22.04.2015 Views

Section 7: Solving Oblique Triangles

Section 7: Solving Oblique Triangles

Section 7: Solving Oblique Triangles

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7. SOLVING OBLIQUE TRIANGLES: THE LAW OF SINES<br />

o<br />

An oblique triangle is one without an angle of measure 90 . When either two angles and<br />

a side are known (AAS) in the triangle ABC or two sides and the angle opposite one<br />

of them (SSA) is given, then the law of sines may be applied to solve the triangle.<br />

Theorem 7.1: The Law of Sines<br />

In the general triangle ABC<br />

sinα<br />

a<br />

=<br />

sin β<br />

b<br />

=<br />

sin γ<br />

c<br />

To prove the law of sines for the oblique triangle shown in Figure 7.1, we will<br />

first show that<br />

sinα sin β<br />

= .<br />

a b<br />

b<br />

C<br />

.<br />

γ<br />

a<br />

β<br />

.<br />

B<br />

A<br />

.<br />

α<br />

c<br />

Figure 7.1<br />

For this, we drop a perpendicular CD from vertex C to the straight line<br />

containing the vertices A and B. Because both angles α and β are acute in the<br />

figure, D lies between A and B. In the right triangles ADC and BDC,<br />

we have<br />

sin α =<br />

C D<br />

C D<br />

and sin β =<br />

b<br />

a<br />

‘<br />

so<br />

b sinα = C D and a sin β = C D .<br />

Consequently,<br />

b sinα = a sin β .<br />

Dividing both sides of the last equation by ab , we obtain<br />

sinα sin β<br />

= .<br />

a b<br />

46


.<br />

E<br />

C<br />

.<br />

γ ′<br />

a<br />

h<br />

l<br />

.<br />

A<br />

α<br />

b<br />

D<br />

β<br />

.<br />

B<br />

Figure 7.2<br />

Now to verify that<br />

sin α sin γ<br />

a c<br />

= , we observe that angle γ is obtuse. Let BE<br />

be<br />

the perpendicular from vertex B to the line l containing side AC . Let<br />

Then<br />

h<br />

o<br />

h<br />

sin γ ′ = = sin ( 180 −γ<br />

) = sin γ and sin α =<br />

a<br />

c<br />

so a sin γ = c sin α .<br />

sin α sin γ<br />

Thus, = .<br />

a c<br />

The proof of the law of sines in the case of an acute triangle ABC is similar.<br />

B E = h.<br />

Notice that the law of sines (Theorem 7.1) can be written in the alternative form:<br />

a<br />

sinα<br />

=<br />

b<br />

sin β<br />

=<br />

c<br />

sin γ<br />

.<br />

<strong>Solving</strong> a Triangle (AAS)<br />

If two angles of the triangle ABC are given, then the third angle can be found by using<br />

the relationship:<br />

o<br />

α + β + γ = 180 ;<br />

47


hence, the three denominators sinα , sin β , and sin γ can be found using a calculator.<br />

Now, if any one of the sides a, b, or c is also given, then the equations<br />

a<br />

sinα<br />

=<br />

b<br />

sin β<br />

=<br />

c<br />

sin γ<br />

can be solved for the remaining two sides.<br />

The following example indicates the procedure for solving a triangle when two angles<br />

and one side are given (or can be determined from the information provided.) Unless<br />

otherwise indicated, we shall round off all angles to the nearest hudredth of a degree, and<br />

all side lengths to four significant digits.<br />

Example 7.1 ---------------------------- ------------------------------------------------------------<br />

In ABC , suppose that α = 41 o<br />

o<br />

, β = 77 , and a = 74. Solve for γ , b, and c.<br />

B<br />

c<br />

β = 77 o<br />

a = 74<br />

Figure 7.3<br />

A<br />

o<br />

α = 41<br />

b<br />

γ<br />

C<br />

o<br />

Solution γ = −<br />

o<br />

o o<br />

77 = 62<br />

180 41 −<br />

a<br />

By the law of sines,<br />

sin 41<br />

hence, since a = 74,<br />

b =<br />

and<br />

c =<br />

a sin 77<br />

sin 41<br />

sin 41<br />

o<br />

a sin 62<br />

o<br />

o<br />

o<br />

=<br />

=<br />

sin 41<br />

o<br />

74 sin 77<br />

sin 41<br />

o<br />

74sin 62<br />

o<br />

o<br />

o<br />

b c<br />

= = ;<br />

o<br />

o<br />

sin 77 sin 62<br />

= 109.9<br />

= 99.59 .<br />

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________<br />

Note that in this case there is always a unique solution by the Angle-Side-Angle criteria<br />

for congruent triangles.<br />

<strong>Solving</strong> a Triangle (SSA)<br />

Because there are several possibilities, the situation in which you are given the lengths of<br />

two sides of a triangle and the angle opposite one of them is called the ambiguous case.<br />

For instance, suppose you are given side a, side b, and angle α in ABC . You might try<br />

to construct ABC from this information by drawing a line segment A C of length b<br />

and a ray l that starts at A and makes an angle α with A C (Figure 7.4). To find the<br />

48


emaining vertex B , you could use a compass to draw an arc of a circle of radius a with<br />

center C. If the arc intersects the ray l at point B, then ABC is the desired triangle.<br />

C<br />

b<br />

γ<br />

a<br />

Figure 7.4<br />

A<br />

α<br />

c<br />

β<br />

B<br />

l<br />

I As figure 7.5 illustrates, there are actually four possibilities if you try to construct<br />

ABC by the above method in case α is acute:<br />

( i ) The circle does not intersect the ray l at all and there is no triangle<br />

ABC (Figure 7.5a).<br />

( ii ) The circle intersects the ray l in exactly one point B and there is just one<br />

right triangle ABC (Figure 7.5b)<br />

( iii ) The circle intersects the ray l in two points B 1 and B 2 and there are<br />

two triangles A B 1 C and A B 2 C (Figure 7.5c).<br />

( iv ) The circle intersects the ray l in exactly one point B and there is just one<br />

acute triangle ABC (Figure 7.5d).<br />

Figure 7.5<br />

C<br />

C<br />

A<br />

α<br />

b<br />

a<br />

l<br />

A<br />

α<br />

b<br />

a<br />

.<br />

B<br />

l<br />

( a ) a < b sin α ⇒ no triangle possible ( b ) a = b sin α ⇒ one right triangle<br />

49


A<br />

α<br />

b<br />

C<br />

a<br />

. .<br />

B 1 B 2<br />

l<br />

A<br />

α<br />

b<br />

C<br />

a<br />

.<br />

B<br />

l<br />

( c ) b sin α < a < b ⇒ two triangles ( d ) a > b ⇒ one acute triangle<br />

II In case α is obtuse, then there are only two possibilities as shown in Figure 7.6.<br />

Figure 7.6<br />

C<br />

b<br />

A<br />

α<br />

a<br />

.<br />

B<br />

l<br />

C<br />

b<br />

A<br />

a<br />

l<br />

( a ) a > b ⇒ one triangle ( b ) a < b ⇒ no triangle possible<br />

In the ambiguous case, you can always use a calculator to solve the triangle ABC. Just<br />

use the law of sines,<br />

sinα sin β<br />

=<br />

a b<br />

⎛ sinα ⎞<br />

to evaluate sin β : sin β = b ⎜ ⎟<br />

⎝ a ⎠<br />

, 0 < β <<br />

o<br />

180 .<br />

50


⎛ sinα ⎞<br />

Recall that the sine of an angle is never greater than 1; hence, if b ⎜ ⎟ > 1, then this<br />

⎝ a ⎠<br />

trigonometric equation has no solution, and no triangle satisfies the given conditions. If<br />

⎛ sinα ⎞<br />

⎛ sinα ⎞<br />

o<br />

b ⎜ ⎟ = 1, then the equation has only one solution, β = 90 . If b ⎜ ⎟ < 1, then<br />

⎝ a ⎠ ⎝ a ⎠<br />

the trigonometric equation has two solutions. Namely,<br />

⎛ sinα ⎞<br />

β 1 = arcsin ⎜b<br />

o<br />

⎟ and β 2 = 180 − β 1 .<br />

⎝ a ⎠<br />

Once you have determined β ( or β 1 and β 2 ), you know two angles and two sides of the<br />

triangle (or triangles), and you can solve the triangle by using the methods previously<br />

explained. Even if there are two solutions β 1 and β 2 of the trigonometric equation for β,<br />

it is possible that only one of these solutions corresponds to an actual triangle satisfying<br />

the given conditions (see Figure 7.5d and Figure 7.6a).<br />

Example 7.2 ---------------------------- ------------------------------------------------------------<br />

Solve the triangle in each case.<br />

o<br />

1. α = 30 , a = 8, b = 5.<br />

Since α is acute and a > b there is only one acute triangle<br />

constructible.<br />

o<br />

sin β sin 30<br />

=<br />

5 8<br />

⎛ 5 ⎞⎛<br />

1 ⎞ 5<br />

⇒ sin β = ⎜ ⎟⎜<br />

⎟ =<br />

⎝ 8 ⎠⎝<br />

2 ⎠ 16<br />

A<br />

⎛ 5 ⎞<br />

o<br />

⇒ β = arcsin ⎜ ⎟ = 18.21 .<br />

⎝16<br />

⎠<br />

o o<br />

Then = 180 o o<br />

γ − 30 −18.21<br />

= 131 .79 .<br />

o<br />

o<br />

⎛<br />

o<br />

sin131.79 sin 30<br />

⎞<br />

Finally, ⎜<br />

sin131.79<br />

= ⇒ c = 8<br />

⎟ = 11.93.<br />

o<br />

c 8<br />

⎝ sin 30 ⎠<br />

C<br />

γ<br />

5 8<br />

o<br />

30<br />

c<br />

β<br />

B<br />

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________<br />

2. α =<br />

o<br />

30 , a = 5, b = 8.<br />

8<br />

Here α is acute and b sin a = < a < b 2<br />

⇒ there are two triangles constructible.<br />

o<br />

sin 30 sin β<br />

=<br />

5 8<br />

⎛ 8 ⎞ ⎛ 1 ⎞<br />

⇒ sin β = ⎜ ⎟ ⎜ ⎟<br />

⎝ 5 ⎠ ⎝ 2 ⎠<br />

4<br />

= .<br />

5<br />

A<br />

o<br />

30<br />

8 5<br />

5<br />

β 2<br />

B’<br />

β 1<br />

γ 2<br />

C<br />

γ 1<br />

β 1<br />

B<br />

51


Thus, β 1 = arcsin<br />

⎛ 4 ⎞<br />

⎜ ⎟<br />

⎝ 5 ⎠<br />

sin30<br />

5<br />

o<br />

= 53 .13 . Then γ 1 =<br />

o<br />

o<br />

sin96.87<br />

=<br />

c<br />

To find the measure of β 2 observe that<br />

o<br />

180 o o<br />

− 30 − 53.13 = 96 .87 and<br />

⎛ sin96.87<br />

⇒ c = 5 ⎜<br />

o<br />

⎝ sin30<br />

o<br />

o<br />

⎞<br />

⎟<br />

= 9.928<br />

⎠<br />

sin β 2 = sin ( π − β1<br />

) = sinπ ⋅ cos β 1 – cos π ⋅ sin β 1 = sin β 1 .<br />

o<br />

o<br />

Thus, β 2 = 180 − β 1 = 180 o o<br />

− 53.13 = 126 .87<br />

o<br />

o<br />

and γ 2 = 180 o o<br />

− 30 −126.87<br />

= 23 .13 .<br />

o<br />

o<br />

sin30 sin 23.13 ⎛<br />

o<br />

sin 23.13 ⎞<br />

Then = ⇒ c = 5 ⎜ ⎟ = 3. 928 .<br />

5<br />

o<br />

c<br />

sin30<br />

⎝ ⎠<br />

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________<br />

<strong>Section</strong> 7 Problems--------------- ------- -----------------------------------------------------------<br />

In problems 1 to 10 use the law of sines to solve each triangle ABC. Round off angles<br />

to the nearest hundredth of a degree and side lengths to four significant digits.<br />

1. a = 32, β =<br />

o<br />

38 , γ =<br />

o<br />

21 .<br />

2. a = 50, b = 30, α = 45 .<br />

3. a = 40, b = 70, α = 30 .<br />

4. b = 4.5, c = 9, γ =<br />

o<br />

60 .<br />

5. a = 31, b = 33, α = 60 .<br />

6. α = β = o 14 , c = 30.<br />

o<br />

7. α = 30 , a = 8, b = 5.<br />

o<br />

8. α = 30 , a = 5, b = 8.<br />

o<br />

9. β = 60 , a = 11, b = 12.<br />

o<br />

10. β = 60 , a = 12, b = 11.<br />

o<br />

o<br />

o<br />

52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!