06.12.2012 Views

THE Q-HOMOTOPY ANALYSIS METHOD (Q-HAM) - IJAMM

THE Q-HOMOTOPY ANALYSIS METHOD (Q-HAM) - IJAMM

THE Q-HOMOTOPY ANALYSIS METHOD (Q-HAM) - IJAMM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ABSTRACT<br />

<strong>THE</strong> Q-<strong>HOMOTOPY</strong> <strong>ANALYSIS</strong> <strong>METHOD</strong> (Q-<strong>HAM</strong>)<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil 1 and S. N. Huseen 2<br />

1 Cairo University, Faculty of Engineering,<br />

Engineering Mathematics Department, Giza, Egypt<br />

Email: magdyeltawil@yahoo.com<br />

2 Thi-Qar University, Faculty of Computer Science and Mathematics,<br />

Mathematics Department, Thi-Qar, Iraq<br />

Email: shn_n2002@yahoo.com<br />

Received 30 November 2011; accepted 27 March 2012<br />

In this paper, a more general method of homotopy analysis method (<strong>HAM</strong>) is introduced to<br />

solve non-linear differential equations, it is called (q-<strong>HAM</strong>). The interval of convergence of<br />

<strong>HAM</strong>, if exists, is increased when using q-<strong>HAM</strong>. The analysis shows that the series solution<br />

in the case of q-<strong>HAM</strong> is more likely to converge than that on <strong>HAM</strong>. The new method is<br />

applied to some nonlinear differential equations to illustrate the method of analysis.<br />

Keywords: Homotopy Analysis Method (<strong>HAM</strong>), Partial Differential Equations<br />

1 INTRODUCTION<br />

The standard homotopy analysis method (<strong>HAM</strong>) is an analytic method that provides series<br />

solutions for nonlinear partial differential equations and has been firstly proposed by (Liao<br />

1992). In recent years, this method has been successfully employed to solve many types of<br />

linear and non-linear differential equations in various fields of engineering and science (Liao<br />

1995,1996,1997,2002,2003,2004,2009 ;Wang et al.2007;Bataineh et al.2009;Van Gorder and<br />

Vairavelu 2009). Different from all perturbation techniques ( the techniques are strongly<br />

dependent upon small / large physical parameters (Nayfeh 1981,1985,2000;Lagerstrom<br />

1988;Murdock 1991;Hinch 1991)) and non perturbation techniques, such as the Lyapunov<br />

artificial small parameter method (Lyapunov 1992) , the -expansion method (Karmishin et<br />

al. 1990; Awrejcewicz et al. 1998) , Adomians decomposition method (Rach 1984; Adomain<br />

and Adomain GE 1984,Adomain 1991) and so on which are formally independent of<br />

small/large physical parameters but they can not ensure the convergence of solution series,<br />

the homotopy analysis method has the following advantages:<br />

(i) It is valid even if a given nonlinear problem does not contain any small/large<br />

parameters.<br />

(ii) It can provide us with a convenient way to adjust and control the convergence<br />

region and rate of approximation series.<br />

(iii) It can be employed to efficiently approximate a nonlinear problem by choosing<br />

different sets of base functions.


52<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

In recent years more and more researchers have been successfully applying (<strong>HAM</strong>) to various<br />

nonlinear problems in science and engineering ,such as, the nonlinear water waves (Tao et al.<br />

2007, groundwater flows (Song and Tao 2007) , time-dependent Emden-Fowler type<br />

equations (Bataineh et al. 2007) , solving high order nonlinear differential equations (Hany N<br />

Hassan and El-Tawil 2010), solving two points nonlinear boundary value problems (Hany N<br />

Hassan and El-Tawil 2010), time-fractional partial differential equations (O Abdulaziz et al.<br />

2008) ,Klein- Gordon equation (Alomari et al. 2008 ,Goursat problems(Syyed Ali<br />

Kazemipour and Ahmad Neyrameh 2010) ,one group neutron diffusion equation(Cavdar<br />

2010) ,algebraic equations (Chin Fugn Yuen et al. 2010 ,integral and integro-differential<br />

equations (Hossein Zadeh et al. 2010), singular higher-order boundary value problems(A<br />

Sami Bataineh et al. 2011).<br />

2 BASIC IDEA OF Q-<strong>HOMOTOPY</strong> <strong>ANALYSIS</strong> <strong>METHOD</strong> (Q-<strong>HAM</strong>)<br />

Consider the following differential equation:<br />

[ ] (1)<br />

where N is a nonlinear operator, denotes independent variables, is a known<br />

function and is an unknown function.<br />

Let us construct the so-called zero-order deformation equation:<br />

[ ] [ ] (2)<br />

Where , [ ] denotes the so-called embedded parameter , is an auxiliary linear<br />

operator with the property [ ] , is an auxiliary parameter,<br />

denotes a non-zero auxiliary function.<br />

It is obvious that when<br />

respectively. Thus as increases from 0 to<br />

guess to the solution .<br />

(<br />

equation (2) becomes:<br />

) (3)<br />

, the solution varies from the initial<br />

Having the freedom to choose , we can assume that all of them can be<br />

properly chosen so that the solution of equation (2) exists for [ ].<br />

Expanding in Taylor series, one has:<br />

Where:<br />

∑<br />

(4)<br />

(5)


Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

Assume that are so properly chosen such that the series (4) converges at<br />

and:<br />

(<br />

) ∑ (<br />

Defining the vector { }<br />

differentiating equation (2) times with respect to and then setting and finally<br />

dividing them by we have the so-called order deformation equation:<br />

[ ]<br />

where :<br />

and:<br />

{<br />

[ ]<br />

It should be emphasized that for is governed by the linear equation (7) with<br />

linear boundary conditions that come from the original problem. Due to the existence of the<br />

factor (<br />

)<br />

)<br />

, more chances for convergence may occur or even much faster convergence can<br />

be obtained better than the standard <strong>HAM</strong>. It should be noted that the case of<br />

, standard <strong>HAM</strong> can be reached.<br />

3 APPLICATIONS<br />

3.1 The nonlinear homogeneous gas dynamics equation<br />

Let<br />

with initial condition<br />

The exact solution of this problem is known to be<br />

This problem was solved by <strong>HAM</strong> in (Hany Nasr Hassan 2010) .<br />

For q- <strong>HAM</strong> solution we choose the linear operator :<br />

[ ]<br />

with the property :<br />

[ ]<br />

(6)<br />

(7)<br />

(8)<br />

(9)<br />

(10)<br />

(11)<br />

(12)<br />

(13)<br />

53


54<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

where is constant. Using initial approximation ,<br />

we define a nonlinear operator as<br />

[ ]<br />

We construct the zero order deformation equation:<br />

[ ] [ ]<br />

we can take , and the order deformation equation is :<br />

[ ]<br />

with the initial conditions for<br />

Where:<br />

And:<br />

∑<br />

{<br />

∑<br />

[ ]<br />

Now the solution of equation (10) for becomes<br />

∫<br />

where the constant of integration is determined by the initial conditions (15).<br />

We can obtain components of the solution using q- <strong>HAM</strong> as follows:<br />

can be calculated similarly. Then the series solution expression by<br />

q- <strong>HAM</strong> can be written in the form:<br />

∑ (<br />

)<br />

(14)<br />

(15)<br />

(16)<br />

,


Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

Equation (16) is an approximate solution to the problem (10) in terms of the convergence<br />

parameters . It can be noted that the fraction factor ( )<br />

convergence chances than that of <strong>HAM</strong>.<br />

55<br />

highly increase the<br />

To find the valid region of , the -curves given by the 10 th order q-<strong>HAM</strong> approximation at<br />

different values of are drawn in figures ). These figures show the<br />

interval of at which the value of is constant at certain values of .<br />

We choose the horizontal line parallel to as a valid region which provides us<br />

with a simple way to adjust and control the convergence region of the series solution(16).<br />

From these figures , the valid intersection region of for the values of in the<br />

curves becomes larger as increase as in the following Table(1):<br />

10<br />

20<br />

30<br />

40<br />

50<br />

100<br />

region<br />

Table (1): the increase of the convergence interval length with the increase of n<br />

Figures show the comparison among using different values of with<br />

the exact solution (12). Figures show the comparison between of <strong>HAM</strong><br />

and of q-<strong>HAM</strong> using different values of with the exact solution (12), which indicates<br />

that the speed of convergence for q-<strong>HAM</strong> with is faster in comparison with .<br />

The Absolute errors of the 10 th order solutions q-<strong>HAM</strong> approximate at using different<br />

values of compared with 10 th order solutions <strong>HAM</strong> approximate at are<br />

calculated by the formula<br />

| | (17)<br />

Figures show that the series solution obtained by <strong>HAM</strong> is more accurate at<br />

but at larger the series solutions obtained by q-<strong>HAM</strong> at converge faster than<br />

(<strong>HAM</strong>).


56<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

2.5 2.0 1.5 1.0 0.5 0.5 h<br />

Figure : - curve for the <strong>HAM</strong> (q-<strong>HAM</strong>; approximation solution of<br />

problem (10) at different values of .<br />

3 2 1<br />

U 10 x, t , n<br />

40<br />

30<br />

20<br />

10<br />

10<br />

20<br />

U 10 x, t , n<br />

30<br />

20<br />

10<br />

U 10 0,1,1<br />

U 10 0.5 ,2,1<br />

U 10 0.7 ,3,1<br />

U 10 0.1 ,3.7 ,1<br />

Figure : - curve for the ( q-<strong>HAM</strong>; approximation solution of<br />

problem (10) at different values of .<br />

h<br />

U 10 0,1,1.5<br />

U 10 0.5 ,2,1.5<br />

U 10 0.7 ,3,1.5<br />

U 10 0.1 ,3.7 ,1.5


12 10 8 6 4 2<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

Figure : - curve for the (q-<strong>HAM</strong>; approximation solution of problem<br />

(10) at different values of .<br />

25 20 15 10 5<br />

U 10 x, t , n<br />

Figure : - curve for the (q-<strong>HAM</strong>; approximation solution of<br />

problem (10) at different values of .<br />

30<br />

20<br />

10<br />

U 10 x, t , n<br />

40<br />

30<br />

20<br />

10<br />

10<br />

20<br />

30<br />

h<br />

h<br />

U 10 0,1,5<br />

U 10 0.5 ,2,5<br />

U 10 0.7 ,3,5<br />

U 10 0.1 ,3.7 ,5<br />

U 10 0,1,10<br />

U 10 0.5 ,2,10<br />

U 10 0.7 ,3,10<br />

U 10 0.1 ,3.7 ,10<br />

57


58<br />

solutions<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

2 4 6 8 10 12 14<br />

Figure : Comparison between of <strong>HAM</strong> (q-<strong>HAM</strong>; and exact solution of<br />

(10) at with ,<br />

solutions<br />

80000<br />

60000<br />

40000<br />

20000<br />

2 4 6 8 10 12 14<br />

Figure : Comparison between of (q-<strong>HAM</strong> and exact solution of (10) at<br />

with ,<br />

t<br />

t<br />

Exact<br />

U 10 n 1<br />

U 7 n 1<br />

U 5 n 1<br />

Exact<br />

U 10 n 5<br />

U 7 n 5<br />

U 5 n 5


250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

2 4 6 8 10 12 14<br />

Figure : Comparison between of <strong>HAM</strong> (q-<strong>HAM</strong>;( )) and (q-<strong>HAM</strong><br />

with exact solution of (10) at with<br />

5 10 6<br />

4 10 6<br />

3 10 6<br />

2 10 6<br />

1 10 6<br />

solutions<br />

solutions<br />

5 10 15 20<br />

Figure : Comparison between of <strong>HAM</strong> (q-<strong>HAM</strong> and q-<strong>HAM</strong>(<br />

with exact solution of (10) at with (<br />

,<br />

t<br />

t<br />

Exact<br />

U10 n 1<br />

U10 n 1.5<br />

U10 n 2<br />

U10 n 3<br />

U10 n 4<br />

U10 n 5<br />

Exact<br />

U10 n 1<br />

U10 n 10<br />

U10 n 20<br />

U10 n 30<br />

U10 n 40<br />

U10 n 50<br />

U10 n 100<br />

59


60<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

Figure : The Absolute error of of q-<strong>HAM</strong> ( for problem (10) at<br />

and using<br />

Figure : The Absolute error of of q-<strong>HAM</strong> ( for problem (10) at<br />

and using<br />

3.2 The Riccati equation<br />

Let<br />

Absolute Error<br />

0.0012<br />

0.0010<br />

0.0008<br />

0.0006<br />

0.0004<br />

0.0002<br />

Absolute Error<br />

30 000<br />

25 000<br />

20 000<br />

15 000<br />

10 000<br />

5000<br />

The exact solution is known to be<br />

1 2 3 4<br />

8 10 12<br />

t<br />

t<br />

A.E n 1<br />

A.E n 40<br />

A.E n 1<br />

A.E n 40<br />

(18)<br />

(19)


Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

For q- <strong>HAM</strong> solution we choose the linear operator :<br />

[ ]<br />

With the property :<br />

[ ]<br />

Where is constant. Using initial approximation<br />

We define a nonlinear operator as :<br />

[ ]<br />

We construct the zero order deformation equation<br />

[ ] [ ]<br />

Where . We can take H , and the order deformation equation is :<br />

[ ]<br />

(21)<br />

With the initial conditions for :<br />

Where:<br />

and<br />

{<br />

∑<br />

[ ]<br />

Now the solution of equation (18) for becomes:<br />

∫<br />

Where the constant of integration is determined by the initial conditions (22).<br />

We now obtain components of the solution using q- <strong>HAM</strong> as follows:<br />

,<br />

can be calculated similarly.Then the series solution expression by q-<br />

<strong>HAM</strong> can be written in the form:<br />

(20)<br />

(22)<br />

61


62<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

∑ (<br />

Equation (23) is a family of approximation solutions to the problem (18) in terms of the<br />

convergence parameters .<br />

)<br />

To find the valid region of , the -curves given by the 15 th order q-<strong>HAM</strong> approximation at<br />

different values of are drawn in figures . From these figures , the valid<br />

intersection region of for the values of in the curves becomes larger as increase<br />

as in the following Table(2).<br />

10<br />

20<br />

30<br />

40<br />

50<br />

100<br />

region<br />

Table (2): the increase of the convergence interval length with the increase of n<br />

U 15 x, n<br />

2.0 1.5 1.0 0.5 0.5 h<br />

10<br />

5<br />

5<br />

U 15 0.1 ,1<br />

U 15 0.4 ,1<br />

U 15 0.6 ,1<br />

U 15 0.8 ,1<br />

Figure : - curves for the <strong>HAM</strong> (q-<strong>HAM</strong>; approximation solution of<br />

problem (18) at different values of .<br />

(23)


200 150 100 50<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

Figure : - curves for the (q-<strong>HAM</strong>; approximation solution of<br />

problem (18) at different values of .<br />

Figures show the comparison between of <strong>HAM</strong> and of q-<strong>HAM</strong> using<br />

different values of with the exact solution (19), which indicates that the speed of<br />

convergence for q-<strong>HAM</strong> with is faster in comparison with .<br />

solutions<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

U 15 x, n<br />

15<br />

10<br />

0.2 0.2 0.4 0.6 0.8 1.0<br />

Figure : Comparison between of <strong>HAM</strong>(q-<strong>HAM</strong> and q-<strong>HAM</strong>( with<br />

exact solution of (18) with( .<br />

5<br />

x<br />

h<br />

U 15 0.1 ,100<br />

U 15 0.4 ,100<br />

U 15 0.6 ,100<br />

U 15 0.8 ,100<br />

Exact<br />

U 15 n 2<br />

U 15 n 1<br />

63


64<br />

solutions<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

0.2 0.2 0.4 0.6 0.8 1.0<br />

Figure : Comparison between of <strong>HAM</strong>(q-<strong>HAM</strong> and q-<strong>HAM</strong>(<br />

with exact solution of (18) with( .<br />

The absolute errors of the 15 th order solutions q-<strong>HAM</strong> approximate using different values of<br />

compared with 15 th order solutions <strong>HAM</strong> approximate are shown in figures (15,16).<br />

These figures show that the series solution obtained by <strong>HAM</strong> is more accurate at<br />

but at larger the series solution obtained by q-<strong>HAM</strong> at converge faster than<br />

(<strong>HAM</strong>).<br />

Absolute Error<br />

0.00005<br />

0.00004<br />

0.00003<br />

0.00002<br />

0.00001<br />

0.1 0.2 0.3 0.4 0.5<br />

Figure : The Absolute error of of q-<strong>HAM</strong> ( for problem (18) at<br />

and using<br />

x<br />

x<br />

Exact<br />

U 15 n 100<br />

U 15 n 1<br />

A.E n 1<br />

A.E n 100


Absolute Error<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

0.60 0.65 0.70 0.75 0.80 0.85<br />

Figure : The Absolute error of of q-<strong>HAM</strong> ( for problem (18) at<br />

and using<br />

It should be noted that the absolute error is highly decreased when modifying the solution by<br />

taking more terms into consideration. Figures (17,18) illustrate this fact.<br />

Absolute Error<br />

0.0008<br />

0.0006<br />

0.0004<br />

0.0002<br />

0.1 0.2 0.3 0.4 0.5<br />

Figure : The Absolute error of ( and of q-<strong>HAM</strong> at<br />

using respectively.<br />

x<br />

x<br />

A.E n 1<br />

A.E n 100<br />

A.E U 10 n 1<br />

A.E U 10 n 100<br />

A.E U 30 n 100<br />

65


66<br />

Absolute Error<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

Figure : The Absolute error of ( and of q-<strong>HAM</strong><br />

at using respectively.<br />

3.3 The logistic growth model<br />

where r and K are positive constants. Here represents the population of the species<br />

at time , and K is the carrying capacity of the environment.<br />

Let :<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Then (1) becomes<br />

If then<br />

therefore, the analytical solution of (25) is easily obtained<br />

(such as Bernoulli method and separation of variables)<br />

(26)<br />

For q- <strong>HAM</strong> solution we choose the linear operator :<br />

[ ]<br />

With the property :<br />

[ ]<br />

0.6 0.7 0.8 0.9<br />

Where is constant.Using initial approximation :<br />

x<br />

A.E U 10 n 1<br />

A.E U 10 n 100<br />

A.E U 30 n 100<br />

(24)<br />

(25)<br />

(27)<br />

(28)


We define a nonlinear operator as :<br />

[ ]<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

We construct the zeroth-order deformation equation:<br />

[ ] [ ]<br />

We can take , and the mth-order deformation equation is :<br />

[ ]<br />

With the initial conditions for :<br />

Where:<br />

And:<br />

{<br />

[ ]<br />

Now the solution of equation (29) for becomes:<br />

∫<br />

∑<br />

2here the constant of integration is determined by the initial conditions (30).<br />

For numerical results we take , therefore (26) becomes:<br />

We now obtain components of the solution using q- <strong>HAM</strong> as follows:<br />

can be calculated similarly.Then the series solution expression by q-<br />

<strong>HAM</strong> can be written in the form:<br />

∑ (<br />

Equation (33) is a family of approximation solutions to the problem (24) in terms of the<br />

convergence parameters .<br />

)<br />

(29)<br />

(30)<br />

(31)<br />

(32)<br />

(33)<br />

67


68<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

To find the valid region of ,the -curves given by the 10 th order q-<strong>HAM</strong> approximation at<br />

different values of are drawn in figures (19 ,20 and 21).This figures show the<br />

interval of where the value of is constant at certain . We choose the<br />

horizontal line parallel to as a valid region which provides us with a simple way<br />

to adjust and control the convergence region.<br />

5 10 14<br />

4 10 14<br />

3 10 14<br />

2 10 14<br />

1 10 14<br />

U 10 , n<br />

0.06 0.04 0.02 0.02 0.04 0.06<br />

Figure : - curves for the <strong>HAM</strong> (q-<strong>HAM</strong>; approximation solution of<br />

problem (1) at different values of .<br />

U 10 , n<br />

2000<br />

1500<br />

1000<br />

500<br />

0.06 0.04 0.02 0.02<br />

Figure : - curves for the q-<strong>HAM</strong>( approximation solution of<br />

problem (1) at different values of .<br />

h<br />

h<br />

U 10 0.1 ,1<br />

U 10 0.6 ,1<br />

U 10 1,1<br />

U 10 2,1<br />

U 10 0.1 ,10<br />

U 10 0.6 ,10<br />

U 10 1,10<br />

U 10 2,10


Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.05<br />

Figure : - curves for the q-<strong>HAM</strong>( approximation solution of<br />

problem (1) at different values of .<br />

Figures (22,23 and 24) show the comparison between of <strong>HAM</strong> and of q-<strong>HAM</strong> using<br />

different values of with the solution (32)<br />

solutions<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

U 10 , n<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

0.5 1.0 1.5 2.0 2.5 3.0<br />

Figure(22): Comparison between of <strong>HAM</strong>(q-<strong>HAM</strong> and q-<strong>HAM</strong>( and<br />

for logistic growth model (1) with( respectively.<br />

h<br />

U 10 0.1 ,100<br />

U 10 0.6 ,100<br />

U 10 1,100<br />

U 10 2,100<br />

U<br />

U 10 n 2<br />

U 10 n 1<br />

69


70<br />

solutions<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

0.5 1.0 1.5 2.0 2.5 3.0<br />

Figure(23): Comparison between of <strong>HAM</strong>(q-<strong>HAM</strong> and q-<strong>HAM</strong>( and<br />

for logistic growth model (1) with( respectively.<br />

solutions<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

0.5 1.0 1.5 2.0 2.5 3.0<br />

Figure(24): Comparison between of <strong>HAM</strong>(q-<strong>HAM</strong> and q-<strong>HAM</strong>( and<br />

for logistic growth model (1) with( respectively.<br />

The Absolute errors of the 10 th order solutions q-<strong>HAM</strong> approximate using different values of<br />

compared with 10 th order solutions <strong>HAM</strong> approximate are calculated by the formula<br />

| | .<br />

U 10 n 10<br />

U 10 n 1<br />

Figures show that the series solution obtained by <strong>HAM</strong> is divergent at<br />

but, the series solutions obtained by q-<strong>HAM</strong> becomes more accurate<br />

as increases.<br />

U<br />

U<br />

U 10 n 100<br />

U 10 n 1


Absolute Error<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

0.5 1.0 1.5 2.0 2.5 3.0<br />

Figure(25): The Absolute error of of <strong>HAM</strong> (q-<strong>HAM</strong> ( and q-<strong>HAM</strong> ( for<br />

problem (1) using with<br />

Absolute Error<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0.5 1.0 1.5 2.0 2.5 3.0<br />

A.E n 2<br />

A.E n 1<br />

A.E n 10<br />

A.E n 1<br />

Figure(26): The Absolute error of of <strong>HAM</strong> (q-<strong>HAM</strong> ( and q-<strong>HAM</strong> ( for<br />

problem (1) using with .<br />

71


72<br />

Absolute Error<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

Figure(27): The Absolute error of of <strong>HAM</strong> (q-<strong>HAM</strong> ( and q-<strong>HAM</strong> ( for<br />

problem (1) using with<br />

4 CONCLUSION<br />

A more general method (q-<strong>HAM</strong>) of the homotopy analysis method (<strong>HAM</strong>) was proposed.<br />

This method provides an approximate solution by taking different values of . The results<br />

show that the convergence region of series solutions obtained by q-<strong>HAM</strong> is increasing as q is<br />

decreased. The q-<strong>HAM</strong> improves the performance of <strong>HAM</strong> and it was shown from the<br />

illustrative examples that the convergence of q-<strong>HAM</strong> is faster than the convergence of <strong>HAM</strong>.<br />

REFERENCES<br />

0.5 1.0 1.5 2.0 2.5 3.0<br />

A.E n 100<br />

A.E n 1<br />

Adomain G and Adomain GE(1984).A global method for solution of complex systems.<br />

Mathematical Modelling ;5;521-68.<br />

Adomain G(1991).A review of the decomposition method and some recent results for<br />

nonlinear equations. Computers and Mathematics with Applications ;21:101-27.<br />

Awrejcewicz J Andrianov IV Manevitch LI(1998). Asymptotic approaches in nonlinear<br />

dynamics. Berlin:Springer-Verlag.<br />

AK Alomari Mohd Salmi Md Noorani Roslinda Mohd Nazar(2008). Approximate analytical<br />

solutions of the Klein-Gordon equation by means of the homotopy analysis method, Journal<br />

of Quality Measurement and Analysis 4(1),45-57.<br />

A Sami Bataineh I Hashim S Abbasbandy MSM Noorani(2011). Direct solution of singular<br />

higher-order BVPs by the homotopy analysis method and its modification, World Applied<br />

Sciences Journal 12(6):884-889.<br />

Bataineh AS Noorani MSM Hashim I(2007). Solutions of time-dependent Emden-Fowler<br />

type equations by homotopy analysis method. Physics Letters A ;371:72-82.


Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

Bataineh AS Noorani MSM Hashim I(2009). On a new reliable modification of homotopy<br />

analysis method. Communications in Nonlinear Science and Numerical Simulation ,14:409-<br />

423.<br />

Chin Fung Yuen Lem Kong Hong Chong Fook Seng(2010). Solving nonlinear algebraic<br />

equation by homotopy analysis method ,proceedings of the Gth IMT-GT conference on<br />

mathematics ,statistics and its applications(ICMSA) University Tunku Abdul Rahman,Kuala<br />

Lumpur,Malaysia.<br />

Hany Nasr Hassan Mohammed(2010),The application of homotopy analysis method in<br />

solving initial and boundary value problems., Ph.D. thesis ,Faculty of engineering, Cairo<br />

University.<br />

Hany N Hassan and Magdy A El-Tawil(2011). A new technique of using homotopy analysis<br />

method for solving high-order nonlinear differential equations. , Math. Meth. Appl. Sci, 34<br />

:728–742.<br />

Hany N Hassan and Magdy A El-Tawil(2011). An efficient analytic approach for solving<br />

two-point nonlinear boundary value problems by homotopy analysis method , Math. Meth.<br />

Appl. Sci. 34: 977–989.<br />

Hany N Hassan and Magdy A El-Tawil(2011). SOLVING CUBIC AND COUPLED<br />

NONLINEAR SCHRÖ DINGER EQUATIONS USING <strong>THE</strong> <strong>HOMOTOPY</strong> <strong>ANALYSIS</strong><br />

<strong>METHOD</strong>, Int. J. of Appl. Math and Mech. 7 (8): 41-64<br />

.<br />

Hany N Hassan and Magdy A El-Tawil(2011). MODIFIED <strong>HOMOTOPY</strong> <strong>ANALYSIS</strong><br />

<strong>METHOD</strong> FOR SECOND ORDER NONLINEAR INITIAL VALUE PROBLEMS, Int. J. of<br />

Appl. Math and Mech. 7 (18): 82-108.<br />

Hinch EJ(1991).Perturbation methods .Cambridge Texts in Applied mathematics. Cambridge<br />

university Press.<br />

H Hossein Zadeh H Jafari and S M Karimi(2010). Homotopy analysis method for solving<br />

integral and integro_differential equations, International Journal of Research and Reviews in<br />

Applied Sciences2(2).February .<br />

Karmishin AV Zhukov AT Kolosov VG(1990). Methods of dynamics calculation and testing<br />

for thin-walled structures ,Moscow:Mashinostroyenie [in Russian].<br />

Lagerstrom PA(1988). Matched asymptotic expansions,Ideas and techniques of applied<br />

mathematical sciences,vol.76.New York:Springer-Verlag.<br />

Liao SJ(1992).The proposed homotopy analysis techniques for the solution of nonlinear<br />

problems. Ph.D. thesis, Shanghai Jiao Tong University.<br />

Liao SJ(1995). An approximate solution technique not depending on small parameters: A<br />

special example .International Journal of non-linear mechanics ;30(2):371-380.<br />

73


74<br />

Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

M. A. El-Tawil and S. N. Huseen<br />

Liao SJ(1996).What’s the common ground of all numerical and analytical tichniques for<br />

nonlinear problems.Communications in nonlinear science & numerical simulation; (4):26-30.<br />

Lioa SJ(1997). Homotopy analysis method :A new analytical technique for nonlinear<br />

problems. Communications in nonlinear science & numerical simulation; 2(2):95-100.<br />

Lioa SJ(2002). A direct boundary element approach for unsteady non-linear heat transfer<br />

problems. Engineering analysis with boundary element method ;26:55-59.<br />

Lioa SJ(2003). Beyond perturbation : Introduction to the homotopy analysis method .CRC<br />

Press,Chapman & Hall.<br />

Loia SJ(2004). On the homotopy analysis method: for nonlinear problems .Applied<br />

mathematics and computation ; 147:499-513.<br />

Liao SJ(2009). Notes on the homotopy analysis method : Some definitions and theorems .<br />

Communications in nonlinear science & numerical simulation ,14:983-997.<br />

Lyapunov AM ( 1992). General problem on stability of motion .Taylor & Francis ,London<br />

[English translation].<br />

Murdock JA(1991).Perturbation :theory and methods.New York:John Wiley&Sons.<br />

Nayfeh AH(1981). Introduction to perturbation techniques ,New York; John Wiley &Sons.<br />

Nayfeh AH(1985). Problems in perturbation ,New York; John Wiley &Sons.<br />

Nayfeh AH(2000). Perturbation methods. New York: John Wiley&Sons.<br />

O Abdulaziz I Hashim and A Saif(2008). Series Solutions of Time-Fractional PDEs by<br />

Homotopy Analysis Method, Hindawi Publishing Corporation Differential Equations and<br />

Nonlinear Mechanics Volume 2008, Article ID 686512, 16 pages, doi:10.1155/686512.<br />

Rach R(1984). On the Adomain method and comparisons with Picards method . Journal of<br />

Mathematical Analysis and Applications ;10:139-59.<br />

Seyyed Ali Kazemipour and Ahmad Neyrameh(2010).Analytical study on Goursat<br />

problems,world applied sciences Journal;10(8) 867-870.<br />

Song H and Tao L(2007). Homotopy analysis of 1 D unsteady, nonlinear groundwater flow<br />

through porous media. Journal of Coastal Research ;50:292-5.<br />

Sukran Cavdar(2010). Homotopy analysis method for one group Neutron diffusion equation,<br />

5 th International Ege Energy Symposium and Exhibition (IEESE-5) 27-30 June,Pamukkale<br />

University , Denizli, Turkey.<br />

Tao L Song H Chakrabarti S(2007). Nonlinear progressive waves in water of finite depth-an<br />

analytic approximation,Coastal Engineering ;54:825-34.


Int. J. of Appl. Math and Mech. 8 (15): 51-75, 2012.<br />

The q-Homotopy Analysis Method<br />

Van Gorder RA. and Vajravelu K(2009). On the selection of auxiliary functions, operators<br />

,and convergence control parameters in the application of the homotopy analysis method to<br />

nonlinear differential equations:A general approach. Communications in nonlinear science &<br />

numerical simulation; 14:4078-4089<br />

Wang H Zou L Zhang H(2007).Applying homotopy analysis method for solving differential<br />

difference equation. Physics Letters A; 369:77-84.<br />

75

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!