22.04.2015 Views

DMX 3-in-1 splitter/isolator/repeater - Chameleon

DMX 3-in-1 splitter/isolator/repeater - Chameleon

DMX 3-in-1 splitter/isolator/repeater - Chameleon

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

GENERALINTEREST<br />

<strong>DMX</strong> 3-<strong>in</strong>-1<br />

Splitter, Isolator, Repeater<br />

Design by J. Mack<br />

This project dubbed ‘<strong>DMX</strong> 3-<strong>in</strong>-1’ is an active <strong>splitter</strong> that distributes a<br />

s<strong>in</strong>gle <strong>DMX</strong> signal across three outputs. In addition it features full electrical<br />

isolation between <strong>in</strong>put and outputs, while any of the three outputs can act<br />

<strong>in</strong>dependently of the others.<br />

The <strong>DMX</strong> 3-<strong>in</strong>-1 <strong>splitter</strong>/<strong>isolator</strong>/<strong>repeater</strong><br />

can be used with all equipment that supports<br />

<strong>DMX</strong>512, and will help to <strong>in</strong>crease its<br />

reliability <strong>in</strong> actual operation. The unit will<br />

also prove useful for quick recabl<strong>in</strong>g<br />

of equipment, because it<br />

allows the (physically) shortest l<strong>in</strong>k<br />

to be created.<br />

An example may help to illustrate<br />

the po<strong>in</strong>t: let’s assume there’s <strong>DMX</strong><br />

equipment at the left-hand as well<br />

as the right-hand side of the stage.<br />

20<br />

Elektor Electronics 5/2003


GENERALINTEREST<br />

+5V-1<br />

C5<br />

2<br />

3<br />

IC9<br />

8<br />

7<br />

6<br />

4k7<br />

R3<br />

1<br />

2<br />

3<br />

4<br />

IC6 8<br />

R<br />

D<br />

7<br />

6<br />

100n<br />

GND1<br />

K3<br />

TR1<br />

6V<br />

B1<br />

C2<br />

IC2<br />

7805<br />

+5V-1<br />

C8<br />

+5V<br />

5<br />

6N137<br />

5<br />

LTC485<br />

B40C1000<br />

470µ<br />

16V<br />

GND1<br />

1µ<br />

16V<br />

K2<br />

120Ω<br />

R1<br />

6<br />

7<br />

C12<br />

100n<br />

IC5<br />

8<br />

1<br />

R 2<br />

3<br />

220Ω<br />

D 4<br />

5 LTC485<br />

R2<br />

+5V-2<br />

IC10<br />

2<br />

3<br />

+5V-3<br />

8<br />

7<br />

6<br />

5<br />

6N137<br />

4k7<br />

GND1<br />

R4<br />

GND2<br />

1<br />

2<br />

3<br />

4<br />

IC7 8<br />

R<br />

7<br />

6<br />

D<br />

5<br />

LTC485<br />

C6<br />

100n<br />

GND2<br />

K4<br />

F1<br />

100mA T<br />

K1<br />

230V<br />

2x 1VA5<br />

TR2<br />

6V<br />

6V<br />

B2<br />

B40C1000<br />

B3<br />

IC1<br />

7805<br />

C1<br />

470µ<br />

16V<br />

GND<br />

IC4<br />

7805<br />

C4<br />

+5V<br />

C9<br />

1µ<br />

16V<br />

+5V-3<br />

C10<br />

GND<br />

IC11<br />

2<br />

3<br />

8<br />

7<br />

6<br />

4k7<br />

R5<br />

1<br />

2<br />

3<br />

4<br />

IC8 8<br />

R<br />

D<br />

7<br />

6<br />

C7<br />

100n<br />

GND3<br />

K5<br />

2x 1VA5<br />

6V<br />

B40C1000<br />

B4<br />

470µ<br />

16V<br />

GND3<br />

IC3<br />

7805<br />

C3<br />

1µ<br />

16V<br />

+5V-2<br />

C11<br />

5<br />

6N137<br />

5<br />

LTC485<br />

B40C1000<br />

470µ<br />

16V<br />

1µ<br />

16V<br />

GND3<br />

GND2<br />

020117 - 11<br />

Figure 1. The circuit diagram of the <strong>DMX</strong> 3-<strong>in</strong>-1 comprises four electrically isolated subsections.<br />

Without the <strong>splitter</strong>, it would be<br />

awkward to feed one cable to one<br />

side only, then take it back all the<br />

way to the orig<strong>in</strong>, then on to the<br />

other side, and then from equipment<br />

to equipment. Arguably, this is not<br />

the best solution to distribut<strong>in</strong>g<br />

<strong>DMX</strong> signals across equipment.<br />

The <strong>DMX</strong> <strong>splitter</strong> makes the<br />

cabl<strong>in</strong>g job much easier. Only one<br />

cable is required at each side,<br />

where it is used to <strong>in</strong>terconnect all<br />

equipment.<br />

Repetitia Placet<br />

A quick glance at the circuit diagram<br />

<strong>in</strong> Figure 1 shows that the <strong>DMX</strong> 3-<br />

<strong>in</strong>-1 consist of three identical sub-circuits.<br />

Resistor R1 at the <strong>in</strong>put of the<br />

circuit acts as a term<strong>in</strong>ator (‘term<strong>in</strong>at<strong>in</strong>g<br />

resistance’) for the <strong>DMX</strong> bus,<br />

which, as you may know, works <strong>in</strong><br />

compliance with well established<br />

RS485 standards. The <strong>DMX</strong> signal is<br />

first converted to TTL by level converter<br />

IC5. The LTC485 from L<strong>in</strong>ear<br />

Technology is an <strong>in</strong>terface component<br />

that translates RS485 signals<br />

<strong>in</strong>to TTL (receiver, R), and vice versa,<br />

TTL <strong>in</strong>to RS485 (driver, D). In this circuit<br />

the transmitter section of the<br />

chip has been disabled. The<br />

datasheets of this <strong>in</strong>terest<strong>in</strong>g chip<br />

may be found at<br />

www.l<strong>in</strong>ear-tech.com/pdf/485ff.pdf<br />

Beh<strong>in</strong>d IC5, the signal is split across<br />

three identical circuits. High-speed<br />

optocouplers type 6N137 guarantee<br />

electrical isolation. Resistor R2 limits<br />

the current through the LEDs <strong>in</strong>side<br />

the optocouplers. The optocouplers<br />

are enabled by means of a High level<br />

at p<strong>in</strong> 7. Pull-up resistors (R3, R4, R5)<br />

are required at their outputs which<br />

are of the open-collector (OC) variety.<br />

Next, the signal once aga<strong>in</strong> meets<br />

an LT485. This time, however, only<br />

the transmitter (D) is employed. A<br />

small difference may be noted with<br />

respect to IC5: Because of the <strong>in</strong>vert<strong>in</strong>g<br />

action of the optocouplers, the<br />

outputs of the LTC485’s are transposed<br />

to prevent unwanted <strong>in</strong>version.<br />

The tripled <strong>DMX</strong> signal leaves<br />

the circuit via connectors K3, K4 and<br />

K5. The electrical isolation that exist<br />

between the three outputs will<br />

prove <strong>in</strong>valuable when errors occur.<br />

An error on one <strong>DMX</strong> l<strong>in</strong>e will only cause one<br />

output to fail <strong>in</strong>stead of the complete unit —<br />

the other outputs will cont<strong>in</strong>ue to operate<br />

normally!<br />

The power supply is seen <strong>in</strong> the righthand<br />

section of the circuit diagram. Because<br />

we are deal<strong>in</strong>g with four electrically isolated<br />

sub-circuits <strong>in</strong> the <strong>DMX</strong>512 path, there is a<br />

requirement for four <strong>in</strong>dependently operat<strong>in</strong>g<br />

power supplies. Although this requirement<br />

could be fulfilled us<strong>in</strong>g a ma<strong>in</strong>s supply <strong>in</strong>corporat<strong>in</strong>g<br />

special DC/DC converters, the current<br />

consumption of the circuit is so low that<br />

two 1.5-VA transformers, each hav<strong>in</strong>g two<br />

secondary w<strong>in</strong>d<strong>in</strong>gs, are probably cheaper<br />

and less demand<strong>in</strong>g <strong>in</strong> respect of board<br />

space, albeit less elegant. Each of the four<br />

secondaries is followed by a small rectifier<br />

bridge feed<strong>in</strong>g a three-p<strong>in</strong> fixed voltage regulator<br />

type 7805.<br />

Construction<br />

The artwork for the pr<strong>in</strong>ted circuit board (Figure<br />

2) shows a dead conventional project<br />

when it comes to build<strong>in</strong>g it. Ready-made<br />

pr<strong>in</strong>ted circuit boards for the project may be<br />

obta<strong>in</strong>ed from The PCBShop (i.e., they are not<br />

available through Elektor’s Readers Services).<br />

Do not forget to fit all 4 (four) wire l<strong>in</strong>ks on the<br />

5/2003 Elektor Electronics 21


H2<br />

H1<br />

ELEKTOR<br />

(C)<br />

020117-1<br />

H3<br />

H4<br />

GENERALINTEREST<br />

K1<br />

F1 100mAT<br />

TR2<br />

TR1<br />

B4<br />

B3<br />

B1<br />

B2<br />

C3<br />

IC4<br />

C4<br />

IC2<br />

C2<br />

IC1<br />

C1<br />

IC3<br />

C11<br />

C10<br />

C8<br />

C9<br />

C12<br />

R2<br />

IC5<br />

R1<br />

T<br />

IC9 IC11 IC10<br />

R4<br />

C6<br />

R5<br />

R3<br />

- +<br />

020117-1<br />

IC6 IC8 IC7<br />

K5<br />

C7<br />

K2<br />

C5<br />

K4<br />

K3<br />

+<br />

-<br />

T<br />

+<br />

-<br />

T<br />

+<br />

-<br />

T<br />

board and be sure to mount all ICs<br />

with the correct orientation. IC sockets<br />

are recommended, but not obligatory.<br />

The enclosure that holds the <strong>DMX</strong><br />

3-<strong>in</strong>-1 must be ‘stage, bullet and foolproof’<br />

as well as electrically safe,<br />

comply<strong>in</strong>g with Class-2 electrical<br />

isolation requirements. In particular,<br />

the distance between ma<strong>in</strong>s-carry<strong>in</strong>g<br />

parts on the PCB and the metal<br />

case should be 6 mm m<strong>in</strong>imum. This<br />

rules out the use of 5-mm PCB spacers.<br />

The XLR chassis-mount sockets/plugs<br />

and the IEC appliance<br />

socket are best secured to the case<br />

with rivets.<br />

(020117-1)<br />

COMPONENTS LIST<br />

Resistors:<br />

R1 = 120Ω<br />

R2 = 220Ω<br />

R3,R4,R5 = 4kΩ7<br />

Capacitors:<br />

C1-C4 = 470µF 16V radial<br />

C5,C6,C7,C12 = 100nF<br />

C8-C11 = 1µF 16V radial<br />

(C) ELEKTOR<br />

020117-1<br />

Semiconductors:<br />

B1-B4 = B40C1000, round case<br />

(40V piv, 1A)<br />

IC1-IC4 = 7805<br />

IC5-IC8 = LTC485CN8 or<br />

SN75176BP<br />

IC9,IC19,IC11 = 6N137<br />

Figure 2. Copper track layout and component mount<strong>in</strong>g plan (board available from The<br />

PCBShop).<br />

Miscellaneous :<br />

F1 = fuse holder, PCB mount,<br />

with fuse 100mA(T) (slow)<br />

K1 = 2-way PCB term<strong>in</strong>al block,<br />

lead pitch 7.5mm<br />

K2-K5 = 3- way PCB term<strong>in</strong>al<br />

block, lead pitch 5mm<br />

Tr1,Tr2 = ma<strong>in</strong>s transformer, 2x6<br />

V secondaries, 1.5VA or 2 VA<br />

1 off IEC ma<strong>in</strong>s appliance socket<br />

3 off XLR socket (female), 3-way,<br />

chassis mount, 180 degrees<br />

1 off XLR plug (male), 3-way,<br />

chassis mount, 180 degrees<br />

PCB, available from The<br />

PCBShop<br />

22 Elektor Electronics 5/2003

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!