01.05.2015 Views

Respiratory Distress of the Newborn: Causes and ... - Trinity Health

Respiratory Distress of the Newborn: Causes and ... - Trinity Health

Respiratory Distress of the Newborn: Causes and ... - Trinity Health

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Newborn</strong>: <strong>Causes</strong> <strong>and</strong> Treatment<br />

<strong>Trinity</strong> <strong>Health</strong><br />

Perinatal Medicine <strong>and</strong> Women’s <strong>Health</strong>care<br />

33 rd Annual Symposium<br />

Minot, ND<br />

September 21, 2012<br />

Tom George, MD<br />

Pr<strong>of</strong>essor <strong>of</strong> Pediatrics<br />

Medical Director, NICU, University <strong>of</strong> Minnesota Amplatz Children’s Hospital<br />

Associate Director, Pediatric Residency Program<br />

Objectives<br />

At <strong>the</strong> end <strong>of</strong> this presentation, <strong>the</strong> attendee<br />

will be able to<br />

• Identify common causes <strong>of</strong> neonatal respiratory<br />

distress<br />

• Underst<strong>and</strong> how to evaluate <strong>and</strong> methods to treat<br />

neonatal respiratory distress<br />

• Underst<strong>and</strong> new issues in <strong>the</strong> treatment <strong>of</strong> neonatal<br />

respiratory distress<br />

Acute neonatal deterioration<br />

<strong>Respiratory</strong> causes<br />

• Upper airway<br />

• Pulmonary disease<br />

• Lower airway disease<br />

• Pulmonary compression<br />

1


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Acute neonatal deterioration<br />

<strong>Respiratory</strong> causes<br />

• Upper airway obstruction<br />

– nose: choanal stenosis<br />

– mouth/jaw: large tongue<br />

– larynx: cord paralysis<br />

– trachea: tracheomalacia, tracheal stenosis<br />

– extrinsic: cystic hygroma, vascular ring<br />

Interpreting neonatal x-rays<br />

• Also going to use this opportunity to<br />

review neonatal radiographic pathology<br />

Approach to reading x-rays<br />

• Make sure <strong>the</strong> x-ray belongs to <strong>the</strong> patient<br />

• Evaluate technique<br />

– What is <strong>the</strong> quality <strong>of</strong> <strong>the</strong> x-ray?<br />

– Technique- importance <strong>of</strong> positioning<br />

Rotation<br />

Lordosis<br />

2


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

What is <strong>the</strong> quality <strong>of</strong> <strong>the</strong> x-ray?<br />

Extrinsic<br />

Clutter<br />

Normal chest x-ray<br />

(Before we look at pulmonary pathology)<br />

Also can <strong>of</strong>ten see thymic shadow in newborns<br />

Acute neonatal deterioration<br />

<strong>Respiratory</strong> causes - alveolar disease<br />

• Transient tachypnea <strong>of</strong> <strong>the</strong> newborn<br />

• Bacterial pneumonia<br />

• Surfactant deficiency - RDS<br />

3


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Transient tachypnea <strong>of</strong> <strong>the</strong> newborn<br />

Early<br />

• Retained Alveolar Fluid<br />

• Often a retrospective diagnosis<br />

12 h later<br />

Group B Strep Pneumonia<br />

early<br />

12 hrs later<br />

Group B Strep Pneumonia<br />

early<br />

12 hrs later<br />

4


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Surfactant Deficiency (RDS)<br />

• ‘Ground glass’ appearance<br />

• Air bronchograms<br />

• Symmetric disease<br />

• Predominantly in preterm<br />

infants, though it can occur<br />

in term infants, especially<br />

those delivered by C-<br />

section without labor, or<br />

elective sections before 39<br />

weeks<br />

Acute neonatal deterioration<br />

<strong>Respiratory</strong> causes - lower airway<br />

• Meconium Aspiration Syndrome<br />

– Secondary Surfactant Inactivation<br />

Early Meconium Aspiration<br />

• Diffuse patchy<br />

infiltrates<br />

• Hyperinflation that<br />

places <strong>the</strong>m at risk<br />

for airleaks<br />

• At risk for PPHN<br />

5


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Late Meconium Aspiration<br />

Phrenic Nerve Injury<br />

• Brachial plexus injury<br />

• Can have associated phrenic nerve injury<br />

leading to respiratory distress<br />

Right Diaphragm Paralysis<br />

6


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Air Leak Syndromes/<br />

Primary Lung Compression<br />

• Pneumothorax<br />

• Congenital Diaphragmatic Hernia<br />

• Cystic Adenomatoid Malformation<br />

• Pleural Effusion<br />

• Thoracic Compression<br />

Right tension pneumothorax<br />

• Presents with acute<br />

hypoxemia, also possible<br />

bradycardia, hypotension<br />

• Decreased BS on right<br />

• Needle thoracentesis<br />

Right Pneumothorax<br />

after needle thoracentesis<br />

7


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Congenital Diaphragmatic Hernia<br />

• Acute respiratory distress at birth<br />

• Intubation <strong>and</strong> NG to suction<br />

Congenital Adenomatoid Malformation<br />

Pleural Effusion<br />

8


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Thoracic Compression<br />

Objectives<br />

At <strong>the</strong> end <strong>of</strong> this presentation, <strong>the</strong> attendee<br />

will be able to<br />

• Identify common causes <strong>of</strong> neonatal respiratory<br />

distress<br />

• Underst<strong>and</strong> how to evaluate <strong>and</strong> methods to treat<br />

neonatal respiratory distress<br />

• Underst<strong>and</strong> new issues in <strong>the</strong> treatment <strong>of</strong> neonatal<br />

respiratory distress<br />

Evaluation <strong>and</strong> Stabilization <strong>of</strong> <strong>the</strong><br />

<strong>Newborn</strong> Infant in <strong>Respiratory</strong> <strong>Distress</strong><br />

• Establish Airway (suctioning, mask,<br />

endotracheal tube)<br />

• Evaluate Breathing (bag if needed)<br />

• Maintain Circulation<br />

• Administer Drugs<br />

– Antibiotics - ampicillin <strong>and</strong> gentamicin<br />

(minimize cefotax use due to resistance)<br />

– IV flluids with dextrose<br />

• Maintain Environment (<strong>the</strong>rmal regulation)<br />

9


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Evaluation <strong>and</strong> Stabilization <strong>of</strong> <strong>the</strong><br />

Neonate with <strong>Respiratory</strong> <strong>Distress</strong><br />

• History, physical examination<br />

• Vital signs, with blood pressure<br />

• Pulse oximetry—SaO 2 / Arterial blood gases<br />

• Chest x-ray<br />

• CBC with differential, platelet count<br />

• Blood culture, o<strong>the</strong>r cultures as indicated<br />

Assessment <strong>of</strong> <strong>the</strong> acutely ill newborn<br />

• <strong>Respiratory</strong>:<br />

– Tachypnea – rate > 70-80 breaths/minute<br />

– Grunting, retractions, flaring <strong>of</strong> alae nasi<br />

– Reduced air entry<br />

– Apnea<br />

– Cyanosis<br />

–Stridor<br />

Acute neonatal deterioration<br />

Assessment <strong>of</strong> <strong>the</strong> acutely ill newborn<br />

• Objective assessments<br />

– Vitals signs<br />

• If worried about a newborn, should be<br />

continuously monitored with cardiac/apnea<br />

monitors<br />

– Frequent reassessment<br />

10


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Evaluation <strong>and</strong> Stabilization<br />

<strong>Respiratory</strong> Support for <strong>the</strong> Neonate<br />

<strong>Respiratory</strong> support should be provided for <strong>the</strong> infant<br />

with respiratory distress, especially if hypoxemia is<br />

present<br />

• Blow-by oxygen<br />

• Nasal cannula<br />

• Oxyhood<br />

• Mechanical ventilation<br />

Evaluation <strong>and</strong> Stabilization<br />

<strong>Respiratory</strong> Support for <strong>the</strong> Neonate<br />

• Blow-by oxygen:<br />

Acutely used for a non-intubated infant with<br />

hypoxemia<br />

Evaluation <strong>and</strong> Stabilization<br />

<strong>Respiratory</strong> Support for <strong>the</strong> Neonate<br />

• Nasal cannula - limited FiO 2 that can be delivered<br />

– STOP ROP effective FiO 2 conversion tables<br />

– OxygenbyNC.pdf<br />

• High Flow Nasal Cannula (HFNC)<br />

– To deliver CPAP, need higher flow <strong>of</strong> 3-4 lpm<br />

– Effective in some situations, particularly for transitioning<br />

infants <strong>of</strong>f PPV with resolving RDS<br />

– Should be cautious about use in babies for initial<br />

treatment <strong>of</strong> RDS<br />

11


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Evaluation <strong>and</strong> Stabilization<br />

<strong>Respiratory</strong> Support for <strong>the</strong> Neonate<br />

• Oxyhood - delivers FiO 2 <strong>of</strong> up to 90 - 100%<br />

Evaluation <strong>and</strong> Stabilization<br />

<strong>Respiratory</strong> Support for <strong>the</strong> Neonate<br />

• Mechanical ventilation<br />

– For acute deterioration, or for worsening clinical<br />

condition<br />

Evaluation <strong>and</strong> Stabilization<br />

<strong>Respiratory</strong> Support for <strong>the</strong> Neonate<br />

Indications for Mechanical Ventilation<br />

• <strong>Respiratory</strong> acidosis<br />

(pH < 7.25 with increasing PaCO 2 )<br />

• Hypoxemia –<br />

saturations < ~ 85%, PaO 2 < 50 mmHg in FiO 2 > 60%<br />

• Apnea <strong>of</strong> prematurity<br />

12


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Endotracheal Tube:<br />

Size, Length by Weight, Gestational age<br />

Weight (g)<br />

Below 1000 1<br />

Gestational<br />

Age (wks)<br />

Below 28<br />

Tube Size<br />

(mm)<br />

(Gestational Age ÷<br />

2.5 10)<br />

Number at<br />

Lip to Tip<br />

6 + wt (cm)<br />

6.5<br />

1000-2000<br />

28-34<br />

3.0<br />

7-8<br />

2000-3000<br />

34-38<br />

3.0-3.5<br />

8-9<br />

Above 3000<br />

Above 38<br />

3.5-4.0<br />

>9<br />

Intubation: Atropine (0.02 mg/kg IV) → Morphine (0.1 mg/kg IV)<br />

→ Rocuronium(0.6 mg/kg IV)<br />

Endotracheal Tube in <strong>the</strong> Esophagus<br />

• Poor chest movement<br />

• Poor response to intubation - no<br />

improvement in color, heart rate, tone,<br />

respiratory effort<br />

• No mist in tube<br />

• Crying sounds around tube<br />

Endotracheal Tube in <strong>the</strong> Esophagus<br />

• Air heard entering stomach/gastric<br />

distension<br />

• No breath sounds<br />

•CO 2 detector - no expired CO 2<br />

– (Remains purple)<br />

13


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Goals <strong>of</strong> respiratory support<br />

• Maintain adequate tissue oxygenation<br />

• Allow recovery without causing additional<br />

lung injury<br />

Evaluation <strong>and</strong> Stabilization<br />

Mechanical Ventilation<br />

• Continuous positive airway pressure (CPAP)<br />

• Synchronized CPAP (SiPAP/rated CPAP)<br />

• Conventional mechanical ventilation (SIMV)<br />

• High frequency ventilation<br />

Evaluation <strong>and</strong> Stabilization<br />

Continuous Positive Airway Pressure<br />

• CPAP maintains end-expiratory airway pressure,<br />

usually at 5 - 8 cm H 2 O:<br />

– increases resting lung volume thus improving<br />

oxygenation <strong>and</strong> ventilation<br />

– maintains upper airway patency<br />

– improves distribution <strong>of</strong> ventilation<br />

14


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Evaluation <strong>and</strong> Stabilization<br />

Continuous Positive Airway Pressure<br />

• Several methods to deliver CPAP:<br />

Nasal prongs<br />

Nasopharyngeal<br />

HFNC to deliver CPAP<br />

NIPPV<br />

• Effective in decreasing apneic events in infants<br />

on CPAP in premature infants (Lin 1998)<br />

• Most delivery systems are asynchronous <strong>and</strong> so<br />

use <strong>of</strong> higher rates should be considered<br />

carefully<br />

• Might prevent need for reintubation<br />

• Lower rate <strong>of</strong> BPD (Ramanathan 2012)<br />

• Not indicated for treatment <strong>of</strong> acute RDS<br />

Evaluation <strong>and</strong> Stabilization<br />

Conventional Mechanical Ventilation<br />

Initial settings:<br />

• PIP (Peak Inspiratory Pressure) or TV (tidal volume):<br />

– 16 - 30 cm H 2 O pressure, adjust based on infant size,chest wall movement<br />

– Or TV instead <strong>of</strong> PIP for volume control ( ~ 5 cc/kg)<br />

• PEEP (Positive end-expiratory pressure):<br />

– 4 - 7 cm H 2 O pressure<br />

• IT (Inspiratory time): 0.35 - 0.5 seconds<br />

• <strong>Respiratory</strong> rate: 20 - 40 breaths per minute<br />

• Monitor response<br />

– oxygenation (saturations <strong>and</strong> amount <strong>of</strong> FiO 2 required)<br />

– ventilation (blood gas)<br />

15


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Oxygenation<br />

• Oxygenation (saturations, PaO 2 ):<br />

- primarily determined by <strong>the</strong><br />

Mean Airway Pressure (MAP)<br />

• MAP can be increased by:<br />

- increasing PIP, PEEP <strong>and</strong>/or IT<br />

Ventilation<br />

• Ventilation (PaCO 2 ):<br />

- primarily determined by <strong>the</strong> total<br />

volume <strong>of</strong> air that passes in <strong>and</strong> out <strong>of</strong> <strong>the</strong><br />

alveoli, - <strong>the</strong> tidal volume (TV) delivered by<br />

<strong>the</strong> ventilator<br />

• TV typically increased by:<br />

- increasing <strong>the</strong> RR<br />

- can also PIP or PEEP<br />

Goals <strong>of</strong> Mechanical Ventilation<br />

Depends on <strong>the</strong> disease process:<br />

•In RDS:<br />

Oxygenation: saturation ~ 85 - 95%<br />

(PaO 2 50 - 80 mmHg)<br />

Ventilation: PaCO 2 45 - 60 mmHg<br />

in RDS as long as pH > 7.25<br />

• In PPHN/MAS:<br />

Sats > 90%; PaCO 2 more normal - 40-50 mmHg<br />

16


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

<strong>Respiratory</strong> - Customized Goals<br />

• Preterm infant<br />

– Hypocarbia associated with PVL<br />

– Hyperoxia associated with ROP<br />

– Volutrauma associated with pneumothorax, IVH <strong>and</strong> BPD<br />

• Term infant with pulmonary hypertension<br />

– Hypercarbia <strong>and</strong> hypoxemia increase PVR <strong>and</strong> shunting<br />

• Term infant with congenital heart disease<br />

– Vary parameters to optimize tissue perfusion <strong>and</strong><br />

oxygenation, generally normal pCO 2<br />

Synchronized Intermittent<br />

Mechanical Ventilation<br />

• Synchronizes IMV breaths by sensing a<br />

spontaneous breath <strong>and</strong> delivers a mechanical<br />

breath synchronized with <strong>the</strong> infants inspiratory<br />

phase<br />

• Sensing is typically via flow sensing systems<br />

• Still set TV or PIP, PEEP, IT <strong>and</strong> RR<br />

SIMV- proven <strong>and</strong> potential benefits<br />

• Studies have found:<br />

– improved oxygenation <strong>and</strong> ventilation in infants<br />

crossed-over between SIMV <strong>and</strong> IMV, with<br />

higher PaO 2 <strong>and</strong> lower PaCO 2<br />

– less cerebral blood flow velocity variability,<br />

particularly <strong>of</strong> concern in premature infants<br />

• Decreased agitation with “fighting <strong>the</strong> vent”<br />

• Decreased need for sedation/paralysis<br />

17


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

It’s not just <strong>the</strong> <strong>the</strong> respiratory support<br />

• Nutrition<br />

• Optimizing PEEP/MAP<br />

• Fluid management<br />

• Addressing infectious disease issues<br />

• Surfactant for post-surfactant slump<br />

Katz & Klein, J Perinat 2006;26:414<br />

Objectives<br />

At <strong>the</strong> end <strong>of</strong> this presentation, <strong>the</strong> attendee<br />

will be able to<br />

• Identify common causes <strong>of</strong> neonatal respiratory<br />

distress<br />

• Underst<strong>and</strong> how to evaluate <strong>and</strong> methods to treat<br />

neonatal respiratory distress<br />

• Underst<strong>and</strong> new issues in <strong>the</strong> treatment <strong>of</strong> neonatal<br />

respiratory distress<br />

Changing trends<br />

• Use <strong>of</strong> early CPAP to avoid intubation<br />

• iNO in preterm infants<br />

• Oxygen use in <strong>the</strong> DR<br />

18


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

CPAP<br />

• SUPPORT trial<br />

– Significant percentage <strong>of</strong> infants who don’t need<br />

intubation with early, optimal CPAP to prevent collapse<br />

<strong>of</strong> alveoli<br />

– A trial <strong>of</strong> nasal CPAP should be considered as an<br />

alternative to routine DR intubation<br />

• If intubation is needed:<br />

– consider early extubation after surfactant to optimal<br />

CPAP in preterm infants<br />

Inhaled Nitric Oxide<br />

• Valuable tool in <strong>the</strong> treatment <strong>of</strong> Persistent Pulmonary<br />

Hypertension <strong>of</strong> <strong>the</strong> <strong>Newborn</strong><br />

• PPHN occurs in ~1/1400 live births causing severe<br />

<strong>and</strong> labile hypoxemia<br />

• FDA approved for hypoxemic respiratory failure in<br />

term <strong>and</strong> near-term infants, decreases need for ECMO<br />

• iNO diffuses from alveolus to pulmonary vascular<br />

smooth muscle<br />

• increases cGMP levels<br />

• leads to muscle relaxation <strong>and</strong> vasodilation<br />

Inhaled Nitric Oxide in Preterm Infants<br />

• 3 large trials<br />

– One study shows benefit in larger babies, one study shows<br />

decreased CLD (iNO started later), one shows no benefit<br />

– Questions remain about when to start, how long to treat, dose<br />

– NICH consensus 2010: routine use not recommended<br />

– Select use for premature infants with pulmonary<br />

hyptertension/pulmonary hypoplasia with pulmonary<br />

hypertension<br />

• TOLSURF trial now ongoing<br />

– iNO combined with 5 doses <strong>of</strong> late surfactant starting<br />

DOL 7-14 for intubated patients < 28 weeks<br />

19


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

Oxygen use in <strong>the</strong> DR<br />

• NRP recommendations:<br />

Current evidence is insufficient to resolve<br />

all questions regarding supplemental<br />

oxygen use during neonatal resuscitation<br />

Pre-ductal <strong>and</strong> Post-ductal O2 Saturation in<br />

<strong>Health</strong>y Term Neonates after Birth<br />

Mariani et al J Peds 2007<br />

Oxygen use in <strong>the</strong> DR – term infants<br />

• Research suggests that 21% oxygen might be<br />

as effective as 100% oxygen<br />

• Recommendations:<br />

- start resuscitation with room air<br />

- <strong>the</strong>n oximetry could guide <strong>the</strong><br />

concentration <strong>of</strong> oxygen needed<br />

20


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

SpO2 values in <strong>the</strong> first 20 minutes after birth in extremely low gestational age<br />

neonates r<strong>and</strong>omly assigned to <strong>the</strong> low-oxygen (Lox) group (initial FIO2 after<br />

birth: 30%) or <strong>the</strong> high-oxygen (Hox) group (initial FIO2 after birth: 90%)<br />

Escrig, R. et al.<br />

Pediatrics<br />

Copyright ©2008 American Academy <strong>of</strong> Pediatrics<br />

Oxygen use in <strong>the</strong> DR – preterm infants<br />

• Optimum saturation in preterm infants in <strong>the</strong><br />

first minutes <strong>of</strong> life is not known<br />

• A high oxygen saturation in preterm infants<br />

might be damaging<br />

• Titrate oxygen to achieve balance <strong>of</strong> need for<br />

sufficient oxygen to correct hypoxemia<br />

against excessive oxygen levels<br />

Oxygen use in <strong>the</strong> DR – preterm infants<br />

• Delivery centers have placed blenders in <strong>the</strong> DR<br />

• Some start at 21% <strong>and</strong> increase<br />

• Some start at < 100% <strong>and</strong> as needed<br />

• Awareness <strong>of</strong> saturations is important<br />

• Even a few breaths <strong>of</strong> high oxygen results in<br />

inflammatory cytokines<br />

• Effect on retinal vessels<br />

21


<strong>Respiratory</strong> <strong>Distress</strong> <strong>of</strong> <strong>the</strong> <strong>Newborn</strong>:<br />

<strong>Causes</strong> <strong>and</strong> Treatment<br />

AAP recommendations<br />

• Oxygen blenders in <strong>the</strong> DR<br />

• One team member attaches oximeter probe<br />

to right wrist<br />

• Start oxygen at < 100%; we start at 30%.<br />

Summary<br />

• Reviewed common causes <strong>of</strong> neonatal<br />

respiratory distress<br />

• Reviewed how to evaluate <strong>and</strong> treat neonatal<br />

respiratory distress<br />

• Reviewed newer issues in <strong>the</strong> treatment <strong>of</strong><br />

neonatal respiratory distress<br />

Thank you<br />

Questions/comments welcome!<br />

tgeorge@umn.edu<br />

22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!