary conditions (87 − 94) by us<strong>in</strong>g first order of<br />

Chebyshev spectral method is transformed to a system of ten ord<strong>in</strong>ary differential equations of<br />

first order <strong>in</strong> the fluid <strong>layer</strong> and a system of eight ord<strong>in</strong>ary differential equations of first order <strong>in</strong><br />

the <strong>porous</strong> <strong>layer</strong> with eighteen boundary conditions. In this paper we will discuss the numerical<br />

results when the Eigenvalues are real then the stationary <strong>in</strong>stability happens as shown <strong>in</strong> the<br />

figures (2) − (11). These figures display the relation between Ram and am by consider<strong>in</strong>g<br />

chosen values of the non-dimensions constants<br />

Prf = 6, Gm = 10, ϕ = 0.3, αBJ = 0.1, Lef = 1, Pmm = 6, εT = 0.7,<br />

εS = 3.75, Pmf = 6, ˆn = 1, Nu = 10, Nus = 5, ξT = 1, ξS = 1.<br />

For deferent values of ˆ d, Qm, Da, Ma, Ras, Rasm we found the follow<strong>in</strong>g results will be held:<br />

1. The <strong>in</strong>creas<strong>in</strong>g of depth ratio has unstabiliz<strong>in</strong>g effect for the system as shown <strong>in</strong> figure<br />

(2).<br />

2. L<strong>in</strong>ear magnetic field has a stabiliz<strong>in</strong>g effect for the system as shown <strong>in</strong> figure (3).<br />

3. The permeability of <strong>porous</strong> medium has a stabiliz<strong>in</strong>g effect for the system on the other<br />

hand the fluid becomes more stable when the permeability <strong>in</strong>creases as shown <strong>in</strong> figures<br />

(4) and (5).<br />

4. The <strong>in</strong>creas<strong>in</strong>g of the thermal Marangoni number has unstabiliz<strong>in</strong>g effect for the system<br />

as shown <strong>in</strong> figures (6), (7) and (8).<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 51<br />

Figure 3: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> Ram and wave number<br />

<strong>in</strong> <strong>porous</strong> <strong>layer</strong> am for various of Chandrasekhar number when, Da = 4 × 10 −6 , Ma = 100,<br />

Mas = 10, ˆ d = 0.07, Rams = 50.<br />

5. The <strong>in</strong>creas<strong>in</strong>g of the solute Marangoni number has unstabiliz<strong>in</strong>g effect for the system as<br />

shown <strong>in</strong> figures (9) and (10).<br />

6. The <strong>in</strong>creas<strong>in</strong>g of the solute Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> has a stabiliz<strong>in</strong>g effect for<br />

the system, i. e. there is a direct relation between thermal and solute Rayleigh number <strong>in</strong><br />

<strong>porous</strong> <strong>layer</strong> as shown <strong>in</strong> figure (11).<br />

9 CONCLUSIONS<br />

In this paper we have implemented a D variant of the Chebyshev numercal method and have<br />

derived accurate results for the Marangoni Convections <strong>in</strong> a <strong>horizontal</strong> <strong>porous</strong> <strong>layer</strong> superposed<br />

by a fluid <strong>layer</strong> <strong>in</strong> the presence of uniform vertical magnetic field and solute. The Chebyshev<br />

method is very important for this general class of problem s<strong>in</strong>ce it is highly accurate, the eigenfunctions<br />

are easy to generate, and it is easily generalized to the multi<strong>layer</strong> situation where there<br />

are many <strong>porous</strong>-fluid <strong>layer</strong>s superposed. The Chebyshev method used here also yields as many<br />

eigenvalues <strong>in</strong> the spectrum as one desires. This is particularly important <strong>in</strong> that for convection<br />

problems of current <strong>in</strong>terest, it is often the case that the eigenvalues change position, one eigenvalues<br />

which is dom<strong>in</strong>ant <strong>in</strong> a certa<strong>in</strong> region of parameter space be<strong>in</strong>g replaced by another <strong>in</strong><br />

another parameter region. Firstly we have <strong>in</strong>vestigated <strong>in</strong> detail the effect of depth ratio on the<br />

onset of <strong>in</strong>stability. Straughan,s (2001) study the effect of surface tension is <strong>in</strong>vestigated <strong>in</strong> detail<br />

and it is found that for the parameter ˆ d very small, the surface tension has strong effect on<br />

convection dom<strong>in</strong>ated by the <strong>porous</strong> medium,whereas for ˆ d larger the surface tension effect is<br />

observed only with the fluid mode as shown <strong>in</strong> figure (12). Also Chen and Chen (1988)produced<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


52 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

Figure 4: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> Ram and wave number<br />

<strong>in</strong> <strong>porous</strong> <strong>layer</strong> am for various of Darcy number when, Ma = 100, Mas = 10, ˆ d = 0.05,<br />

Rams = 50, Qm = 10.<br />

a classical paper <strong>in</strong> which they studied thermal convection <strong>in</strong> a two-<strong>layer</strong> system composed of a<br />

<strong>porous</strong> <strong>layer</strong> saturated with fluid over which was a <strong>layer</strong> of the same fluid. The <strong>layer</strong> was heated<br />

from below and Chen and Chen (1988) considered the bottom of the <strong>porous</strong> <strong>layer</strong>,as well as the<br />

upper surface of the fluid,to be fixed. They showed that the l<strong>in</strong>ear <strong>in</strong>stability curves for the onset<br />

of convection motion,i.e; the Rayleigh number aga<strong>in</strong>st wavenumber curves,may be bimodal <strong>in</strong><br />

that the curves possess two local m<strong>in</strong>ima. A crucial parameter <strong>in</strong> their analysis is the number ˆ d.<br />

They <strong>in</strong>terpreted their f<strong>in</strong>d<strong>in</strong>g by show<strong>in</strong>g that for ˆ d small � ≤ 0.13 � the <strong>in</strong>stability was <strong>in</strong>itiated<br />

<strong>in</strong> the <strong>porous</strong> medium,whereas for ˆ d larger than this the mechanism changed and <strong>in</strong>stability was<br />

controlled by the fluid <strong>layer</strong> as shown <strong>in</strong> figure (13). Al Enizi (Al Enizi 2006) study where<br />

the solute concentration effect was <strong>in</strong>cluded, the effect depthratio become more stronger, due to<br />

the addition of solute concentration with the effect of surface tension as shown <strong>in</strong> figure (14).<br />

In our work it is clear from the figure that the Rayleigh number <strong>in</strong> the <strong>porous</strong> <strong>layer</strong> decreases<br />

cont<strong>in</strong>uously as the thickness of the <strong>layer</strong> <strong>in</strong>creases. And it is clear the magnetic field has a<br />

stabiliz<strong>in</strong>g effect on the system. F<strong>in</strong>ale we can take water,oil or glycer<strong>in</strong> as example of fluid and<br />

sponge as example of <strong>porous</strong> <strong>layer</strong> then we can obta<strong>in</strong> the results.<br />

REFERENCES<br />

Abdullah A (1991). Benard convection <strong>in</strong> a non-l<strong>in</strong>ear magnetic field. Ph. D. thesis, University<br />

of Glasgow.<br />

Al Enizi MA (2006). Convection <strong>in</strong> <strong>horizontal</strong> multi-<strong>layer</strong> problem with surface-tension’s effect<br />

<strong>in</strong> the presence of solute concentration. M.sc. Thesis Umm Al-qura University.<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 53<br />

Figure 5: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> Ram and wave number<br />

<strong>in</strong> <strong>porous</strong> <strong>layer</strong> am for various of Darcy number when, Ma = 100, Mas = 10, ˆ d = 0.1,<br />

Rams = 50, Qm = 10.<br />

Beaver GS and Joseph DD (1967). Boundary condition at a naturally permeable wall. J. Fluid<br />

Mech. 30, pp. 197–207.<br />

Benard H (1900). Les tourbillons céllulaires dans une nappe liquide. Rev. Gen. Sci. Pure<br />

Appl. 11, pp. 1216–1271 and 1309–1328.<br />

Benard H (1901). Les tourbillons céllulaires dans une nappe liquide transportant de la chaleur<br />

par convection en regime permanent. Ann. Chim. Phys. 23, pp. 62–114.<br />

Br<strong>in</strong>kman HC (1947a). A calculation of the viscous force exerted by a flow<strong>in</strong>g fluid on a dense<br />

swarm of particles. Appl. Sci. Res. Al, pp. 27–34.<br />

Br<strong>in</strong>kman HC (1947b). On the permeability of media consist<strong>in</strong>g of closely packed <strong>porous</strong><br />

particles. Appl. Sci. Res. Al, pp. 81–86.<br />

Bukhari AF (1996). A spectral Eigenvalue method for multi-<strong>layer</strong>ed cont<strong>in</strong>ua. Ph. D. thesis,<br />

University of Glasgow, Scot.<br />

Bukhari AF (2003a). Convection <strong>in</strong> a <strong>horizontal</strong> <strong>porous</strong> <strong>layer</strong> underly<strong>in</strong>g a fluid <strong>layer</strong> <strong>in</strong> the<br />

presence of a l<strong>in</strong>ear magnetic field on both <strong>layer</strong>s. Umm Al-Qura Univ. J. Sci. Med. Eng. 15(1),<br />

pp. 95–113.<br />

Bukhari AF (2003b). Double diffusive convection <strong>in</strong> a <strong>horizontal</strong> <strong>porous</strong> <strong>layer</strong> superposed by a<br />

fluid <strong>layer</strong>. Umm al-Qura Univ., J. Sci. Med. Eng. 15(2), pp. 95–113.<br />

Chandrasekhar S (1952). On the <strong>in</strong>hibition of convection by a magnetic field. Phil. Mag.<br />

Ser. 7(340), pp. 501–532.<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


54 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

Figure 6: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> Ram and wave number<br />

<strong>in</strong> <strong>porous</strong> <strong>layer</strong> am for various of thermal Marangoni number when, Da = 4 × 10 −6 , Qm = 10,<br />

Mas = 10, ˆ d = 0.05, Rams = 50.<br />

Chandrasekhar S (1981). Hydrodynamic and Hydromagnetic Stability. Dover.<br />

Chaves T and Ortiz EL (1968). On the numerical solution of two-po<strong>in</strong>t boundary value problems<br />

for l<strong>in</strong>ear differential equations. Zeitschrift fur Angewandte Mathematik und Mechanik 48, pp.<br />

415–418.<br />

Chen F and Chen CF (1988). Onset of f<strong>in</strong>ger convection <strong>in</strong> a <strong>horizontal</strong> <strong>porous</strong> <strong>layer</strong> underly<strong>in</strong>g<br />

a fluid <strong>layer</strong>. J. of Heat Tran. 110, pp. 403–409.<br />

Fox L (1962). Chebyshev method for ord<strong>in</strong>ary differential equations. Computer. J. 4, pp. 318–<br />

331.<br />

Fox L and Parker IB (1968). Chebyshev polynomials <strong>in</strong> numerical analyses. Oxford University<br />

Press, London.<br />

Glicksman ME, Curiel SR, and McFadden GB (1986). Interaction of flows with crystal-melt<br />

<strong>in</strong>terface. Ann. Rev. Fluid Mech. 18, pp. 307–335.<br />

Hassanien IA and El-Hawary HM (1990). Chebyshev solution of lam<strong>in</strong>ar boundary <strong>layer</strong> flow.<br />

Intern. J. Computer Math. 33, pp. 127–132.<br />

Hassanien IA, El-Hawary HM, and Salama AA (1996). Chebyshev solution of axisymmetric<br />

stagnation flow on a cyl<strong>in</strong>der. Energy Convers. Mgmt 37(1), pp. 67–76.<br />

Hills RN, Loper DE, and Roberts PH (1983). A thermodynamically consistent model of the<br />

mushy zone. Q. J. Mech. Appl. Math. 36, pp. 505–539.<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 55<br />

Figure 7: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> Ram and wave number<br />

<strong>in</strong> <strong>porous</strong> <strong>layer</strong> am for various of thermal Marangoni number when, Da = 4 × 10 −6 , Qm = 10,<br />

Mas = 10, ˆ d = 0.07, Rams = 50.<br />

Jeffreys H (1930). The <strong>in</strong>stability of a compressible fluid heated below. Proc. Camb. Phil.<br />

Soc. 26, pp. 170–172.<br />

Lamb CJ (1994). Hydro magnetic <strong>in</strong>stability <strong>in</strong> the earth core. Ph. D. thesis, Department of<br />

Mathematics, University of Glasgow.<br />

Lanczos C (1938). Trigonometric <strong>in</strong>terpolation of empirical and analytical functions. J. Math<br />

Phys. 17, pp. 123–199.<br />

L<strong>in</strong>dsay K and Ogden R (1992). A practical implementation of spectral methods resistant to<br />

the generation of spurious eigenvalue. Paper No. 92/23 University of Glasgow, Department of<br />

Mathematics, prepr<strong>in</strong>t series.<br />

Maples AL and Poirier DR (1984). Convection <strong>in</strong> the two-phase zone of solidify<strong>in</strong>g alloys.<br />

Metall. Trans. B. 15, pp. 163–172.<br />

Nield DA (1968). Onset of themohal<strong>in</strong>e convection <strong>in</strong> a <strong>porous</strong> medium. Water Resources<br />

Res. 4, pp. 553–560.<br />

Nield DA (1977). Onset of convection <strong>in</strong> a fluid <strong>layer</strong> overly<strong>in</strong>g a <strong>porous</strong> medium. J. Fluid<br />

Mech. 81, pp. 513–522.<br />

Orszag S (1971a). Accurate solution of the orr-sommerfeld stability equation. J. Fluid Mech. 50,<br />

pp. 689–703.<br />

Orszag S (1971b). Approximations to flows with<strong>in</strong> slabs: spheres and cyl<strong>in</strong>ders. Phys. Rev.<br />

Letts. 26, pp. 1100–1103.<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


56 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

Figure 8: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> Ram and wave number<br />

<strong>in</strong> <strong>porous</strong> <strong>layer</strong> am for various of thermal Marangoni number when, Da = 4 × 10 −6 , Qm = 10,<br />

Mas = 10, ˆ d = 0.1, Rams = 50.<br />

Rayleigh L (1916). On convection currents <strong>in</strong> a <strong>horizontal</strong> <strong>layer</strong> of fluid when the temperature<br />

is on the side. Phil. Mag. 32(192), pp. 529–547.<br />

Somerton CW and Catton I (1982). On the thermal <strong>in</strong>stability of superposed <strong>porous</strong> and fluid<br />

<strong>layer</strong>s. ASME J. Heat Trans. A. 104, pp. 160–165.<br />

Straughan B (2001). Surface-tension-driven convection <strong>in</strong> a fluid overly<strong>in</strong>g a <strong>porous</strong> <strong>layer</strong>. J.<br />

Comput. Phys. 170, pp. 320–337.<br />

Straughan B (2002). Effect of property variation and model<strong>in</strong>g on convection <strong>in</strong> a fluid overly<strong>in</strong>g<br />

a <strong>porous</strong> <strong>layer</strong>. Int. J. Number. Anal. Meth. Geomech. 26, pp. 75–97.<br />

Sun WJ (1973). Convection Instability <strong>in</strong> Superposed Porous and Free Layers. Ph. D. thesis,<br />

University of M<strong>in</strong>nesota, M<strong>in</strong>neapolis.<br />

Taunton J and Lightfoot E (1972). Thermohal<strong>in</strong>e <strong>in</strong>stability and salt f<strong>in</strong>gers <strong>in</strong> a <strong>porous</strong> medium.<br />

Phys. Of fluid 15(5), pp. 748–753.<br />

Thompson W (1951). Thermal convection <strong>in</strong> a magnetic field. Phi. Mag. Ser. 7, pp. 1417–1432.<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 57<br />

Figure 9: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> Ram and wave number<br />

<strong>in</strong> <strong>porous</strong> <strong>layer</strong> am for various of solute Marangoni number when, Da = 4 × 10 −6 , Qm = 10,<br />

Ma = 100, ˆ d = 0.05, Rams = 50.<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


58 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

Figure 10: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> Ram and wave number<br />

<strong>in</strong> <strong>porous</strong> <strong>layer</strong> am for various of solute Marangoni number when, Da = 4×10 −6 , Qm = 10,<br />

Ma = 100, ˆ d = 0.1, Rams = 50.<br />

Figure 11: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> Ram and wave number<br />

<strong>in</strong> <strong>porous</strong> <strong>layer</strong> am for various of solute Rayleigh number when, Ma = 100, Mas = 10,<br />

ˆd = 0.05, Da = 4 × 10 −6 , Qm = 10.<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 59<br />

Figure 12: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> and wave number <strong>in</strong><br />

<strong>porous</strong> <strong>layer</strong> for various of depth ratio when, Ma = −100 φ = 0.3, Pr = 6.<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


60 R. T. Matoog and Abdl-Fattah K. Bukhari<br />

Figure 13: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> and wave number <strong>in</strong><br />

<strong>porous</strong> <strong>layer</strong> for various of depth ratio.<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.


Marangoni Convections <strong>in</strong> a Horizontal Porous Layer Superposed by a Fluid Layer 61<br />

Figure 14: The relation between thermal Rayleigh number <strong>in</strong> <strong>porous</strong> <strong>layer</strong> and wave number <strong>in</strong><br />

<strong>porous</strong> <strong>layer</strong> for various of dept ratio when, Ma = 100, Mas = 10, Da = 4 × 10 −6 .<br />

Int. J. of Appl. Math. and Mech. 4(6): 34-61, 2008.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!