13.04.2015 Views

Co-processing of Upgraded Bio-Liquids in Standard ... - Biocoup

Co-processing of Upgraded Bio-Liquids in Standard ... - Biocoup

Co-processing of Upgraded Bio-Liquids in Standard ... - Biocoup

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Co</strong>­<strong>process<strong>in</strong>g</strong> <strong>of</strong> <strong>Upgraded</strong> <strong>Bio</strong>­<strong>Liquids</strong> <strong>in</strong> <strong>Standard</strong><br />

Ref<strong>in</strong>ery Units ­ Fundamentals<br />

Andrea Gutierrez HUT (F<strong>in</strong>land), Marcelo E. Dom<strong>in</strong>e CNRS (France)<br />

VTT, University <strong>of</strong> Twente, Shell Global Solutions International, CNRS, ARKEMA, BTG, UHPT,<br />

Metabolic Explorer, STFI­PACKFORSK, University <strong>of</strong> Gron<strong>in</strong>gen, Hels<strong>in</strong>ki University <strong>of</strong><br />

Technology, Institute <strong>of</strong> Wood Chemistry, Slovenian Institute <strong>of</strong> Chemistry, Boreskov Institute <strong>of</strong><br />

Catalysis, ALMA <strong>Co</strong>nsult<strong>in</strong>g group, Albemarle, CHIMAR, Technical University <strong>of</strong> E<strong>in</strong>dhoven


Abbreviations<br />

<strong>Bio</strong>­oil, bio­liquid<br />

Pyrolysis oil<br />

Fast pyrolysis<br />

Integrated<br />

pyrolysis<br />

Deoxygenation<br />

HDS<br />

FCC<br />

SRGO<br />

A generic term <strong>in</strong>clud<strong>in</strong>g all biomaterial derived liquids<br />

A liquid bi<strong>of</strong>uel produced by pyrolysis<br />

A concept, where residence time for (biomass) solids is<br />

<strong>in</strong> the order <strong>of</strong> a few seconds<br />

A concept, where fast pyrolysis is <strong>in</strong>tegrated to a<br />

fluidized­bed boiler<br />

Oxygen removal from primary bio­oil either by thermal<br />

treatment, hydro­deoxygenation (HDO), or<br />

decarboxylation (DCO)<br />

Hydro­desulfurisation (a ref<strong>in</strong>ery unit operation)<br />

Fluid­catalytic crack<strong>in</strong>g (a ref<strong>in</strong>ery unit operation)<br />

Straight run gas oil<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 2


Distributed Procurement for <strong>Bio</strong>mass and<br />

Centralized Upgrad<strong>in</strong>g for Derived <strong>Bio</strong>­<strong>Liquids</strong><br />

<strong>Bio</strong>mass<br />

residues<br />

Petroleum<br />

ref<strong>in</strong>ery<br />

De­oxygenation<br />

Integrated Pyrolysis<br />

Motor<br />

fuels<br />

BIOCOUP started June 2006<br />

with 17 partners, duration five<br />

years<br />

The project is aimed at<br />

develop<strong>in</strong>g a cha<strong>in</strong> <strong>of</strong> process<br />

steps to allow a range <strong>of</strong><br />

biomass feedstocks to be co­fed<br />

to a conventional oil ref<strong>in</strong>ery to<br />

produce energy and oxygenated<br />

chemicals.<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 3


Overall <strong>Bio</strong>mass Process<strong>in</strong>g Cha<strong>in</strong><br />

Primary<br />

liquefaction<br />

.<br />

De­oxygenation<br />

<strong>Co</strong>­<strong>process<strong>in</strong>g</strong><br />

<strong>in</strong> petroleum<br />

ref<strong>in</strong>ery<br />

Chemicals<br />

The presentation will deal with fundamentals <strong>of</strong> two<br />

process steps <strong>in</strong> the cha<strong>in</strong><br />

•De­oxygenation <strong>of</strong> primary bio­liquids (three<br />

variants studied, hydro­deoxygenation reported<br />

today)<br />

•<strong>Co</strong>­<strong>process<strong>in</strong>g</strong> <strong>in</strong> a petroleum ref<strong>in</strong>ery<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 4


Properties <strong>of</strong> Wood Derived <strong>Bio</strong>­<strong>Liquids</strong><br />

<strong>Co</strong>mplex mixtures <strong>of</strong> oxygen conta<strong>in</strong><strong>in</strong>g compounds<br />

Mass %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Water­soluble compounds<br />

P<strong>in</strong>e<br />

GUA<br />

Forest residue<br />

Aldehydes, ketones<br />

Acids<br />

'Sugars'<br />

Water<br />

Extractives<br />

LMM lign<strong>in</strong><br />

HMM lign<strong>in</strong><br />

Thermally unstable: No heat<strong>in</strong>g<br />

High polarity: Insoluble <strong>in</strong><br />

m<strong>in</strong>eral oils<br />

High molecular mass (HMM)<br />

compounds: High viscosity<br />

The properties can be improved<br />

by partial or complete elim<strong>in</strong>ation<br />

<strong>of</strong> oxygenated compounds<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 5


Hydrodeoxygenation<br />

<strong>Bio</strong>liquids<br />

Hydrodeoxygenation<br />

(HDO)<br />

Catalytic reaction<br />

<strong>in</strong> presence <strong>of</strong> H 2<br />

Hydrocarbons + H 2<br />

O<br />

The composition <strong>of</strong> bio­liquids makes HDO challeng<strong>in</strong>g…<br />

•Viscosity and solubility problems<br />

•Large amount <strong>of</strong> reactions<br />

•Analytical challenges<br />

Behavior <strong>of</strong> real<br />

bio­liquids<br />

simulated with<br />

model compounds<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 6


HDO –Lab Scale Results<br />

Guaiacol<br />

•Representative <strong>of</strong><br />

degraded lign<strong>in</strong> fraction<br />

•<strong>Co</strong>ke precursor<br />

Products<br />

•Hydrocarbons<br />

benzene, cyclohexane,<br />

toluene<br />

•O­compounds<br />

phenol, cyclohexanol<br />

<strong>Co</strong>nversion and product<br />

ditribution (mol­%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

X GUA<br />

NiMo<br />

<strong>Co</strong>Mo<br />

Total<br />

HCs<br />

200 250 300 350<br />

Temperature ( o C)<br />

Temperature affects GUA conversion and HDO products concentration<br />

•NiMo more active at T below 300 o C<br />

•<strong>Co</strong>Mo more HDO selective at the highest T tested<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 7


What is Expected from HDO?<br />

Based on s<strong>in</strong>gle model compounds and mixtures<br />

•Better understand<strong>in</strong>g <strong>of</strong> HDO reactions<br />

•Selection <strong>of</strong> catalysts<br />

Test<strong>in</strong>g <strong>of</strong> exist<strong>in</strong>g catalysts and development <strong>of</strong> new<br />

ones (active metal and support material)<br />

•Selection <strong>of</strong> operation conditions for <strong>in</strong>dustrial scale<br />

HDO<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 8


Ma<strong>in</strong> Objectives <strong>in</strong> <strong>Co</strong>­ Process<strong>in</strong>g<br />

Viability <strong>of</strong> upgraded bio­liquids co­<strong>process<strong>in</strong>g</strong> <strong>in</strong> standard ref<strong>in</strong>ery units<br />

Petroleum Fractions<br />

<strong>Co</strong>nventional Ref<strong>in</strong>ery<br />

<strong>Upgraded</strong><br />

bio­liquids<br />

<strong>Bio</strong>­oils<br />

HDS Unit<br />

FCC Unit<br />

Automotive Fuels<br />

Petroleum Fractions<br />

•Technical feasibility <strong>of</strong> upgraded bio­liquids co­<strong>process<strong>in</strong>g</strong> (2­10 wt­%)<br />

<strong>in</strong>: fluidized catalytic crack<strong>in</strong>g (FCC) units, and hydrotreat<strong>in</strong>g (HDS) units<br />

•Effect <strong>of</strong> bio­liquids co­<strong>process<strong>in</strong>g</strong> on key ref<strong>in</strong>ery unit parameters and<br />

necessary bio­liquids specifications after upgrad<strong>in</strong>g (i.e. metals, water,<br />

oxygen and other hetero­atoms)<br />

•Technical data on product yields to determ<strong>in</strong>e the contribution from the<br />

bio­component (model compounds studies)<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 9


Prelim<strong>in</strong>ary Result ­ Hydrotreat<strong>in</strong>g<br />

Methodology:<br />

Investigation <strong>of</strong> the performances <strong>of</strong> <strong>Co</strong>Mo and NiMo on alum<strong>in</strong>a HDT<br />

catalysts <strong>in</strong> the conversion <strong>of</strong> a SRGO <strong>in</strong> a micropilot unit (40 bars, 320­<br />

370ºC)<br />

1 stage : addition <strong>of</strong> model molecules<br />

2 stage : addition <strong>of</strong> upgraded bio­liquids<br />

3 stage : <strong>in</strong>creas<strong>in</strong>g the amount <strong>of</strong> bioliquids<br />

Evaluation <strong>of</strong> the performances<br />

total sulfur content, density, 2D<br />

GC chromatography<br />

Guaiacol, napthol, benzoqu<strong>in</strong>one,<br />

iso­propanol do not <strong>in</strong>hibit the<br />

conversion <strong>of</strong> the S­compounds<br />

and they are totally converted at<br />

320°C<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 10


Prelim<strong>in</strong>ary Results –Fluid Catalytic<br />

Crack<strong>in</strong>g (FCC)<br />

Methodology:<br />

Simulat<strong>in</strong>g FCC lab­scale reactor at 530 ºC<br />

Effect <strong>of</strong> oxygenated compounds<br />

addition on the hydrocarbon (C 8<br />

)<br />

catalytic crack<strong>in</strong>g<br />

80<br />

Feed: Hydrocarbon (C 8<br />

) + 2 wt­% oxygenates<br />

Catalyst: FCC eq. sample (1 g) ­ Cat/Oil = 15<br />

Cycles <strong>of</strong> crack<strong>in</strong>g/stripp<strong>in</strong>g/regeneration/purge<br />

Hydrocarbon <strong>Co</strong>nversion (wt­%)<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

Initial<br />

Acetic Ac. Addition<br />

Acetone Addition<br />

iso­Propanol Addition<br />

1 3 5 7 9<br />

Crack<strong>in</strong>g Cycles<br />

With 2 wt­% <strong>of</strong> Oxygenates:<br />

<strong>Co</strong>nversion<br />

<strong>Co</strong>ke<br />

Selectivity (wt­%)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

<strong>Co</strong>mparison <strong>of</strong> product<br />

distribution at iso­conversion<br />

Light<br />

Gases<br />

Propylene<br />

isobutane<br />

Initial<br />

+ Acetone<br />

Butenes C5 C6­C7<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 11


What is Expected from <strong>Co</strong>­<strong>process<strong>in</strong>g</strong>?<br />

• Feed delivery systems for co­<strong>process<strong>in</strong>g</strong><br />

• <strong>Co</strong>­<strong>process<strong>in</strong>g</strong> <strong>in</strong> HDS units: catalyst stability (with<br />

steam), product quality, process conditions<br />

• <strong>Co</strong>­<strong>process<strong>in</strong>g</strong> <strong>in</strong> FCC units: i) product distribution and<br />

quality (low coke, high selectivity to diesel, gasol<strong>in</strong>e or<br />

light olef<strong>in</strong>s, high quality <strong>of</strong> liquids products, good<br />

control gaseous emission, etc); ii) catalyst lifetime,<br />

hydrothermal stability, and possibility <strong>of</strong> regeneration.<br />

• <strong>Bio</strong>­liquids specifications and special requirements for<br />

their adequate co­<strong>process<strong>in</strong>g</strong> <strong>in</strong> ref<strong>in</strong>ery units<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 12


Hydrodeoxygenation ­ Directions<br />

•BIOCOUP will develop methods to, at least partially, deoxygenate<br />

the bio­liquids before the f<strong>in</strong>al upgrad<strong>in</strong>g. This<br />

should improve the competitiveness <strong>of</strong> bio­liquids upgrad<strong>in</strong>g;<br />

e.g. by reduc<strong>in</strong>g hydrogen consumption.<br />

•New catalyst will be developed for bio­liquids HDO<br />

•Generate data need for scale up <strong>of</strong> the HDO unit (mixture <strong>of</strong><br />

model compounds and real bio­liquids)<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 13


<strong>Co</strong>­Process<strong>in</strong>g ­ Directions<br />

•Evaluation <strong>of</strong> the viability <strong>of</strong> upgraded bio­liquids co<strong>process<strong>in</strong>g</strong><br />

<strong>in</strong> ref<strong>in</strong>ery units (HDS, FCC, and others)<br />

•Basic knowledge <strong>of</strong> the co­<strong>process<strong>in</strong>g</strong> effect on key<br />

ref<strong>in</strong>ery units parameters<br />

•<strong>Bio</strong>­liquids specifications for the adequate feed<strong>in</strong>g and co<strong>process<strong>in</strong>g</strong><br />

<strong>in</strong> ref<strong>in</strong>ery units (Study with real upgraded bio­liquids)<br />

•Develop<strong>in</strong>g better, more robust catalysts by <strong>in</strong>creased<br />

understand<strong>in</strong>g <strong>of</strong> the reaction k<strong>in</strong>etics and the relationship<br />

with the catalyst structure.<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 14


Acknowledgements<br />

BTG<br />

UT<br />

Shell Global Solutions<br />

RUG<br />

Albemarle<br />

STFI<br />

VTT<br />

HUT<br />

CNRS­IRC<br />

ARKEMA<br />

METEX<br />

ALMA<br />

BFH<br />

UHPT<br />

CHIMAR<br />

Boreskov Institute<br />

<strong>of</strong> Catalysis<br />

SIC<br />

Scientific <strong>of</strong>ficers:<br />

Maria Georgiadou<br />

Philippe Schild<br />

Maria Fernandez­Gutierrez<br />

15th European <strong>Bio</strong>mass <strong>Co</strong>nference 7­11 May 2007 15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!