21.04.2015 Views

Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

14 LECTURE 2. VECTORS IN 3D<br />

Theorem 2.5 u · v = ||u‖‖v‖ cos ϑ, where ϑ is the angle between the two vectors u<br />

and v.<br />

Proof. We can use the law of cosines to determine the length ‖u − v‖ (see figure<br />

2.5).<br />

Figure 2.5: The triangle with sides ‖u‖, ‖v‖, and ‖u − v‖.<br />

Hence<br />

‖u − v‖ 2 = ‖u‖ 2 + ‖v‖ 2 − 2‖u‖‖v‖ cos θ<br />

2‖u‖‖v‖ cos θ = ‖u‖ 2 + ‖v‖ 2 − ‖u − v‖ 2<br />

= u · u + v · v − (u − v) · (u − v)<br />

= u · u + v · v − [u · (u − v) − v · (u − v)]<br />

= u · u + v · v − [u · u − u · v − v · u + v · v]<br />

= 2 u · v<br />

Therefore the dot product can be written as<br />

u · v = ‖u‖‖v‖ cos θ <br />

Corollary 2.1 . Two vectors are perpendicular if and only if their dot product is<br />

zero.<br />

Example 2.3 Find the angle between the two vectors in ⃗u = (1, −3, 7) and ⃗v =<br />

(16, 4, 1)<br />

Solution. We use the fact that u · v = ‖u‖‖v‖ cos θ. From the previous examples,<br />

we have<br />

‖u | = √ 59<br />

‖v‖ = √ 273<br />

u · v = (1)(16) + (−3)(4) + (7)(1) = 16 − 12 + 7 = 11.<br />

Revised December 6, 2006. Math 250, Fall 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!