19.04.2015 Views

Characterization of a Dielectric Barrier Discharge in axisymmetric ...

Characterization of a Dielectric Barrier Discharge in axisymmetric ...

Characterization of a Dielectric Barrier Discharge in axisymmetric ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

89 International Journal <strong>of</strong> Plasma Environmental Science and Technology Vol.2, No.2, SEPTEMBER 2008<br />

<strong>Characterization</strong> <strong>of</strong> a <strong>Dielectric</strong> <strong>Barrier</strong> <strong>Discharge</strong> <strong>in</strong> <strong>axisymmetric</strong> and<br />

planar configurations -Electrical Properties-<br />

Boni Dramane, Nouredd<strong>in</strong>e Zouzou, Eric Moreau and Gerard Touchard<br />

Laboratoire d’Etudes Aérodynamiques (LEA) , Université de Poitiers, ENSMA, CNRS<br />

2 Bd. Marie & Pierre Curie, Téléport 2, BP. 30179, 86962, Futuroscope Chasseneuil Cedex, France<br />

Abstract— The characteristics <strong>of</strong> a <strong>Dielectric</strong> <strong>Barrier</strong> <strong>Discharge</strong> (DBD) <strong>in</strong> <strong>axisymmetric</strong> and planar configurations are<br />

studied and compared by measur<strong>in</strong>g their electrical discharge parameters and the airflow <strong>in</strong>fluence on these parameters.<br />

With the <strong>axisymmetric</strong> reactor, the application <strong>of</strong> AC high voltage generates a stable and quasi-diffuse discharge whereas<br />

the planar reactor generates a filamentary and unstable discharge. When the flow rate <strong>in</strong>creases the discharge current and<br />

the electric power decrease <strong>in</strong> both cases. This effect is less pronounced <strong>in</strong> the planar configuration.<br />

Keywords— <strong>Dielectric</strong> barrier discharge, Wire to cyl<strong>in</strong>der reactor, Plane to plane reactor<br />

I. INTRODUCTION<br />

<strong>Dielectric</strong> <strong>Barrier</strong> <strong>Discharge</strong> (DBD) is well known<br />

to produce highly non-equilibrium plasmas <strong>in</strong> a<br />

controllable way at atmospheric pressure. This method<br />

can effectively generate atoms, radicals, and excited<br />

species with energetic electrons at moderate gas<br />

temperatures [1, 2].<br />

Because <strong>of</strong> its high electron density and energy, the<br />

DBD <strong>in</strong> air has been used to clean hazardous air<br />

pollutants (HAPs) [3-5].<br />

In general, operat<strong>in</strong>g at atmospheric pressure, the<br />

DBD is generated <strong>in</strong> filamentary form [6]. DBDs can<br />

also be obta<strong>in</strong>ed <strong>in</strong> a diffuse form under certa<strong>in</strong><br />

configurations and conditions [7-9].<br />

In order to remove ultra f<strong>in</strong>e particles from Diesel<br />

exhaust, two DBD reactors have been used to determ<strong>in</strong>e<br />

which <strong>of</strong> them gives the lowest energy density for an<br />

efficient removal. The reactors are <strong>in</strong> <strong>axisymmetric</strong> and<br />

planar configurations.<br />

This prelim<strong>in</strong>ary study was performed by measur<strong>in</strong>g<br />

the electrical parameters <strong>of</strong> the discharge: applied voltage,<br />

discharge current, transferred charge, and electric power<br />

consumption. The results obta<strong>in</strong>ed <strong>in</strong> both configurations<br />

were compared. A detailed attention was given to the<br />

<strong>in</strong>fluence <strong>of</strong> the flow on the discharge behavior.<br />

Figure 1 shows a schematic illustration <strong>of</strong> the<br />

<strong>axisymmetric</strong> reactor used <strong>in</strong> this work, while figure 2<br />

shows the planar one.<br />

Copper sheet<br />

Plasma<br />

1 2<br />

22 nF 100 Ω<br />

φ 20 mm<br />

Air IN<br />

φ 0.2 mm<br />

2 mm<br />

Pyrex tube<br />

80 mm<br />

Fig. 1. Schematic <strong>of</strong> the <strong>axisymmetric</strong> reactor<br />

Pyrex plates<br />

Grounded<br />

electrode<br />

High Voltage<br />

electrode<br />

High Voltage<br />

electrode<br />

II. EXPERIMENTAL<br />

Air IN<br />

2 mm<br />

2 mm<br />

In order to determ<strong>in</strong>e which type <strong>of</strong> configuration<br />

will make it possible to obta<strong>in</strong> a diffuse discharge or<br />

rather a filament discharge, we used two types <strong>of</strong> reactor<br />

<strong>in</strong> different configurations.<br />

Correspond<strong>in</strong>g author: Boni Dramane<br />

e-mail address: boni.dramane@lea.univ-poitiers.fr<br />

Alum<strong>in</strong>ium<br />

sheets<br />

Plasma<br />

Grounded<br />

1 2<br />

electrode<br />

22 nF 100 Ω<br />

2 mm<br />

Received: July 10th, 2007, Revised: March 12th, 2008, Accepted:<br />

March 30th, 2008<br />

Fig. 2. Schematic <strong>of</strong> the planar reactor.


Dramane 90<br />

The <strong>axisymmetric</strong> configuration setup consists <strong>of</strong> a<br />

Pyrex tube, a copper sheet, a sta<strong>in</strong>less wire and an air<br />

circulation system. Outer diameter <strong>of</strong> the Pyrex tube was<br />

20 mm and the thickness was 2 mm. The copper sheet<br />

with 8 cm width was rolled up on the outer surface <strong>of</strong> the<br />

Pyrex tube. The sta<strong>in</strong>less wire <strong>of</strong> 0.2 mm <strong>of</strong> diameter was<br />

ma<strong>in</strong>ta<strong>in</strong>ed tended on the central axis <strong>of</strong> the tube and<br />

connected to the high voltage.<br />

The planar configuration setup consists <strong>of</strong> two<br />

alum<strong>in</strong>um sheets, two plates made <strong>of</strong> Pyrex and an air<br />

circulation system. With a thickness <strong>of</strong> 0.1 mm and an<br />

area <strong>of</strong> 50 x 47 mm 2 , each alum<strong>in</strong>um foil is stuck on the<br />

dielectric plate. Us<strong>in</strong>g spacers made <strong>of</strong> glass <strong>of</strong> 2 mm<br />

thick, the active volume <strong>of</strong> the discharge was 50x40x2<br />

mm 3 . The top sheet, used as the active electrode, was<br />

connected to high voltage and the bottom one was<br />

grounded. To avoid the edge effect, the electrode<br />

contours were encapsulated <strong>in</strong> epoxy res<strong>in</strong>.<br />

The high voltage power amplifier (Trek, 20/20C,<br />

±20 kV/ ±20 mA) was driven by a function generator<br />

(HAMEG, HM8130) to generate high voltage s<strong>in</strong>e wave.<br />

High voltage up to 20 kV was applied to the high voltage<br />

electrode with frequencies <strong>of</strong> 0.5, 1 and 2 kHz. Applied<br />

voltage was monitored with an oscilloscope (Tektronix,<br />

TDS3014B) with a high voltage divider (Lecroy 1000:1,<br />

20 kV). The total current <strong>of</strong> discharge is measured with a<br />

resistor <strong>of</strong> 100 Ω and the transferred charge with a<br />

capacitor <strong>of</strong> 22 nF.<br />

All the experiments were carried out under<br />

atmospheric pressure at room temperature. The airflow<br />

<strong>in</strong>side the reactors was controlled. The flow rate (Q) is<br />

measured with a flow meter (Brooks, tube size R-6-15-A,<br />

Tantalum ball).<br />

pulses dom<strong>in</strong>ate the negative half-cycle. This behavior is<br />

also observed <strong>in</strong> po<strong>in</strong>t to plane DBD [10].<br />

The transferred charge waveform shown <strong>in</strong> figure 3-<br />

b presents an evolution which can be break up <strong>in</strong>to two<br />

steps. Dur<strong>in</strong>g the positive half-cycle, the transferred<br />

charge <strong>in</strong>creases and after the voltage maximum it<br />

Current (mA)<br />

Charge (nC)<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-20<br />

0,0 0,5 1,0 1,5 2,0<br />

Time (ms)<br />

500<br />

250<br />

0<br />

-250<br />

(a)<br />

20<br />

10<br />

0<br />

Voltage (kV)<br />

-10<br />

20<br />

10<br />

0<br />

-10<br />

Voltage (kV)<br />

III. RESULTS AND DISCUSSION<br />

A. <strong>Discharge</strong> characteristics <strong>in</strong> each configuration<br />

Typical oscillograms <strong>of</strong> the applied voltage,<br />

discharge current, transferred charge and charge-voltage<br />

curve <strong>in</strong> the Lissajous figure with <strong>axisymmetric</strong> and<br />

planar reactors are shown <strong>in</strong> figures 3 and 4, respectively.<br />

Figure 3- a shows the time evolution <strong>of</strong> the applied<br />

voltage and the discharge current obta<strong>in</strong>ed from the<br />

measured current. Indeed, the measured current <strong>in</strong>cludes<br />

fast component (current pulse) and slow component<br />

(capacitive and pseudo cont<strong>in</strong>uous current). The<br />

capacitive current, which was estimated from the I-t<br />

curve with applied voltage low enough to generate any<br />

discharge, was subtracted from the measured current to<br />

obta<strong>in</strong> the discharge current. All the discharge currents<br />

hereafter are presented <strong>in</strong> this way.<br />

The discharge current waveform shows only few<br />

pulses <strong>of</strong> current on the positive half-cycle, while on the<br />

negative one the number <strong>of</strong> pulses is significant. In the<br />

positive half-cycle <strong>of</strong> the applied voltage, the plasma is<br />

characterized by a glow-like type. However, the Trichel<br />

Charge (nC)<br />

-500<br />

-20<br />

0,0 0,5 1,0 1,5 2,0<br />

500<br />

250<br />

0<br />

-250<br />

Time (ms)<br />

-500<br />

-20 -10 0 10 20<br />

Voltage (kV)<br />

(b)<br />

(c)<br />

Fig. 3. Axisymmetric reactor characteristics: (a) time evolution <strong>of</strong> the<br />

discharge current, (b) time evolution <strong>of</strong> the transferred charge, and (c)<br />

charge-voltage curve. Conditions: V peak = 12 kV; f = 1 kHz; Q = 4.7<br />

L.m<strong>in</strong> -1 .


91 International Journal <strong>of</strong> Plasma Environmental Science and Technology Vol.2, No.2, SEPTEMBER 2008<br />

stabilizes. The transferred charge decreases aga<strong>in</strong> for<br />

another sequence.<br />

The charge-voltage curve (figure 3- c) represents a<br />

close loop, which will be described <strong>in</strong> the follow<strong>in</strong>g<br />

section.<br />

In contrast, the discharge <strong>in</strong> planar configuration is<br />

characterized by a filamentary behavior (figure 4- a). The<br />

current pulses are higher <strong>in</strong> magnitude and less numerous<br />

dur<strong>in</strong>g the positive half-cycle than on the negative one.<br />

The time evolution <strong>of</strong> the transferred charge shows<br />

similar steps as that found <strong>in</strong> <strong>axisymmetric</strong> configuration<br />

(figure 4- b).<br />

Another difference between both configurations is<br />

their charge-voltage curve. It is noted that, <strong>in</strong> opposition<br />

to the planar configuration, with a figure close to a<br />

parallelogram [3], the charge-voltage curve <strong>in</strong><br />

<strong>axisymmetric</strong> configuration shows a k<strong>in</strong>d <strong>of</strong> r<strong>in</strong>g <strong>of</strong> the<br />

shape <strong>of</strong> an ellipse flattened on the edges.<br />

The slope <strong>of</strong> the curve represents the total<br />

capacitance (C tot ) <strong>of</strong> the reactor [11]. Indeed, the total<br />

capacitance <strong>of</strong> the reactors without discharge is<br />

1/C tot =1/C d +1/C g , where C d is the dielectric capacitance<br />

and C g is the air gap capacitance.<br />

In the planar configuration, the filaments make a<br />

short-circuit <strong>in</strong> the gap when the discharge occurs. Then,<br />

the total capacitance, which is equal to the capacitance <strong>of</strong><br />

the dielectric, becomes larger.<br />

However, <strong>in</strong> the <strong>axisymmetric</strong> configuration, the<br />

discharge occurs around the wire without mak<strong>in</strong>g a shortcircuit<br />

<strong>in</strong> the air gap. The expansion <strong>of</strong> the discharge <strong>in</strong><br />

the gap varies with the voltage, <strong>in</strong>duc<strong>in</strong>g a variable gap<br />

capacitance and obviously a variable total capacitance.<br />

The slope <strong>of</strong> charge-voltage curve <strong>in</strong>creases more slowly<br />

than <strong>in</strong> the planar configuration, which expla<strong>in</strong>s the<br />

flatten<strong>in</strong>g <strong>of</strong> the edges.<br />

<strong>of</strong> the frequency from 1 kHz to 2 kHz for a fixed voltage<br />

<strong>of</strong> 12 kV <strong>in</strong>volves also an <strong>in</strong>crease <strong>of</strong> the number <strong>of</strong><br />

discharge current pulses.<br />

In contrast, the charge-voltage curve rema<strong>in</strong>s nearly<br />

unchanged on figure 7- b compared to figure 4- c where<br />

V peak = 12 kV and f = 1 kHz.<br />

Current (mA)<br />

300<br />

150<br />

0<br />

-150<br />

-300<br />

-20<br />

0,0 0,5 1,0 1,5 2,0<br />

Charge (nC)<br />

500<br />

250<br />

0<br />

-250<br />

Time (ms)<br />

(a)<br />

20<br />

10<br />

0<br />

-10<br />

20<br />

10<br />

0<br />

-10<br />

Voltage (kV)<br />

Voltage (kV)<br />

B. Effect <strong>of</strong> applied voltage and frequency on discharge<br />

characteristics<br />

Figures 5- a and 5- b show the time evolution <strong>of</strong><br />

applied voltage, discharge current and charge-voltage<br />

curve for <strong>axisymmetric</strong> reactor when the applied voltage<br />

is V peak = 16 kV and the frequency is f = 1 kHz.<br />

Comparatively to figure 3 where the conditions<br />

were V peak = 12 kV and f = 1 kHz, discharge current<br />

<strong>in</strong>creases as well as the number <strong>of</strong> Trichel pulses. In<br />

addition, a glow-like discharge component appears on the<br />

negative half-cycle. The charge-voltage curve <strong>in</strong>creases<br />

with the applied voltage.<br />

Increas<strong>in</strong>g the frequency at 2 kHz (figure 6- a)<br />

implies the <strong>in</strong>crease <strong>of</strong> the magnitude and the number <strong>of</strong><br />

discharge current pulses. A glow-like discharge<br />

component can also be observed dur<strong>in</strong>g the negative half<br />

cycle. The charge-voltage curve decreases with the<br />

frequency (figure 6-b).<br />

In the planar configuration, when the voltage is<br />

raised to V peak = 16 kV at fixed frequency <strong>of</strong> 1 kHz, the<br />

number <strong>of</strong> discharge current pulses <strong>in</strong>creases. In addition,<br />

the charge-voltage curve <strong>in</strong>creases (figure 7- a). The rise<br />

Charge (nC)<br />

-500<br />

-20<br />

0,0 0,5 1,0 1,5 2,0<br />

Time (ms)<br />

(b)<br />

500<br />

250<br />

0<br />

-250<br />

-500<br />

-20 -10 0 10 20<br />

Voltage (kV)<br />

(c)<br />

Fig. 4. Planar reactor characteristics: (a) time evolution <strong>of</strong> the<br />

discharge current, (b) time evolution <strong>of</strong> the transferred charge, and (c)<br />

charge-voltage curve. Conditions: V peak = 12 kV; f = 1 kHz; Q = 4.7<br />

L.m<strong>in</strong> -1 .


Dramane 92<br />

20<br />

20<br />

500<br />

10<br />

10<br />

250<br />

Current (mA)<br />

0<br />

-10<br />

0<br />

Voltage (kV)<br />

Charge (nC)<br />

0<br />

-10<br />

-250<br />

-20<br />

-20<br />

0,0 0,5 1,0 1,5 2,0<br />

Time (ms)<br />

(a)<br />

-500<br />

-20 -10 0 10 20<br />

Voltage (kV)<br />

(b)<br />

Fig. 5. (a) Time evolution <strong>of</strong> the discharge current. (b) Charge-voltage curve for <strong>axisymmetric</strong> reactor.<br />

Conditions: V peak = 16 kV; f = 1 kHz; Q = 4.7 L.m<strong>in</strong> -1 .<br />

20<br />

20<br />

500<br />

10<br />

10<br />

250<br />

Current (mA)<br />

0<br />

0<br />

Voltage (kV)<br />

Charge (nC)<br />

0<br />

-10<br />

-10<br />

-250<br />

-20<br />

-20<br />

0,00 0,25 0,50 0,75 1,00<br />

Time (ms)<br />

(a)<br />

-500<br />

-20 -10 0 10 20<br />

Voltage (kV)<br />

(b)<br />

Fig. 6. (a) Time evolution <strong>of</strong> the discharge current. (b) Charge-voltage curve for <strong>axisymmetric</strong> reactor.<br />

Conditions: V peak = 12 kV; f = 2 kHz; Q = 4.7 L.m<strong>in</strong> -1 .<br />

500<br />

500<br />

250<br />

250<br />

Charge (nC)<br />

0<br />

Charge (nC)<br />

0<br />

-250<br />

-250<br />

-500<br />

-20 -10 0 10 20<br />

Voltage (kV)<br />

(a)<br />

-500<br />

-20 -10 0 10 20<br />

Voltage (kV)<br />

(b)<br />

Fig. 7. Charge-voltage curve for planar reactor.<br />

(a) Conditions: V peak = 16 kV; f = 1 kHz; Q = 4.7 L.m<strong>in</strong> -1 . (b) Conditions: V peak = 12 kV; f = 2kHz; Q = 4.7 L.m<strong>in</strong> -1 .


93 International Journal <strong>of</strong> Plasma Environmental Science and Technology Vol.2, No.2, SEPTEMBER 2008<br />

C. Effect <strong>of</strong> air flow on discharge characteristics<br />

The air circulation system consists <strong>of</strong> a pressure<br />

reduc<strong>in</strong>g valve, a decicator conta<strong>in</strong><strong>in</strong>g CaSO 4 and a flow<br />

meter. The air used is provided by the compressed air<br />

network.<br />

Several flow rates were applied to the discharge but<br />

only the two extreme values will be shown, i.e. 1.6<br />

L.m<strong>in</strong> -1 and 15.8 L.m<strong>in</strong> -1 . The flow is <strong>in</strong>troduced <strong>in</strong>side<br />

the reactor first, then the voltage is quickly raised up to<br />

the desired value and the discharge is ma<strong>in</strong>ta<strong>in</strong>ed dur<strong>in</strong>g<br />

one m<strong>in</strong>ute and f<strong>in</strong>ally the discharge is stopped.<br />

Figures 8 and 9 show the waveforms <strong>of</strong> the chargevoltage<br />

curve obta<strong>in</strong>ed with two flow rates <strong>in</strong> the<br />

<strong>axisymmetric</strong> and planar configurations, respectively.<br />

When the flow rate is <strong>in</strong>creased, the discharge current<br />

decreases and the ignition voltage <strong>of</strong> the discharge<br />

<strong>in</strong>creases (figure 10). Consequently, with higher flow<br />

rates the transferred charge is lower. This effect is more<br />

pronounced <strong>in</strong> the <strong>axisymmetric</strong> configuration.<br />

The effect <strong>of</strong> the flow rate on the average power is<br />

shown on figure 11. The flow rate varies between 1.6 and<br />

Charge (nC)<br />

500<br />

250<br />

0<br />

-250<br />

1,6 L.m<strong>in</strong> -1<br />

15,8 L.m<strong>in</strong> -1<br />

Courant(mA)<br />

Fig. 10. Axisymmetric reactor characteristics: time evolution <strong>of</strong> the<br />

discharge current. Conditions: V peak = 12 kV; f = 1 kHz.<br />

Average power (W)<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-20<br />

0,0 0,5 1,0 1,5 2,0<br />

60<br />

40<br />

20<br />

0<br />

1,6 L.m<strong>in</strong> -1<br />

15,8 L.m<strong>in</strong> -1<br />

Time(ms)<br />

Axisymmetric reactor ( 1,6 L.m<strong>in</strong> -1 )<br />

Axisymmetric reactor (15,8 L.m<strong>in</strong> -1 )<br />

Planar reactor ( 1,6 L.m<strong>in</strong> -1 )<br />

Planar reactor (15,8 L.m<strong>in</strong> -1 )<br />

8 10 12 14 16 18 20<br />

Voltage (kV)<br />

Fig. 11. Average power/voltage curve for <strong>axisymmetric</strong> and planar<br />

reactors at f = 1 kHz.<br />

20<br />

10<br />

0<br />

-10<br />

Voltage (kV)<br />

-500<br />

-20 -10 0 10 20<br />

Voltage (kV)<br />

Charge (nC)<br />

Fig. 8. Charge-voltage curve for <strong>axisymmetric</strong> reactor. Conditions:<br />

V peak = 12 kV; f = 1 kHz.<br />

500<br />

250<br />

0<br />

-250<br />

1,6 L.m<strong>in</strong> -1<br />

15,8 L.m<strong>in</strong> -1<br />

-500<br />

-20 -10 0 10 20<br />

Voltage (kV)<br />

Fig. 9. Charge-voltage curve for planar reactor, Conditions: V peak = 12<br />

kV; f = 1 kHz.<br />

15.8 L.m<strong>in</strong> -1 . A high flow rate <strong>in</strong>duces a low average<br />

power for both reactors. However, this tendency is more<br />

important with the <strong>axisymmetric</strong> reactor than the planar<br />

one.<br />

Dur<strong>in</strong>g the discharge, it seems that some charges<br />

are transported outside the plasma section because <strong>of</strong> the<br />

airflow. This phenomenon is pronounced at high flow<br />

rates and expla<strong>in</strong>s the result shown <strong>in</strong> figures 8-11. In<br />

addition, the streamers at the orig<strong>in</strong> <strong>of</strong> the filamentary<br />

discharge progress rapidly <strong>in</strong> the gap (about 10 ns). Thus,<br />

the filamentary discharge is not very affected by the<br />

velocity <strong>of</strong> the air (some m/s).<br />

IV. CONCLUSION<br />

The characteristics <strong>of</strong> the <strong>Dielectric</strong> <strong>Barrier</strong><br />

<strong>Discharge</strong> <strong>in</strong> <strong>axisymmetric</strong> and planar configurations are<br />

studied and compared by measur<strong>in</strong>g their electrical<br />

discharge parameters and the airflow <strong>in</strong>fluence on these<br />

parameters.


Dramane 94<br />

It was observed that the DBD discharge<br />

characteristics <strong>in</strong> <strong>axisymmetric</strong> configuration are<br />

different from those <strong>of</strong> the planar configuration. By<br />

modify<strong>in</strong>g the geometry <strong>of</strong> the reactors, a different<br />

discharge type can be obta<strong>in</strong>ed us<strong>in</strong>g the same electric<br />

excitation.<br />

In <strong>axisymmetric</strong> configuration, DBD discharge is<br />

rather quasi-diffuse while, <strong>in</strong> the planar one, the<br />

discharge is filamentary.<br />

The study <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> the air flow on the<br />

discharge show that discharge current, transferred charge<br />

and average power decrease with the flow rate. This<br />

evolution is more pronounced with the <strong>axisymmetric</strong><br />

reactor.<br />

Now, both reactors are go<strong>in</strong>g to be tested for<br />

particle precipitation, agglomeration or destruction.<br />

REFERENCES<br />

[1] F. S. Denes and S. Manolache, “Macromolecular plasmachemistry:<br />

an emerg<strong>in</strong>g field <strong>of</strong> polymer science”, Prog. Polym.<br />

Sci., Vol. 29, No.8, pp. 815-885, August 2004.<br />

[2] N. Gherardi and F. Mass<strong>in</strong>es, “Mechanisms controll<strong>in</strong>g the<br />

transition from glow silent discharge to streamers discharge <strong>in</strong><br />

nitrogen”, IEEE Trans. Plasma Sci., Vol. 29, No.3, pp. 536-544,<br />

2001.<br />

[3] J. H. Byeon, J. Hwang, J. H. Park, K. Y. Yoon, B. J. Ko, S. H.<br />

Kang and J. H. Ji, “Collection <strong>of</strong> submicron particles by an<br />

electrostatic precipitator us<strong>in</strong>g a dielectric barrier discharge”, J.<br />

Aerosol Sci., Vol. 37, pp. 1618-1628, November 2006.<br />

[4] S. Sato, M. Kimura, T. Aki, I. Koyamoto, K. Takashima, S. Katsua<br />

and A. Mizuno, “Removal <strong>of</strong> diesel particles us<strong>in</strong>g an electrostatic<br />

precipitator with a barrier discharge electrode as a dust pocket”,<br />

Proc. ESA/IEJ/IEEE-IAS/SFE jo<strong>in</strong>t Conference on Electrostatics<br />

2006, Berkley California, pp. 754-762, 6-9 June, 2006.<br />

[5] Y. Dan, G. Dengshan, Y. Gang, S. Xiangl<strong>in</strong> and G. Fan, “An<br />

<strong>in</strong>vestigation <strong>of</strong> the treatment <strong>of</strong> particulate matter from gasol<strong>in</strong>e<br />

eng<strong>in</strong>e exhaust us<strong>in</strong>g non-thermal plasma”, J. Hazard. Mater., Vol.<br />

B127, pp. 149-155, December 2005.<br />

[6] Z. Fang, Y. Qiu, C. Zhang, and Kuffel, “Factors <strong>in</strong>fluenc<strong>in</strong>g the<br />

existence <strong>of</strong> the homogeneous dielectric barrier discharge <strong>in</strong> air at<br />

atmospheric pressure”, J. Phys. D: Appl. Phys., Vol. 40, pp. 1401-<br />

1407, February 2007.<br />

[7] J. R. Roth, J. Rahel, X. Dai and D. M. Sherman, “The physics and<br />

phenomenology <strong>of</strong> One Atmosphere Uniform Glow <strong>Discharge</strong><br />

Plasma (OAUGDP TM ) reactor for surface treatment applications”, J.<br />

Phys. D: Appl. Phys., Vol. 38, pp. 555-567, February 2005.<br />

[8] J. Rahel and D. M. Sherman, “The transition from a filamentary<br />

dielectric barrier discharge to a diffuse barrier discharge <strong>in</strong> air at<br />

atmospheric pressure”, J. Phys. D: Appl. Phys., vol. 38, pp. 547-<br />

554, February 2005.<br />

[9] M. Abdel-Salam, A. Hashem, A. Yehia, A. Mizuno, A. Turky and<br />

A. Gabr,“Characteristics <strong>of</strong> corona and silent discharges as<br />

<strong>in</strong>fluenced by geometry <strong>of</strong> the discharge reactor”, J. Phys. D: Appl.<br />

Phys., Vol. 36, pp. 252-260, January 2003.<br />

[10] M. Petit, A. Goldman and M. Goldman, “Glow currents <strong>in</strong> a po<strong>in</strong>tto-plane<br />

dielectric barrier discharge <strong>in</strong> the context <strong>of</strong> the chemical<br />

reactivity control”, J. Phys. D: Appl. Phys., Vol. 35, pp. 2969-2977,<br />

November 2002.<br />

[11] I. Nagao, M. Nishida, K. Yukimura, S. Kambara and T. Maruyama,<br />

“NO x removal us<strong>in</strong>g nitrogen gas activated by dielectric barrier<br />

discharge at atmospheric pressure”, Vacuum, Vol. 65, No. 3-4, pp.<br />

481-487, May 2002.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!