08.05.2015 Views

The future of motor neuron disease - the Research Centre Page

The future of motor neuron disease - the Research Centre Page

The future of motor neuron disease - the Research Centre Page

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J Neurol (2004) 251: 491–500<br />

DOI 10.1007/s00415-004-0322-6 THE FUTURE OF . . .<br />

Jan H. Veldink<br />

Leonard H. Van den Berg<br />

John H. J. Wokke<br />

<strong>The</strong> <strong>future</strong> <strong>of</strong> <strong>motor</strong> <strong>neuron</strong> <strong>disease</strong><br />

<strong>The</strong> challenge is in <strong>the</strong> genes<br />

■ Abstract Adult-onset <strong>motor</strong><br />

<strong>neuron</strong> <strong>disease</strong> (MND) includes<br />

sporadic and familial forms <strong>of</strong><br />

amyotrophic lateral sclerosis<br />

(ALS), lower <strong>motor</strong> <strong>neuron</strong> <strong>disease</strong><br />

including progressive and segmental<br />

spinal muscular atrophy<br />

(LMND) and primary lateral<br />

sclerosis (PLS). ALS/MND can be<br />

considered to be a spectrum <strong>of</strong><br />

neurodegenerative <strong>disease</strong>s characterised<br />

by a preferential degenera-<br />

Received: 18 October 2003<br />

Accepted: 24 October 2003<br />

J. H. Veldink · L. H. Van den Berg ·<br />

J. H. J. Wokke ()<br />

Department <strong>of</strong> Neurology<br />

G.03.228<br />

University Medical Center Utrecht<br />

P. O. Box 85500<br />

3508 GA Utrecht, <strong>The</strong> Ne<strong>the</strong>rlands<br />

Tel.: +31-30/2506564<br />

Fax: +31-30/2542100<br />

E-Mail: J.Wokke@neuro.azu.nl<br />

tion <strong>of</strong> upper and/or lower <strong>motor</strong><br />

<strong>neuron</strong>s. ALS and LMND have a<br />

complex multifactorial aetiology<br />

and a large clinical variability. This<br />

combination warrants an increasing<br />

genomics approach in <strong>future</strong><br />

research. Genomics is <strong>the</strong> structural<br />

and functional study <strong>of</strong><br />

genomes – i. e. <strong>the</strong> complete set <strong>of</strong><br />

chromosomes and <strong>the</strong> genes <strong>the</strong>y<br />

contain. Several methods may help<br />

to understand gene functions, and<br />

every method has led to its own<br />

“omics”. <strong>The</strong> study <strong>of</strong> <strong>the</strong> complex<br />

relationship between on <strong>the</strong> one<br />

hand genomics data, transcriptomics<br />

data, proteomics data, and<br />

interactomics data and on <strong>the</strong><br />

o<strong>the</strong>r hand <strong>the</strong> phenotype, is called<br />

“phenomics”. In phenomics, <strong>the</strong><br />

extensive and detailed phenotyping<br />

by <strong>the</strong> clinician is a prerequisite for<br />

meaningful associations. As a consequence,<br />

in ALS/MND clinicians<br />

have <strong>the</strong> task to agree about different<br />

clinical subtypes in order to<br />

make <strong>the</strong>se associations and hence<br />

to gain fur<strong>the</strong>r insight into <strong>the</strong><br />

complex pathogenesis and identification<br />

<strong>of</strong> diagnostic markers in<br />

ALS/MND. Also, several new approaches<br />

in <strong>the</strong> treatment <strong>of</strong><br />

ALS/MND are here discussed, including<br />

<strong>the</strong> viral delivery <strong>of</strong> protective<br />

compounds, RNA-interference,<br />

and stem cell <strong>the</strong>rapy. Fur<strong>the</strong>r, we<br />

argue that a <strong>future</strong> challenge is to<br />

allow for patients to have early access<br />

to multidisciplinary centres<br />

with specialist knowledge <strong>of</strong><br />

ALS/MND. <strong>The</strong>se centres can apply<br />

specific models <strong>of</strong> care for people<br />

with ALS/MND, but must be designed<br />

in a patient-centred format.<br />

Ultimately, <strong>the</strong>se models should be<br />

assessed according to <strong>the</strong>ir outcomes.<br />

■ Key words ALS · MND ·<br />

aetiology · diagnosis · treatment ·<br />

genomics · phenomics · RNAi ·<br />

multidisciplinary centres<br />

Introduction<br />

Adult-onset <strong>motor</strong> <strong>neuron</strong> <strong>disease</strong> (MND) includes sporadic<br />

and familial forms <strong>of</strong> amyotrophic lateral sclerosis<br />

(ALS), lower <strong>motor</strong> <strong>neuron</strong> <strong>disease</strong> including progressive<br />

and segmental spinal muscular atrophy (LMND)<br />

and primary lateral sclerosis (PLS). Approximately<br />

10–20 % <strong>of</strong> patients with ALS are familial. Inheritance is<br />

usually autosomal dominant [1], but autosomal recessive<br />

modes <strong>of</strong> inheritance have been reported also [2, 3].<br />

ALS/MND can be considered to be a spectrum <strong>of</strong> neurodegenerative<br />

<strong>disease</strong>s characterised by a preferential<br />

degeneration <strong>of</strong> upper and/or lower <strong>motor</strong> <strong>neuron</strong>s.ALS<br />

and LMND show a large clinical variability. A recent<br />

population-based prospective study in ALS showed a<br />

median survival <strong>of</strong> 32 months, but seven percent <strong>of</strong> patients<br />

survived for more than 60 months [4]. Also, we<br />

demonstrated that patients with LMND show heterogeneity<br />

in both <strong>the</strong> number <strong>of</strong> body regions affected and<br />

progression <strong>of</strong> <strong>disease</strong> [5].<br />

In <strong>the</strong> first section <strong>of</strong> this review, we will define re-<br />

JON 1322


492<br />

cently developed concepts and discuss promising new<br />

approaches to gain insight into <strong>the</strong> pathogenesis <strong>of</strong><br />

ALS/MND. For this, <strong>the</strong> concept <strong>of</strong> phenotypic variability<br />

must be emphasised. In <strong>the</strong> second section, <strong>future</strong> directions<br />

in diagnosis and treatment will be discussed<br />

and in <strong>the</strong> third section <strong>future</strong> directions <strong>of</strong> care.<br />

Aetiology and pathogenesis<br />

■ “Omics”<br />

As <strong>the</strong> sequencing <strong>of</strong> genomes <strong>of</strong> bacteria, small and<br />

large eukaryotes including <strong>the</strong> sequencing <strong>of</strong> <strong>the</strong> human<br />

genome has been recently completed,we are fortunate to<br />

have entered <strong>the</strong> so-called “genomics-era”. Genomics<br />

must be distinguished from genetics. Genetics is <strong>the</strong> science<br />

<strong>of</strong> inheritance and genomics is <strong>the</strong> structural and<br />

functional study <strong>of</strong> genomes – i. e. <strong>the</strong> complete set <strong>of</strong><br />

chromosomes and <strong>the</strong> genes <strong>the</strong>y contain. Genomic<br />

techniques include high-throughput sequencing, which<br />

generates large amounts <strong>of</strong> data that are placed in public<br />

databases. <strong>The</strong>se databases enable investigators to<br />

compare human sequences with known sequences in<br />

o<strong>the</strong>r species in an attempt to determine <strong>the</strong> functionality<br />

<strong>of</strong> <strong>the</strong>se sequences and <strong>the</strong>ir relevance to human <strong>disease</strong>.<br />

This process <strong>of</strong> annotation is part <strong>of</strong> comparative<br />

genomics [6].<br />

Although many genes have been annotated so far in<br />

<strong>the</strong> human genome, <strong>the</strong> biological role <strong>of</strong> a considerable<br />

amount <strong>of</strong> coding and non-coding sequences has not yet<br />

been established [7]. Several methods may help to understand<br />

gene functions, and every method has led to its<br />

own “omics”. <strong>The</strong>se “omics” are powerful means with<br />

which to investigate a multifactorial <strong>disease</strong>, which can<br />

be more appropriately termed “complex trait” or “complex<br />

<strong>disease</strong>”. Almost every human <strong>disease</strong> is complex,<br />

including <strong>the</strong> so-called “simple” monogenic <strong>disease</strong>s<br />

that follow classical Mendelial inheritance, like<br />

phenylketonuria (PKU) [8] or childhood-onset spinal<br />

muscular atrophy (SMA). <strong>The</strong>se “monogenic” <strong>disease</strong>s<br />

are more appropriately called “simplex”, as additional<br />

genes and environmental factors may influence <strong>the</strong><br />

phenotype [9]. For example, it has been well established<br />

that <strong>the</strong> survival <strong>motor</strong> <strong>neuron</strong> 1 gene (SMN1) is <strong>the</strong><br />

causative gene in SMA, but that o<strong>the</strong>r genes (SMN2 and<br />

NAIP) change <strong>the</strong> phenotype considerably [10]. This<br />

gene-gene interaction is called “epistasis” [11].<br />

Complex <strong>disease</strong>s on <strong>the</strong> o<strong>the</strong>r hand are by definition<br />

<strong>the</strong> result <strong>of</strong> epistasis,and <strong>the</strong> interaction <strong>of</strong> gene(s) with<br />

<strong>the</strong> environment, lacking one dominant causative factor<br />

[9].Examples <strong>of</strong> complex <strong>disease</strong>s are hypertension,a<strong>the</strong>rosclerosis<br />

and sporadic ALS/MND. Genes that contribute<br />

to complex traits are known as “quantitative trait<br />

loci” or “QTLs” [9]. QTLs pose special challenges that<br />

make gene discovery more difficult, including locus heterogeneity<br />

(different genes result in similar phenotypes),<br />

epistasis,low penetrance,variable expressivity and small<br />

individual effects that are easily missed in small studies<br />

because <strong>of</strong> <strong>the</strong>ir limited statistical power [12].<br />

Fortunately, newly developed statistical approaches<br />

have been developed to investigate multi-gene <strong>disease</strong><br />

traits [13]. Traditional gene-by-gene analysis easily<br />

misses <strong>the</strong> small effects <strong>of</strong> separate QTLs, for example<br />

when studying susceptibility or phenotype-modifier<br />

genes in ALS/MND. In addition, sophisticated interaction<br />

analyses are able to show significant associations<br />

between multiple QTLs in complex <strong>disease</strong>s, where simple<br />

chi-square analysis would give non-significant results<br />

for each QTL separately. <strong>The</strong> same holds true for<br />

<strong>the</strong> comprehensive data sets in transcriptomics and proteomics<br />

studies [14].<br />

<strong>The</strong> study <strong>of</strong> <strong>the</strong> complex relationship between on <strong>the</strong><br />

one hand genomics data, transcriptomics data, proteomics<br />

data, and interactomics data, and on <strong>the</strong> o<strong>the</strong>r<br />

hand <strong>the</strong> phenotype, is called “phenomics” [15]. In phenomics,<br />

<strong>the</strong> extensive and detailed phenotyping by <strong>the</strong><br />

clinician is a prerequisite for meaningful associations.<br />

As a consequence, in ALS/MND clinicians have <strong>the</strong> task<br />

to agree about different clinical suptypes depending on<br />

age at onset, duration <strong>of</strong> <strong>disease</strong>, type <strong>of</strong> onset <strong>of</strong> <strong>disease</strong><br />

(spinal/bulbar), primarily involved body regions (primarily<br />

spinal or bulbar, generalised LMND and nongeneralised<br />

LMND), involvement <strong>of</strong> upper and/or lower<br />

<strong>motor</strong> <strong>neuron</strong>s and cognitive impairment. Fig. 1 shows<br />

<strong>the</strong> spectrum <strong>of</strong> ALS/MND and <strong>the</strong> overlap in this spectrum<br />

depending on <strong>the</strong> point in time when <strong>the</strong> patient is<br />

examined [5, 16]. Consensus is important, as variable<br />

phenotype definitions within <strong>the</strong> spectrum <strong>of</strong><br />

ALS/MND leading to heterogeneous study populations,<br />

have certainly contributed to <strong>the</strong> conflicting results <strong>of</strong><br />

<strong>the</strong> many genotype-phenotype association studies that<br />

have been performed in <strong>the</strong> past (see below). <strong>The</strong>se conflicting<br />

results are also due to <strong>the</strong> limited statistical<br />

power <strong>of</strong> many small studies in relation to <strong>the</strong> relatively<br />

small effects <strong>of</strong> QTLs, which have not yet been investigated<br />

using a multi-locus approach in ALS/MND.<br />

■ Where do we stand now?<br />

In 1993, a major breakthrough in ALS research was<br />

achieved by <strong>the</strong> discovery <strong>of</strong> mutations in <strong>the</strong><br />

copper/zinc superoxide dismutase 1 (SOD1) gene on<br />

chromosome 21 in approximately 20 % <strong>of</strong> all familial<br />

cases [17]. Currently, eight additional loci have been<br />

identified in familial ALS (Table 1). <strong>The</strong> majority <strong>of</strong> autosomal<br />

dominant familial ALS thus remains unexplained.<br />

Familial ALS is a good example <strong>of</strong> a simplex<br />

trait, because it is a “monogenic” <strong>disease</strong> showing locus<br />

heterogeneity (Table 1) and most probably also epistasis.


493<br />

Cohort <strong>of</strong> patients first time-point<br />

Cohort <strong>of</strong> patients after 3 years<br />

Fig. 1 <strong>The</strong> circles represent schematically <strong>the</strong> relative frequency <strong>of</strong> <strong>the</strong> subgroups.<br />

<strong>The</strong> spectrum is dynamic, because in a later point in time some patients have died<br />

(predominantly in <strong>the</strong> classical ALS subgroup), and some patients with exclusively<br />

lower <strong>motor</strong> <strong>neuron</strong> signs will have developed additional upper <strong>motor</strong> <strong>neuron</strong><br />

signs. <strong>The</strong> converse is true for patients presenting with an upper <strong>motor</strong> <strong>neuron</strong> syndrome.<br />

An additional clinical subgroup can be distinguished based on <strong>the</strong> combination<br />

progressive cognitive deterioration and ALS/MND<br />

Table 1<br />

Loci/genes identified in familial ALS/MND<br />

Disease Inheritance Locus Gene<br />

ALS (ALS1) AD/AR 21q22.21 [17] SOD1<br />

ALS (ALS3) AD 18q21 [81]<br />

ALS (ALS6) AD 16q12 [82]<br />

ALS (ALS7) AD 20ptel [83.84]<br />

Juvenile ALS (ALS5) AR 15q15–22 [85]<br />

Juvenile ALS (ALS2) AR 2q33 [2] ALS2<br />

Juvenile ALS (ALS4) AD 9q34 [86]<br />

ALS with FTD AD 9q21–22 [87]<br />

ALS with D/P AD 17q21.11 [88] Tau<br />

Kennedy <strong>disease</strong> XR Xq11-Xq12 [89] Androgen receptor<br />

ALS amyotrophic lateral sclerosis; FTD frontotemporal dementia; D/P dementia and<br />

parkinsonism; AD autosomal dominant; AR autosomal recessive; XR X-linked recessive;<br />

SOD1 superoxide dismutase 1<br />

Currently, more than 100 mutations in superoxide<br />

dismutase 1 (SOD1) have been described (see www.alsod.org).<br />

Some attempts have been made to correlate<br />

<strong>the</strong> genotype with <strong>the</strong> phenotype <strong>of</strong> <strong>the</strong> patients with<br />

SOD1 gene mutations and <strong>the</strong> available evidence suggests<br />

that only a few mutations could be linked to a consistent<br />

age at onset or pattern <strong>of</strong> survival [18, 19]. <strong>The</strong><br />

same SOD1 mutation within one family may result in<br />

highly variable phenotypes [20, 21]. Fur<strong>the</strong>rmore,<br />

“atypical” variants <strong>of</strong> familial ALS have been described,<br />

including a markedly delayed <strong>disease</strong> duration <strong>of</strong> over<br />

10 years, variants with features such as pain, paraes<strong>the</strong>sia<br />

or urgency micturition, pure lower <strong>motor</strong> <strong>neuron</strong> involvement<br />

and familial ALS with a SOD1 mutation<br />

showing multidegenerative features, including oculo<strong>motor</strong><br />

or cerebellar involvement [22]. Several modifier<br />

genes most probably account for part <strong>of</strong> this phenotypic<br />

variability. <strong>The</strong> CNTF gene is one <strong>of</strong> <strong>the</strong>se potential<br />

modifier genes in SOD1 mediated familial ALS that may<br />

influence duration <strong>of</strong> <strong>disease</strong> [20]. <strong>The</strong> necessity <strong>of</strong><br />

identifying modifier genes in familial ALS is exemplified<br />

by <strong>the</strong> finding that changing <strong>the</strong> genetic background<br />

<strong>of</strong> <strong>the</strong> mouse model <strong>of</strong> familial ALS has a dramatic<br />

influence on <strong>the</strong> phenotype. <strong>The</strong> SOD1 mutant<br />

mouse is usually totally paralysed and dies between 120<br />

and 130 days after birth. Certain genetic backgrounds<br />

have been shown to totally prevent onset <strong>of</strong> <strong>disease</strong>, although<br />

<strong>the</strong> expression levels <strong>of</strong> <strong>the</strong> mutant SOD1 were<br />

unaffected [23]. <strong>The</strong> results <strong>of</strong> this study suggest <strong>the</strong><br />

possibility <strong>of</strong> an “epistatic cure” <strong>of</strong> SOD1 mediated familial<br />

ALS due to several interacting QTLs. Both <strong>the</strong> human<br />

and mouse genomes have been completely sequenced<br />

and <strong>the</strong> homology between both genomes is<br />

large. As genome-mapping tools are readily available, a<br />

<strong>future</strong> challenge is to identify <strong>the</strong>se modifier genes in<br />

mice and humans.<br />

Since <strong>the</strong> discovery <strong>of</strong> mutations in SOD1 in familial<br />

ALS and <strong>the</strong> production <strong>of</strong> transgenic in vitro and in<br />

vivo models with mutant SOD1, most studies on <strong>the</strong><br />

pathogenesis <strong>of</strong> ALS have focused on SOD1-mediated<br />

<strong>motor</strong> <strong>neuron</strong> death. However, many downstream<br />

pathologic processes in SOD1-mediated cell death most<br />

probably also have a role in sporadic ALS.Currently,several<br />

– not mutually exclusive – pathological processes<br />

may contribute to <strong>motor</strong> <strong>neuron</strong> death in sporadic and<br />

familial ALS in a so-called “convergence model” [24].<br />

<strong>The</strong>se include oxidative stress, mitochondrial dysfunction,<br />

protein misfolding, axonal strangulation, apoptosis,<br />

inflammation, glutamate excitotoxicity, and defects<br />

in neurotrophins biology.<br />

In summary, a toxic gain <strong>of</strong> function <strong>of</strong> mutant SOD1<br />

probably arises from aberrant, copper-mediated chemistry<br />

leading to oxidative stress [25, 26] and/or misfolding<br />

<strong>of</strong> mutant SOD1 leading to aggregates <strong>of</strong> mutant<br />

SOD1 [27, 28]. Mutant SOD1 has been shown to exist in<br />

<strong>the</strong> intermembrane space <strong>of</strong> mitochondria, which could<br />

lead to oxidative damage to mitochondria [27]. In addition,<br />

aggregates including mutant SOD1 could damage<br />

<strong>the</strong> outer mitochondrial membrane [27]. Both mechanisms<br />

would lead to expansion <strong>of</strong> <strong>the</strong> intermembrane<br />

space with mitochondrial vacuolisation as a consequence,<br />

and mitochondrial release into <strong>the</strong> cytosol <strong>of</strong><br />

cytochrome C and o<strong>the</strong>r toxic substances [29]. Mitochondrial<br />

dysfunction, defective ATP syn<strong>the</strong>sis [30] and<br />

apoptosis due to <strong>the</strong> activation <strong>of</strong> caspases result [29].<br />

Also, <strong>the</strong> resulting aggregates in <strong>the</strong> cytoplasm would


494<br />

subsequently choke <strong>the</strong> proteasome, which is normally<br />

responsible for degrading redundant intracellular proteins,and<br />

which shows an age-dependent decrease in activity<br />

[31], possibly explaining <strong>the</strong> adult onset <strong>of</strong> <strong>the</strong> <strong>disease</strong>.<br />

Observed astrocyte dysfunction with reduced<br />

levels <strong>of</strong> glutamate transporters (EAAT2) resulting in increased<br />

extracellular glutamate levels, may lead to glutamate<br />

excitotoxicity [32]: an increased influx <strong>of</strong> calcium<br />

in <strong>motor</strong> <strong>neuron</strong>s, with <strong>the</strong> combination <strong>of</strong> minimal calcium<br />

buffering capacities <strong>of</strong> <strong>motor</strong> <strong>neuron</strong>s (due to low<br />

levels <strong>of</strong> calbindin) [33], <strong>the</strong> absence <strong>of</strong> one <strong>of</strong> <strong>the</strong> subunits<br />

<strong>of</strong> <strong>the</strong> glutamate receptor, GluR 2 ,that renders a<br />

<strong>motor</strong> <strong>neuron</strong> more susceptible to calcium-mediated<br />

toxicity following glutamate receptor activation [34, 35],<br />

leads to fur<strong>the</strong>r oxidative stress and mitochondrial dysfunction.<br />

Fur<strong>the</strong>rmore, reactive microglia and reactive<br />

astrocytes are abundant in affected areas <strong>of</strong> human ALS<br />

[36–38], and in <strong>the</strong> SOD1 mouse model [39]. <strong>The</strong>se<br />

processes may participate through <strong>the</strong> release <strong>of</strong> pro-inflammatory<br />

molecules including an upregulation <strong>of</strong> <strong>the</strong><br />

enzyme cyclooxygenase-2 (cox-2) [40, 41]. Inflammation<br />

might contribute fur<strong>the</strong>r to oxidative stress, glutamate<br />

excitotoxicity and mitochondrial dysfunction. In<br />

addition, neur<strong>of</strong>ilaments (NF) seem to contribute to <strong>the</strong><br />

pathogenesis in ALS. In several studies, in about 1 % <strong>of</strong><br />

mainly sporadic ALS patients, mutations have been<br />

found in <strong>the</strong> repetitive tail domain <strong>of</strong> <strong>the</strong> large neur<strong>of</strong>ilament<br />

subunit NF-H, but not in controls [42–44] (see<br />

also www.alsod.org). Also, manipulations <strong>of</strong> NF-L and<br />

NF-H both have considerable influence on <strong>the</strong> progression<br />

<strong>of</strong> <strong>disease</strong> in <strong>the</strong> SOD1-mutant mouse [45,46].It has<br />

been suggested that <strong>the</strong>se NF changes act through a fur<strong>the</strong>r<br />

buffer against increased calcium levels [46] or<br />

through disorganisation <strong>of</strong> neur<strong>of</strong>ilament leading to axonal<br />

strangulation and slowing <strong>of</strong> axonal transport, one<br />

<strong>of</strong> <strong>the</strong> earliest cellular abnormalities in <strong>motor</strong> <strong>neuron</strong>s<br />

in SOD1-mutant mice [47].<br />

<strong>The</strong>re is a growing body <strong>of</strong> evidence that susceptibility<br />

genes and modifier genes also have a role in sporadic<br />

ALS/MND. Although many association studies have<br />

been performed examining specific candidate genes,<br />

only two candidate genes are currently plausible candidates<br />

in sporadic ALS/MND: vascular endo<strong>the</strong>lial<br />

growth factor (VEGF) [48] and SMN [49]. Unfortunately,<br />

many epidemiological association studies using<br />

specific candidate genes have not yet been reproduced<br />

or cannot be reproduced, and <strong>the</strong>refore <strong>the</strong> reliability <strong>of</strong><br />

<strong>the</strong>se kinds <strong>of</strong> studies has been questioned [50]. Table 2<br />

lists all additional candidate genes that have been examined<br />

in human ALS/MND, in order to show <strong>the</strong> difficulties<br />

in identifying susceptibility genes using only a classical<br />

– mon<strong>of</strong>actorial – approach in a complex <strong>disease</strong><br />

such as ALS/MND.<br />

Numerous studies have investigated environmental<br />

factors in relation to <strong>the</strong> risk for ALS/MND, including<br />

exposure to pesticides, physical activity and trauma/<br />

Table 2<br />

Gene<br />

Candidate genes investigated in sporadic ALS/MND<br />

ALS2 [90]<br />

CNTF [91]<br />

EAAT2 [92.93]<br />

NFH [42–44]<br />

APEX [94–96]<br />

Cytochrome c oxidase [97]<br />

NAIP [98]<br />

SOD2 [99]<br />

LIF [100]<br />

PSEN-1 [101]<br />

ApoE [102–107]<br />

CYP2D6 (B) [108]<br />

AR (CAG repeats) [109]<br />

ALAD [110]<br />

VDR [110]<br />

MAO-B allele [111]<br />

ND2 [112]<br />

fractures. In a recent evidence-based review, only smoking<br />

emerged as a probable (more likely than not) risk<br />

factor for ALS [51]. Conflicting results in environmental<br />

risk studies most probably originate from similar factors<br />

compared with <strong>the</strong> “endogenous” genetic risk studies<br />

mentioned above: relatively small effects studied in<br />

relatively small samples, variable phenotype-definitions<br />

and <strong>the</strong>refore heterogeneous patient samples and<br />

missed interactions.<br />

■ “Omics” and ALS/MND<br />

Status<br />

unlikely<br />

unlikely<br />

unlikely<br />

~1 % <strong>of</strong> ALS patients, not in controls<br />

conflicting results<br />

case-report<br />

one out <strong>of</strong> 135 patients<br />

possible susceptibility, single study<br />

possible susceptibility, single study<br />

possible susceptibility, single study<br />

conflicting results<br />

possible susceptibility, single study<br />

non-significant<br />

non-significant<br />

non-significant<br />

relation with age at onset, single study<br />

2 out <strong>of</strong> 6 patients, single study<br />

CNTF ciliary neurotrophic factor; EAAT2 astroglial glutamate transporter; NFH neur<strong>of</strong>ilament,<br />

heavy subunit; APEX DNA-repair enzyme apurinic apyrimidimic endonuclease;<br />

NAIP <strong>neuron</strong>al apoptosis inhibitory protein; SOD2 mitochondrial manganese-containing<br />

superoxide dismutase; LIF Leukaemia inhibitory factor; PSEN1<br />

presenilin-1; ApoE apolipoproteinE; CYP2D6(B) variant cytochrome P450 debrisoquine<br />

hydroxylase; AR androgen-receptor; ALAD Delta-aminolevulinic acid dehydratase;<br />

VDR Vitamin D receptor; MAO monoamine oxidase; ND2 Mitochondrial<br />

NADH dehydrogenase subunit 2<br />

<strong>The</strong> above discussion and Table 2 exemplify <strong>the</strong> complex<br />

nature <strong>of</strong> <strong>the</strong> pathogenesis <strong>of</strong> ALS/MND. Most studies<br />

that generated <strong>the</strong>se results started with specific hypo<strong>the</strong>ses.<br />

<strong>The</strong> development <strong>of</strong> recent experimental technologies<br />

in <strong>the</strong> different “omics”, including sequencing,<br />

cross-species comparisons using public databases, microarrays,<br />

immunoprecipitation, mass-spectrometry<br />

and two-hybrid systems, generate huge amounts <strong>of</strong> data<br />

without an a priori specific hypo<strong>the</strong>sis. Instead, hypo<strong>the</strong>ses<br />

are formulated as “which genes contribute to<br />

this phenotype”, or “which proteins interact with<br />

SOD1”. In fact, classical linkage analysis has similar hypo<strong>the</strong>ses,<br />

searching genome-wide for loci/genes that


495<br />

contribute to <strong>disease</strong>. For example, SOD1 is an abundant<br />

cytoplasmic enzyme, whose causation in familial ALS<br />

nobody had expected. <strong>The</strong>refore, results that are obtained<br />

from “omics” studies lead to new specific hypo<strong>the</strong>ses,<br />

as shown in <strong>the</strong> case <strong>of</strong> SOD1. <strong>The</strong> importance<br />

<strong>of</strong> identifying additional <strong>disease</strong> causing genes through<br />

classical linkage analysis in familial ALS, which is ongoing,<br />

is self-evident.<br />

We argue that <strong>the</strong> complex nature <strong>of</strong> <strong>the</strong> pathogenesis<br />

<strong>of</strong> ALS/MND – <strong>the</strong> convergence model including oxidative<br />

stress, mitochondrial dysfunction, protein misfolding,<br />

axonal strangulation, apoptosis, inflammation,<br />

glutamate excitotoxicity, defects in neurotrophins biology<br />

and environmental factors warrants an increasing<br />

“omics” approach. Until now in ALS/MND, few transcriptomics<br />

and proteomics studies have been performed<br />

[52–56]. In proteomics for example, several<br />

techniques are available using a “bait” and “prey”<br />

method [57]. Starting out with a “bait”, such as SOD1,<br />

VEGF or bcl-2, “preys” can be identified that interact<br />

with <strong>the</strong>se proteins. For example, with immunoprecipitation<br />

using in vivo models <strong>of</strong> ALS, patients’ tissues or<br />

in vitro models <strong>of</strong> ALS – NSC34 cell with stably transfected<br />

mutant SOD1 [30], or glutamate excitotoxicity<br />

models [40] – protein complexes using specific “baits”<br />

can be obtained and analysed for content. An example<br />

<strong>of</strong> this approach is an immunoprecipitation study<br />

showing a direct interaction between heat-shock proteins<br />

and mutant SOD1, but not wild-type SOD1 [56],<br />

leading to new testable hypo<strong>the</strong>ses. O<strong>the</strong>r “omics” examples<br />

are recent microarray studies showing downregulation<br />

<strong>of</strong> genes not previously implicated in<br />

ALS/MND [54] and confirmation <strong>of</strong> involvement <strong>of</strong><br />

genes associated with <strong>the</strong> ubiquitin-proteasome system,<br />

oxidative toxicity and inflammation [53]. Using <strong>the</strong> factors<br />

involved in <strong>the</strong> convergence model and <strong>the</strong> factors<br />

listed in Table 2 as “baits”, new unexpected “preys” will<br />

emerge in <strong>the</strong> pathogenesis <strong>of</strong> sporadic and familial<br />

ALS/MND.<br />

<strong>The</strong> effects <strong>of</strong> multiple factors may be very modest,<br />

requiring large studies to achieve adequate power. A recent<br />

example is <strong>the</strong> study showing a significant but small<br />

relationship between VEGF polymorphisms and <strong>the</strong> risk<br />

for ALS (odds ratio 1.8) [48]. <strong>The</strong> combined effects <strong>of</strong><br />

multiple genes, mRNAs or proteins with environmental<br />

factors might result in more robust effects. <strong>The</strong>refore,<br />

natural history study cohorts that carefully report clinical<br />

features in <strong>the</strong> spectrum <strong>of</strong> ALS/MND and record environmental<br />

factors – such as smoking, type <strong>of</strong> diet, exercise<br />

habits – will be <strong>of</strong> immense importance when<br />

combined with genetic risk pr<strong>of</strong>iling for example. If environmental<br />

variables are measured and carefully<br />

recorded, <strong>the</strong>n not only can interactions between <strong>the</strong>se<br />

variables be monitored, <strong>the</strong>y may even be included as<br />

covariates in multilocus interaction analyses, in an attempt<br />

to find large odds ratios. Especially <strong>the</strong> determinants<br />

<strong>of</strong> <strong>the</strong> slowly progressive variants <strong>of</strong> ALS/MND in<br />

humans and mice will have a large impact on <strong>future</strong><br />

treatment strategies.<br />

<strong>The</strong>refore, <strong>future</strong> genotype-phenotype studies, and<br />

<strong>future</strong> microarray and proteomics studies could benefit<br />

from careful stratification for clinical subtypes by physicians<br />

(Fig. 1), newly developed sophisticated statistical<br />

methods in order to study <strong>the</strong> combined effects <strong>of</strong> multiple<br />

factors, and large patient samples warranting international<br />

collaboration: ideally,a collaboration among<br />

clinicians, epidemiologists, geneticists, ma<strong>the</strong>maticians,<br />

and computer experts.<br />

Diagnosis and treatment<br />

Basic research trying to explain <strong>the</strong> phenotypic variability<br />

in ALS/MND might also allow for a <strong>future</strong>, more<br />

accurate classification <strong>of</strong> patients. Currently, <strong>the</strong> El Escorial<br />

criteria include clinical features, such as upper<br />

and lower <strong>motor</strong> <strong>neuron</strong> signs as observed at <strong>the</strong> bedside<br />

and during electrophysiological studies [58]. Only<br />

pathogenic mutations such as in SOD1 can be used to<br />

help fur<strong>the</strong>r classify patients [58]. Basic research involving<br />

transcriptomics and proteomics using patients’<br />

blood for example, will result in yet ano<strong>the</strong>r “omics”:<br />

metabolomics [59]. “Omics” techniques <strong>the</strong>refore, in<br />

combination with detailed phenotyping, might help in<br />

<strong>the</strong> <strong>future</strong> classification and early diagnosis <strong>of</strong> patients.<br />

Also, new imaging techniques might help to determine<br />

more objectively <strong>the</strong> involvement <strong>of</strong> upper <strong>motor</strong> <strong>neuron</strong>s<br />

[60] and cognition [61], and might thus help to<br />

identify subgroups. <strong>The</strong>re is a growing body <strong>of</strong> evidence<br />

that <strong>the</strong> <strong>disease</strong> process <strong>of</strong> ALS/MND is not restricted to<br />

<strong>motor</strong> <strong>neuron</strong>s, but that dysfunction <strong>of</strong> frontal networks<br />

can occur, ranging from subclinical, but detectable cognitive<br />

impairments to frontotemporal dementia [62].<br />

Different determinants most probably account for this<br />

phenotypic variability.<br />

A complex <strong>disease</strong> requires a complex treatment.<br />

Knowing that several pathological processes are involved<br />

in ALS/MND, it seems reasonable to strive for<br />

multi-compound treatments. However despite many trials,<br />

only Riluzole, <strong>the</strong> anti-glutamate drug, has proven to<br />

be effective in slowing <strong>the</strong> <strong>disease</strong> [63, 64]. <strong>The</strong>refore it<br />

is imperative that new promising compounds that influence<br />

<strong>the</strong> processes from <strong>the</strong> convergence model and <strong>the</strong><br />

factors listed in Table 2 continue to be tested, combined<br />

with <strong>the</strong> high throughput drug-screening in models <strong>of</strong><br />

ALS/MND. A sequential trial design to monitor survival<br />

has only been used once in ALS [65]. Especially in<br />

ALS/MND, it is <strong>of</strong> <strong>the</strong> utmost importance that <strong>the</strong> burden<br />

for patients is minimalised.When a novel <strong>the</strong>rapy is<br />

significantly effective, patients must receive <strong>the</strong> drug as<br />

soon as possible. However, if a novel <strong>the</strong>rapy is evidently<br />

not beneficial, time, effort, and money must not be


496<br />

wasted but put into <strong>the</strong> development <strong>of</strong> o<strong>the</strong>r treatment<br />

strategies. By using a sequential trial design, fewer patients<br />

have to be included for showing an effect and trials<br />

can be stopped earlier compared with a classical design<br />

[66].<br />

A promising approach to <strong>the</strong> treatment <strong>of</strong> ALS/MND<br />

is <strong>the</strong> viral delivery <strong>of</strong> protective compounds. This has<br />

recently been shown to be an effective method in <strong>the</strong><br />

SOD1 mutated mouse model [67]. Interestingly, this was<br />

one <strong>of</strong> few studies that investigated <strong>the</strong> potential protective<br />

effect <strong>of</strong> a treatment after <strong>the</strong> onset <strong>of</strong> symptoms in<br />

<strong>the</strong> mouse model. Such a methodology more closely resembles<br />

<strong>the</strong> clinical setting, and might allow for a more<br />

rational choice for <strong>future</strong> trial drugs [68].<br />

Ano<strong>the</strong>r promising new approach to <strong>the</strong> treatment <strong>of</strong><br />

SOD1 mediated familial ALS is <strong>the</strong> developing field <strong>of</strong><br />

RNA-interference (RNAi) [69]. RNAi basically allows for<br />

“knocking-out”a dominant toxic-gain-<strong>of</strong>-function gene<br />

that is responsible for a <strong>disease</strong>. Despite current practical<br />

hurdles to apply this technique in vivo [70], combined<br />

with <strong>the</strong> ongoing research in viral delivery <strong>of</strong> protective<br />

compounds,this technique might in <strong>the</strong> <strong>future</strong> be<br />

a powerful way to silence <strong>the</strong> toxic gain <strong>of</strong> function <strong>of</strong><br />

SOD1, or <strong>of</strong> o<strong>the</strong>r genes linked to familial ALS.<br />

Ultimately, <strong>the</strong> goal is to protect dying or to replace<br />

died <strong>motor</strong> <strong>neuron</strong>es and dysfunctional astrocytes in<br />

order to recover muscle strength and to reverse <strong>the</strong> <strong>disease</strong>.<br />

<strong>The</strong> recent finding that wild-type nonneural cells<br />

are able to slow <strong>disease</strong> progression in <strong>the</strong> SOD1 mutant<br />

mouse is promising [71]. Stem cell <strong>the</strong>rapy to replace<br />

<strong>neuron</strong>es, may be <strong>the</strong> greatest challenge for <strong>the</strong> <strong>future</strong><br />

[72].<br />

Care<br />

Without a curative treatment available, supportive care<br />

is still <strong>the</strong> best treatment we can <strong>of</strong>fer ALS patients. Key<br />

processes and practices, including symptomatic treatments,<br />

are specified in a current evidence-based ALS<br />

Practice Parameter [73]. Never<strong>the</strong>less, more studies are<br />

needed for an evidence based approach in supportive<br />

treatments, including radio<strong>the</strong>rapy and <strong>the</strong> effect on<br />

sialorrhoea, <strong>the</strong> effect <strong>of</strong> medications on symptoms, <strong>the</strong><br />

effects <strong>of</strong> non-invasive ventilation, and <strong>the</strong> comparison<br />

<strong>of</strong> percutaneous endoscopic gastrostomy (PEG) with<br />

radiologically inserted gastrostomy (RIG) and a hybrid<br />

gastrostomy technique (per-oral image-guided gastrostomy,<br />

PIG). Also, increasing awareness for patients’<br />

attitudes, personality traits and <strong>the</strong>ir effect on quality <strong>of</strong><br />

life in ALS is needed, as exemplified by recent observations<br />

that patients’ratings <strong>of</strong><strong>the</strong>ir quality <strong>of</strong> life cannot<br />

simply be equated with <strong>the</strong>ir physical impairment and<br />

<strong>the</strong>ir functional limitations [74], and that quality <strong>of</strong> life<br />

instead appears to depend on psychological, spiritual,<br />

and existential factors [75]. <strong>The</strong> ALS Patient Care Database<br />

is a prime example <strong>of</strong> a powerful tool to improve<br />

quality <strong>of</strong> care and patient-focused outcomes in ALS<br />

[76].<br />

Supportive care for patients with ALS/MND requires<br />

a multidisciplinary approach. <strong>The</strong> relative rarity <strong>of</strong> <strong>the</strong><br />

<strong>disease</strong> combined with <strong>the</strong> ongoing developments in <strong>the</strong><br />

care for <strong>the</strong>se patients, poses challenges on general neurology/rehabilitation<br />

clinics. <strong>The</strong> continuing emergence<br />

<strong>of</strong> multidisciplinary ALS clinics that cater exclusively for<br />

patients with this condition appears to be <strong>of</strong> paramount<br />

importance for <strong>the</strong> <strong>future</strong>. In a recent prospective study,<br />

attendance at a multidisciplinary ALS clinic independently<br />

improved survival, especially for bulbar onset patients<br />

[77].<br />

<strong>The</strong>refore, a <strong>future</strong> challenge is to allow for patients<br />

to have early access to multidisciplinary centres with<br />

specialist knowledge <strong>of</strong> ALS/MND. <strong>The</strong> different specialists<br />

in <strong>the</strong>se centres would operate according to <strong>the</strong><br />

most recent practice parameters and function as a coordinated<br />

team that cross-refers internally. <strong>The</strong>se centres<br />

can apply specific models <strong>of</strong> care for people with<br />

ALS/MND, but must be designed in a patient-centred<br />

format. Ultimately, <strong>the</strong>se models should be assessed<br />

based on <strong>the</strong>ir outcomes [78].<br />

Summary and conclusions<br />

In summary, we distinguish seven <strong>future</strong> directions following<br />

from <strong>the</strong> above discussion:<br />

■ Familial ALS/MND as simplex <strong>disease</strong>, and sporadic<br />

ALS/MND as complex <strong>disease</strong><br />

■ <strong>The</strong> dynamic spectrum <strong>of</strong> ALS/MND – consensus in<br />

defining clinical subtypes<br />

■ Integrating “omics” research and environmental factors<br />

with phenotypic variability/clinical subtypes –<br />

“phenomics”<br />

■ Searching for small and/or interacting effects – international<br />

collaboration, pooling <strong>of</strong> data<br />

■ Combined aetiological/clinical classification <strong>of</strong><br />

ALS/MND – “metabolomics” and new imaging techniques<br />

■ Multi-compound treatments for a complex <strong>disease</strong>,<br />

viral delivery <strong>of</strong> compounds, RNAi, and stem cell<br />

<strong>the</strong>rapy<br />

■ Multidisciplinary ALS centres<br />

Glossary <strong>of</strong> terms with references<br />

for fur<strong>the</strong>r reading<br />

Transcriptomics Methods to examine expression pr<strong>of</strong>iles<br />

<strong>of</strong> genes (messenger RNA or mRNA). DNA microarrays,<br />

in which nucleic acids representing genes are<br />

syn<strong>the</strong>sised on a “chip” and <strong>the</strong>n hybridised with<br />

mRNA measure, gene expression, for example in dis-


497<br />

eased versus normal tissue or in early-stage <strong>disease</strong><br />

tissue versus late-stage <strong>disease</strong> tissue [79].<br />

Proteomics Methods to examine quantitative and qualitative<br />

data on <strong>the</strong> proteins <strong>of</strong> an organism under a variety<br />

<strong>of</strong> conditions, for example in <strong>disease</strong> [57].<br />

Interactomics Methods to study protein-protein interaction.<br />

<strong>The</strong>se methods include immunoprecipitation,<br />

mass-spectrometry and two-hybrid systems [57].<br />

Simplex versus complex In monogenic <strong>disease</strong>s, mutations<br />

in a single gene are both necessary and sufficient<br />

to produce <strong>the</strong> clinical phenotype and to cause<br />

<strong>the</strong> <strong>disease</strong>. However, many <strong>disease</strong>s that are considered<br />

monogenic will turn out to be “complex” disorders,<br />

as <strong>the</strong>y are modified by o<strong>the</strong>r genes. Complex<br />

monogenic <strong>disease</strong>s are <strong>the</strong>refore called “simplex”. In<br />

complex disorders with multiple causes, variations in<br />

a number <strong>of</strong> genes encoding different proteins result<br />

in a genetic predisposition to a clinical phenotype.<br />

<strong>The</strong>re is no Mendelian inheritance pattern, and gene<br />

mutations are <strong>of</strong>ten nei<strong>the</strong>r sufficient nor necessary<br />

to explain <strong>the</strong> <strong>disease</strong> phenotype. Environment and<br />

life-style are major contributors to <strong>the</strong> pathogenesis<br />

<strong>of</strong> complex <strong>disease</strong>s [9].<br />

Epistasis Gene-gene interaction [11].<br />

Quantitative trait loci (QTLs) Genes that contribute to<br />

variability in phenotypes (e. g. blood-pressure) [9].<br />

Phenomics <strong>The</strong> delineation <strong>of</strong> connections among various<br />

genes, gene products, and various phenotypes<br />

[15].<br />

Proteasome A protein complex responsible for degrading<br />

intracellular proteins that have been tagged for<br />

destruction by <strong>the</strong> addition <strong>of</strong> ubiquitin.<br />

Immunoprecipitation A technique used to selectively purify<br />

a protein <strong>of</strong> interest present in a mixture. This is<br />

accomplished through <strong>the</strong> use <strong>of</strong> a specific antibody<br />

to bring <strong>the</strong> protein out <strong>of</strong> solution. This technique is<br />

<strong>of</strong>ten used to study <strong>the</strong> presence or absence <strong>of</strong> protein-protein<br />

interactions [80].<br />

Mass-spectrometry This technique for measuring and<br />

analysing molecules involves introducing enough energy<br />

into a target molecule to cause its disintegration.<br />

<strong>The</strong> resulting fragments are <strong>the</strong>n analysed, based on<br />

<strong>the</strong>ir mass/charge ratios,to produce a “molecular fingerprint”<br />

[80].<br />

Two-hybrid systems An approach to studying proteinprotein<br />

interactions. <strong>The</strong> basic format involves <strong>the</strong><br />

creation <strong>of</strong> two hybrid molecules, one in which a<br />

“bait” protein is fused with “one half ” <strong>of</strong> a transcription<br />

factor, and one in which a “prey” protein is fused<br />

with “<strong>the</strong> o<strong>the</strong>r half” <strong>of</strong> a transcription factor. If <strong>the</strong><br />

bait and prey proteins indeed interact, <strong>the</strong>n <strong>the</strong> two<br />

factors fused to <strong>the</strong>se two proteins are also brought<br />

into proximity with each o<strong>the</strong>r, leading to a functional<br />

transcription factor that can activate a reporter<br />

gene.As a result, a specific signal is produced (for example<br />

a colour), indicating that an interaction has<br />

taken place [80].<br />

Metabolomics Methods to comprehensively and quantitatively<br />

analyse <strong>the</strong> end products <strong>of</strong> gene expression:<br />

metabolites [59].<br />

RNAi RNA interference was first described in 1990 in<br />

plants. Plants that had been invaded by viruses<br />

quickly established resistance to <strong>the</strong> virus within a<br />

few days <strong>of</strong> infection. This is because <strong>the</strong> plants used<br />

RNAi to kill <strong>the</strong> virus. Early in an infection, many<br />

viruses have two RNA strands. This double-stranded<br />

RNA (dsRNA) is <strong>the</strong> trigger for RNAi.<strong>The</strong> cell quickly<br />

recognises <strong>the</strong> dsRNA, and a scissors-like protein<br />

called Dicer attaches to it and “dices” it into small<br />

pieces (short-interfering RNAs, siRNAs). <strong>The</strong>se<br />

pieces, toge<strong>the</strong>r with o<strong>the</strong>r proteins, find mRNA in<br />

<strong>the</strong> cell and slice it up. <strong>The</strong> process is very specific.<br />

<strong>The</strong> small pieces <strong>of</strong> RNA stick only to mRNA carrying<br />

blueprints <strong>of</strong> its own gene.This will allow only <strong>the</strong><br />

specific target RNA to be destroyed (for example <strong>the</strong><br />

mutant SOD1 mRNA) [69].<br />

References<br />

1. Li TM, Alberman E, Swash M (1988)<br />

Comparison <strong>of</strong> sporadic and familial<br />

<strong>disease</strong> amongst 580 cases <strong>of</strong> <strong>motor</strong><br />

<strong>neuron</strong> <strong>disease</strong>. J Neurol Neurosurg<br />

Psychiatry 51(6):778–784<br />

2. Hadano S, Hand CK, Osuga H et al.<br />

(2001) A gene encoding a putative GT-<br />

Pase regulator is mutated in familial<br />

amyotrophic lateral sclerosis 2. Nat<br />

Genet 29(2):166–173<br />

3. al Chalabi A, Andersen PM, Chioza B<br />

et al. (1998) Recessive amyotrophic lateral<br />

sclerosis families with <strong>the</strong> D90A<br />

SOD1 mutation share a common<br />

founder: evidence for a linked protective<br />

factor. Hum Mol Genet 7(13):<br />

2045–2050<br />

4. del Aguila MA, Longstreth WT Jr,<br />

McGuire V, Koepsell TD, van Belle G<br />

(2003) Prognosis in amyotrophic lateral<br />

sclerosis: a population-based<br />

study. Neurology 60(5):813–819<br />

5. Van den Berg-Vos RM, Visser J,<br />

Franssen H et al. (2003) Sporadic lower<br />

<strong>motor</strong> <strong>neuron</strong> <strong>disease</strong> with adult onset:<br />

classification <strong>of</strong> subtypes. Brain 126(Pt<br />

5):1036–1047<br />

6. Mount SM (2000) Genomic sequence,<br />

splicing, and gene annotation. Am J<br />

Hum Genet 67(4):788–792<br />

7. Lander ES, Linton LM, Birren B et al.<br />

(2001) Initial sequencing and analysis<br />

<strong>of</strong> <strong>the</strong> human genome. Nature<br />

409(6822):860–921<br />

8. Scriver CR, Waters PJ (1999) Monogenic<br />

traits are not simple: lessons<br />

from phenylketonuria. Trends Genet<br />

15(7):267–272<br />

9. Peltonen L, McKusick VA (2001) Genomics<br />

and medicine. Dissecting human<br />

<strong>disease</strong> in <strong>the</strong> postgenomic era.<br />

Science 291(5507):1224–1229<br />

10. Nicole S, Diaz CC, Frugier T, Melki J<br />

(2002) Spinal muscular atrophy: recent<br />

advances and <strong>future</strong> prospects. Muscle<br />

Nerve 26(1):4–13<br />

11. Cordell HJ (2002) Epistasis: what it<br />

means, what it doesn’t mean, and statistical<br />

methods to detect it in humans.<br />

Hum Mol Genet 11(20):2463–2468


498<br />

12. Glazier AM, Nadeau JH, Aitman TJ<br />

(2002) Finding genes that underlie<br />

complex traits. Science 298(5602):<br />

2345–2349<br />

13. Hoh J, Ott J (2003) Ma<strong>the</strong>matical<br />

multi-locus approaches to localizing<br />

complex human trait genes. Nat Rev<br />

Genet 4(9):701–709<br />

14. Ott J, Hoh J (2003) Set association<br />

analysis <strong>of</strong> SNP case-control and microarray<br />

data. J Comput Biol 10(3–4):<br />

569–574<br />

15. Gerlai R (2002) Phenomics: fiction or<br />

<strong>the</strong> <strong>future</strong>? Trends Neurosci 25(10):<br />

506–509<br />

16. Ince PG, Lowe J, Shaw PJ (1998) Amyotrophic<br />

lateral sclerosis: current issues<br />

in classification, pathogenesis and<br />

molecular pathology. Neuropathol<br />

Appl Neurobiol 24(2):104–117<br />

17. Rosen D, Siddique T, Patterson D<br />

(1993) Mutations in Cu/Zn superoxide<br />

dismutase gene are associated with familial<br />

amyotrophic lateral sclerosis.<br />

Nature 362:59–62<br />

18. Radunovic A, Leigh PN (1999) ALSO-<br />

Database: database <strong>of</strong> SOD1 (and<br />

o<strong>the</strong>r) gene mutations in ALS on <strong>the</strong><br />

Internet. European FALS Group and<br />

ALSOD Consortium. Amyotroph Lateral<br />

Scler O<strong>the</strong>r Motor Neuron Disord<br />

1(1):45–49<br />

19. Juneja T, Pericak-Vance MA, Laing NG,<br />

Dave S, Siddique T (1997) Prognosis in<br />

familial amyotrophic lateral sclerosis:<br />

progression and survival in patients<br />

with glu100 gly and ala4val mutations<br />

in Cu,Zn superoxide dismutase. Neurology<br />

48(1):55–57<br />

20. Giess R, Holtmann B, Braga M et al.<br />

(2002) Early onset <strong>of</strong> severe familial<br />

amyotrophic lateral sclerosis with a<br />

SOD-1 mutation: potential impact <strong>of</strong><br />

CNTF as a candidate modifier gene.<br />

Am J Hum Genet 70(5):1277–1286<br />

21. Ikeda M, Abe K, Aoki M et al. (1995)<br />

Variable clinical symptoms in familial<br />

amyotrophic lateral sclerosis with a<br />

novel point mutation in <strong>the</strong> Cu/Zn superoxide<br />

dismutase gene. Neurology<br />

45(11):2038–2042<br />

22. Camu W, Khoris J, Moulard B et al.<br />

(1999) Genetics <strong>of</strong> familial ALS and<br />

consequences for diagnosis. French<br />

ALS <strong>Research</strong> Group. J Neurol Sci<br />

165(Suppl 1):S21–S26<br />

23. Kunst CB, Messer L, Gordon J, Haines<br />

J, Patterson D (2000) Genetic mapping<br />

<strong>of</strong> a mouse modifier gene that can prevent<br />

ALS onset. Genomics 70:181–189<br />

24. Cleveland DW, Rothstein JD (2001)<br />

From Charcot to Lou Gehrig: deciphering<br />

selective <strong>motor</strong> <strong>neuron</strong> death in<br />

ALS. Nat Rev Neurosci 2(11):806–819<br />

25. Ferrante RJ, Shinobu LA, Schulz JB<br />

et al. (1997) Increased 3-nitrotyrosine<br />

and oxidative damage in mice with a<br />

human copper/zinc superoxide dismutase<br />

mutation. Ann Neurol 42(3):<br />

326–334<br />

26. Beckman JS, Carson M, Smith CD,<br />

Koppenol WH (1993) ALS, SOD and<br />

peroxynitrite. Nature 364(6438):584<br />

27. Higgins CM, Jung C, Xu Z (2003) ALSassociated<br />

mutant SOD1G93A causes<br />

mitochondrial vacuolation by expansion<br />

<strong>of</strong> <strong>the</strong> intermembrane space and<br />

by involvement <strong>of</strong> SOD1 aggregation<br />

and peroxisomes. BMC Neurosci 4(1):<br />

16<br />

28. Turner BJ, Lopes EC, Cheema SS (2003)<br />

Neuromuscular accumulation <strong>of</strong> mutant<br />

superoxide dismutase 1 aggregates<br />

in a transgenic mouse model <strong>of</strong><br />

familial amyotrophic lateral sclerosis.<br />

Neurosci Lett 350(2):132–136<br />

29. Friedlander RM (2003) Apoptosis and<br />

caspases in neurodegenerative <strong>disease</strong>s.<br />

N Engl J Med 348(14):1365–1375<br />

30. Menzies FM, Cookson MR, Taylor RW<br />

et al. (2002) Mitochondrial dysfunction<br />

in a cell culture model <strong>of</strong> familial amyotrophic<br />

lateral sclerosis. Brain 125(Pt<br />

7):1522–1533<br />

31. Shringarpure R, Davies KJ (2002) Protein<br />

turnover by <strong>the</strong> proteasome in aging<br />

and <strong>disease</strong>. Free Radic Biol Med<br />

32(11):1084–1089<br />

32. Rothstein JD, Van KM, Levey AI, Martin<br />

LJ, Kuncl RW (1995) Selective loss<br />

<strong>of</strong> glial glutamate transporter GLT-1 in<br />

amyotrophic lateral sclerosis. Ann<br />

Neurol 38(1):73–84<br />

33. Laslo P, Lipski J, Nicholson LFB, Miles<br />

GB, Funk GD (2000) Calcium binding<br />

proteins in moto<strong>neuron</strong>s at low and<br />

high risk for degeneration in ALS.<br />

Neuroreport 11:3305–3308<br />

34. Kawahara Y, Kwak S, Sun H et al. (2003)<br />

Human spinal moto<strong>neuron</strong>s express<br />

low relative abundance <strong>of</strong> GluR2<br />

mRNA: an implication for excitotoxicity<br />

in ALS. J Neurochem 85(3):680–689<br />

35. Van den Bosch L, Vandenberghe W,<br />

Klaassen H, Van Houtte E, Robberecht<br />

W (2000) Ca(2+)-permeable AMPA receptors<br />

and selective vulnerability <strong>of</strong><br />

<strong>motor</strong> <strong>neuron</strong>s. J Neurol Sci 180(1–2):<br />

29–34<br />

36. Kawamata T, Akiyama H, Yamada T,<br />

McGeer PL (1992) Immunologic reactions<br />

in amyotrophic lateral sclerosis<br />

brain and spinal cord tissue. Am J<br />

Pathol 140(3):691–707<br />

37. Troost D, Claessen N, van den Oord JJ,<br />

Swaab DF, de Jong JM (1993) Neuronophagia<br />

in <strong>the</strong> <strong>motor</strong> cortex in<br />

amyotrophic lateral sclerosis. Neuropathol<br />

Appl Neurobiol 19(5):390–397<br />

38. Schiffer D, Cordera S, Cavalla P,<br />

Migheli A (1996) Reactive astrogliosis<br />

<strong>of</strong> <strong>the</strong> spinal cord in amyotrophic lateral<br />

sclerosis. J Neurol Sci 139(Suppl):<br />

27–33<br />

39. Kriz J, Nguyen M, Julien J (2002)<br />

Minocycline slows <strong>disease</strong> progression<br />

in a mouse model <strong>of</strong> amyotrophic lateral<br />

sclerosis. Neurobiol Dis 10(3):268<br />

40. Drachman DB, Rothstein JD (2000) Inhibition<br />

<strong>of</strong> cyclooxygenase-2 protects<br />

<strong>motor</strong> <strong>neuron</strong>s in an organotypic<br />

model <strong>of</strong> amyotrophic lateral sclerosis.<br />

Ann Neurol 48:792–795<br />

41. McGeer PL, McGeer EG (2002) Inflammatory<br />

processes in amyotrophic lateral<br />

sclerosis. Muscle Nerve 26(4):<br />

459–470<br />

42. Figlewicz DA, Krizus A, Martinoli MG<br />

et al. (1994) Variants <strong>of</strong> <strong>the</strong> heavy neur<strong>of</strong>ilament<br />

subunit are associated with<br />

<strong>the</strong> development <strong>of</strong> amyotrophic lateral<br />

sclerosis. Hum Mol Genet 3(10):<br />

1757–1761<br />

43. al Chalabi A, Andersen PM, Nilsson P<br />

et al. (1999) Deletions <strong>of</strong> <strong>the</strong> heavy<br />

neur<strong>of</strong>ilament subunit tail in amyotrophic<br />

lateral sclerosis. Hum Mol<br />

Genet 8(2):157–164<br />

44. Tomkins J, Usher P, Slade JY et al.<br />

(1998) Novel insertion in <strong>the</strong> KSP region<br />

<strong>of</strong> <strong>the</strong> neur<strong>of</strong>ilament heavy gene<br />

in amyotrophic lateral sclerosis (ALS).<br />

Neuroreport 9(17):3967–3970<br />

45. Kong J, Xu Z (2000) Overexpression <strong>of</strong><br />

neur<strong>of</strong>ilament subunit NF-L and NF-H<br />

extends survival <strong>of</strong> a mouse model for<br />

amyotrophic lateral sclerosis. Neurosci<br />

Lett 281(1):72–74<br />

46. Couillard-Despres S, Zhu Q, Wong PC,<br />

Price DL, Cleveland DW, Julien JP<br />

(1998) Protective effect <strong>of</strong> neur<strong>of</strong>ilament<br />

heavy gene overexpression in<br />

<strong>motor</strong> <strong>neuron</strong> <strong>disease</strong> induced by mutant<br />

superoxide dismutase. Proc Natl<br />

Acad Sci USA 95(16):9626–9630<br />

47. Williamson TL, Cleveland DW (1999)<br />

Slowing <strong>of</strong> axonal transport is a very<br />

early event in <strong>the</strong> toxicity <strong>of</strong> ALSlinked<br />

SOD1 mutants to <strong>motor</strong> <strong>neuron</strong>s.Nat<br />

Neurosci 2(1):50–56<br />

48. Lambrechts D, Storkebaum E, Morimoto<br />

M et al. (2003) VEGF is a modifier<br />

<strong>of</strong> amyotrophic lateral sclerosis in<br />

mice and humans and protects moto<strong>neuron</strong>s<br />

against ischemic death. Nat<br />

Genet 34(4):383–394<br />

49. Veldink JH, Kalmijn S, Hout van der<br />

AH et al. (2003) Association between<br />

<strong>the</strong> survival <strong>motor</strong> <strong>neuron</strong> genotype<br />

and <strong>the</strong> phenotype <strong>of</strong> sporadic <strong>motor</strong><br />

<strong>neuron</strong> <strong>disease</strong>s. Submitted for publication<br />

50. Hirschhorn JN, Lohmueller K, Byrne E,<br />

Hirschhorn K (2002) A comprehensive<br />

review <strong>of</strong> genetic association studies.<br />

Genet Med 4(2):45–61<br />

51. Armon C (2003) An evidence-based<br />

medicine approach to <strong>the</strong> evaluation <strong>of</strong><br />

<strong>the</strong> role <strong>of</strong> exogenous risk factors in<br />

sporadic amyotrophic lateral sclerosis.<br />

Neuroepidemiology 22(4):217–228


499<br />

52. Allen S, Heath PR, Kirby J et al. (2003)<br />

Analysis <strong>of</strong> <strong>the</strong> cytosolic proteome in a<br />

cell culture model <strong>of</strong> familial amyotrophic<br />

lateral sclerosis reveals alterations<br />

to <strong>the</strong> proteasome, antioxidant<br />

defenses, and nitric oxide syn<strong>the</strong>tic<br />

pathways. J Biol Chem 278(8):<br />

6371–6383<br />

53. Ishigaki S, Niwa J, Ando Y et al. (2002)<br />

Differentially expressed genes in sporadic<br />

amyotrophic lateral sclerosis<br />

spinal cords–screening by molecular<br />

indexing and subsequent cDNA microarray<br />

analysis. FEBS Lett 531(2):<br />

354–358<br />

54. Kirby J, Menzies FM, Cookson MR,<br />

Bushby K, Shaw PJ (2002) Differential<br />

gene expression in a cell culture model<br />

<strong>of</strong> SOD1-related familial <strong>motor</strong> <strong>neuron</strong>e<br />

<strong>disease</strong>. Hum Mol Genet 11(17):<br />

2061–2075<br />

55. Jackson M, Song W, Liu MY et al.<br />

(2001) Modulation <strong>of</strong> <strong>the</strong> <strong>neuron</strong>al<br />

glutamate transporter EAAT4 by two<br />

interacting proteins. Nature 410(6824):<br />

89–93<br />

56. Okado-Matsumoto A, Fridovich I<br />

(2002) Amyotrophic lateral sclerosis: a<br />

proposed mechanism. Proc Natl Acad<br />

Sci USA 99(13):9010–9014<br />

57. Phizicky E, Bastiaens PI, Zhu H, Snyder<br />

M, Fields S (2003) Protein analysis on a<br />

proteomic scale. Nature 422(6928):<br />

208–215<br />

58. Brooks BR, Miller RG, Swash M, Munsat<br />

TL (2000) El Escorial revisited: revised<br />

criteria for <strong>the</strong> diagnosis <strong>of</strong> amyotrophic<br />

lateral sclerosis. Amyotroph<br />

Lateral Scler O<strong>the</strong>r Motor Neuron Disord<br />

1(5):293–299<br />

59. Watkins SM, German JB (2002)<br />

Metabolomics and biochemical pr<strong>of</strong>iling<br />

in drug discovery and development.<br />

Curr Opin Mol <strong>The</strong>r 4(3):<br />

224–228<br />

60. Toosy AT, Werring DJ, Orrell RW et al.<br />

(2003) Diffusion tensor imaging detects<br />

corticospinal tract involvement at<br />

multiple levels in amyotrophic lateral<br />

sclerosis. J Neurol Neurosurg Psychiatry<br />

74(9):1250–1257<br />

61. Frank B, Haas J, Heinze HJ, Stark E,<br />

Munte TF (1997) Relation <strong>of</strong> neuropsychological<br />

and magnetic resonance<br />

findings in amyotrophic lateral sclerosis:<br />

evidence for subgroups. Clin Neurol<br />

Neurosurg 99(2):79–86<br />

62. Strong MJ (2001) Progress in clinical<br />

neurosciences: <strong>the</strong> evidence for ALS as<br />

a multisystems disorder <strong>of</strong> limited<br />

phenotypic expression. Can J Neurol<br />

Sci 28(4):283–298<br />

63. Lacomblez L, Bensimon G, Leigh PN<br />

et al. (1996) A confirmatory dose-ranging<br />

study <strong>of</strong> riluzole in ALS. ALS/Riluzole<br />

Study Group-II. Neurology 47(6<br />

Suppl 4):S242–250<br />

64. Lacomblez L, Bensimon G, Leigh PN,<br />

Guillet P, Meininger V (1996) Doseranging<br />

study <strong>of</strong> riluzole in amyotrophic<br />

lateral sclerosis. Amyotrophic<br />

Lateral Sclerosis/Riluzole Study Group<br />

II see comments. Lancet 347(9013):<br />

1425–1431<br />

65. Groeneveld JG, Veldink JH, Van DT I<br />

et al. (2003) A randomized sequential<br />

trial <strong>of</strong> creatine in amyotrophic lateral<br />

sclerosis. Ann Neurol 53(4):437–445<br />

66. Whitehead J (2001) Mono<strong>the</strong>rapy trials:<br />

sequential design. Epilepsy Res<br />

45(1–3):81–87<br />

67. Kaspar BK, Llado J, Sherkat N, Rothstein<br />

JD, Gage FH (2003) Retrograde<br />

viral delivery <strong>of</strong> IGF-1 prolongs survival<br />

in a mouse ALS model. Science<br />

301(5634):839–842<br />

68. Rothstein JD (2003) Of mice and men:<br />

reconciling preclinical ALS mouse<br />

studies and human clinical trials. Ann<br />

Neurol 53(4):423–426<br />

69. Dykxhoorn DM, Novina CD, Sharp PA<br />

(2003) Killing <strong>the</strong> messenger: short<br />

RNAs that silence gene expression. Nat<br />

Rev Mol Cell Biol 4(6):457–467<br />

70. Sledz CA, Holko M, de Veer MJ, Silverman<br />

RH, Williams BR (2003) Activation<br />

<strong>of</strong> <strong>the</strong> interferon system by shortinterfering<br />

RNAs. Nat Cell Biol 5(9):<br />

834–839<br />

71. Clement AM, Nguyen MD, Roberts EA<br />

et al. (2003) Wild-type non<strong>neuron</strong>al<br />

cells extend survival <strong>of</strong> SOD1 mutant<br />

<strong>motor</strong> <strong>neuron</strong>s in ALS mice. Science<br />

302(5642):113–117<br />

72. Silani V, Leigh N (2003) Stem <strong>the</strong>rapy<br />

for ALS: hope and reality. Amyotroph<br />

Lateral Scler O<strong>the</strong>r Motor Neuron Disord<br />

4(1):8–10<br />

73. Miller RG, Rosenberg JA, Gelinas DF<br />

et al. (1999) Practice parameter: <strong>The</strong><br />

care <strong>of</strong> <strong>the</strong> patient with amyotrophic<br />

lateral sclerosis (an evidence-based review).<br />

Neurology 52:1311–1323<br />

74. Goldstein LH, Atkins L, Leigh PN<br />

(2002) Correlates <strong>of</strong> Quality <strong>of</strong> Life in<br />

people with <strong>motor</strong> <strong>neuron</strong> <strong>disease</strong><br />

(MND). Amyotroph Lateral Scler<br />

O<strong>the</strong>r Motor Neuron Disord 3(3):<br />

123–129<br />

75. Simmons Z, Bremer BA, Robbins RA,<br />

Walsh SM, Fischer S (2000) Quality <strong>of</strong><br />

life in ALS depends on factors o<strong>the</strong>r<br />

than strength and physical function.<br />

Neurology 55(3):388–392<br />

76. Mandler RN, Anderson FA Jr, Miller<br />

RG,Clawson L, Cudkowicz M, Del<br />

Bene M (2001) <strong>The</strong> ALS Patient Care<br />

Database: insights into end-<strong>of</strong>-life care<br />

in ALS. Amyotroph Lateral Scler O<strong>the</strong>r<br />

Motor Neuron Disord 2(4):203–208<br />

77. Traynor BJ, Alexander M, Corr B, Frost<br />

E, Hardiman O (2003) Effect <strong>of</strong> a multidisciplinary<br />

amyotrophic lateral sclerosis<br />

(ALS) clinic on ALS survival: a<br />

population based study, 1996–2000. J<br />

Neurol Neurosurg Psychiatry 74(9):<br />

1258–1261<br />

78. Hardiman O, Traynor BJ, Corr B, Frost<br />

E (2002) Models <strong>of</strong> care for <strong>motor</strong> <strong>neuron</strong><br />

<strong>disease</strong>: setting standards. Amyotroph<br />

Lateral Scler O<strong>the</strong>r Motor Neuron<br />

Disord 3(4):182–185<br />

79. Barrass JD, Beggs JD (2003) Splicing<br />

goes global. Trends Genet 19(6):<br />

295–298<br />

80. Auerbach D, Thaminy S, Hottiger MO,<br />

Stagljar I (2002) <strong>The</strong> post-genomic era<br />

<strong>of</strong> interactive proteomics: facts and<br />

perspectives. Proteomics 2(6):611–623<br />

81. Hand CK, Khoris J, Salachas F et al.<br />

(2002) A novel locus for familial amyotrophic<br />

lateral sclerosis, on chromosome<br />

18q. Am J Hum Genet 70(1):<br />

251–256<br />

82. Abalkhail H, Mitchell J, Habgood J, Orrell<br />

R, de Belleroche J (2003) A new familial<br />

amyotrophic lateral sclerosis locus<br />

on chromosome 16q12.1–16q12.2.<br />

Am J Hum Genet 73(2):383–389<br />

83. Sapp PC, Hosler BA, McKenna-Yasek D<br />

et al. (2003) Identification <strong>of</strong> two novel<br />

loci for dominantly inherited familial<br />

amyotrophic lateral sclerosis. Am J<br />

Hum Genet 73(2):397–403<br />

84. Ruddy DM, Parton MJ, al Chalabi A<br />

et al. (2003) Two families with familial<br />

amyotrophic lateral sclerosis are<br />

linked to a novel locus on chromosome<br />

16q. Am J Hum Genet 73(2):<br />

390–396<br />

85. Hentati A, Ouahchi K, Pericak-Vance<br />

MA et al. (1998) Linkage <strong>of</strong> a commoner<br />

form <strong>of</strong> recessive amyotrophic<br />

lateral sclerosis to chromosome 15q15-<br />

q22 markers. Neurogenetics 2(1):55–60<br />

86. Blair IP, Bennett CL, Abel A et al. (2000)<br />

A gene for autosomal dominant juvenile<br />

amyotrophic lateral sclerosis<br />

(ALS4) localizes to a 500-kb interval<br />

on chromosome 9q34. Neurogenetics<br />

3(1):1–6<br />

87. Hosler BA, Siddique T, Sapp PC et al.<br />

(2000) Linkage <strong>of</strong> familial amyotrophic<br />

lateral sclerosis with frontotemporal<br />

dementia to chromosome 9q21-q22.<br />

JAMA 284(13):1664–1669<br />

88. Wilhelmsen KC, Lynch T, Pavlou E,<br />

Higgins M, Nygaard TG (1994) Localization<br />

<strong>of</strong> disinhibition-dementiaparkinsonism-amyotrophy<br />

complex to<br />

17q21–22. Am J Hum Genet 55(6):<br />

1159–1165<br />

89. La Spada AR, Wilson EM, Lubahn DB,<br />

Harding AE, Fischbeck KH (1991) Androgen<br />

receptor gene mutations in X-<br />

linked spinal and bulbar muscular atrophy.<br />

Nature 352(6330):77–79<br />

90. al Chalabi A, Hansen VK, Simpson CL<br />

et al. (2003) Variants in <strong>the</strong> ALS2 gene<br />

are not associated with sporadic amyotrophic<br />

lateral sclerosis. Neurogenetics<br />

4(4):221–222<br />

91. al Chalabi A, Scheffler MD, Smith BN<br />

et al. (2003) Ciliary neurotrophic factor<br />

genotype does not influence clinical<br />

phenotype in amyotrophic lateral sclerosis.<br />

Ann Neurol 54(1):130–134


500<br />

92. Aoki M, Lin CL, Rothstein JD et al.<br />

(1998) Mutations in <strong>the</strong> glutamate<br />

transporter EAAT2 gene do not cause<br />

abnormal EAAT2 transcripts in amyotrophic<br />

lateral sclerosis. Ann Neurol<br />

43(5):645–653<br />

93. Jackson M, Steers G, Leigh PN, Morrison<br />

KE (1999) Polymorphisms in <strong>the</strong><br />

glutamate transporter gene EAAT2 in<br />

European ALS patients. J Neurol<br />

246(12):1140–1144<br />

94. Tomkins J, Dempster S, Banner SJ,<br />

Cookson MR, Shaw PJ (2000) Screening<br />

<strong>of</strong> AP endonuclease as a candidate<br />

gene for amyotrophic lateral sclerosis<br />

(ALS). Neuroreport 11(8):1695–1697<br />

95. Hayward C, Colville S, Swingler RJ,<br />

Brock DJ (1999) Molecular genetic<br />

analysis <strong>of</strong> <strong>the</strong> APEX nuclease gene in<br />

amyotrophic lateral sclerosis. Neurology<br />

52(9):1899–1901<br />

96. Olkowski ZL (1998) Mutant AP endonuclease<br />

in patients with amyotrophic<br />

lateral sclerosis. Neuroreport<br />

9(2):239–242<br />

97. Comi GP, Bordoni A, Salani S et al.<br />

(1998) Cytochrome c oxidase subunit I<br />

microdeletion in a patient with <strong>motor</strong><br />

<strong>neuron</strong> <strong>disease</strong>. Ann Neurol 43(1):<br />

110–116<br />

98. Jackson M, Morrison KE, Al-Chalabi A,<br />

Bakker M, Leigh PN (1996) Analysis <strong>of</strong><br />

chromosome 5q13 genes in amyotrophic<br />

lateral sclerosis: homozygous<br />

NAIP deletion in a sporadic case. Ann<br />

Neurol 39(6):796–800<br />

99. Van Landeghem GF, Tabatabaie P,<br />

Beckman G, Beckman L, Andersen PM<br />

(1999) Manganese-containing superoxide<br />

dismutase signal sequence polymorphism<br />

associated with sporadic<br />

<strong>motor</strong> <strong>neuron</strong> <strong>disease</strong>. Eur J Neurol<br />

6(6):639–644<br />

100. Giess R, Beck M, Goetz R, Nitsch RM,<br />

Toyka KV, Sendtner M (2000) Potential<br />

role <strong>of</strong> LIF as a modifier gene in<br />

<strong>the</strong> pathogenesis <strong>of</strong> amyotrophic lateral<br />

sclerosis. Neurology 54(4):<br />

1003–1005<br />

101. Panas M, Karadima G, Kalfakis N<br />

et al. (2000) Genotyping <strong>of</strong> presenilin-<br />

1 polymorphism in amyotrophic lateral<br />

sclerosis. J Neurol 247(12):<br />

940–942<br />

102. Lacomblez L, Doppler V, Beucler I<br />

et al. (2002) APOE: a potential marker<br />

<strong>of</strong> <strong>disease</strong> progression in ALS. Neurology<br />

58(7):1112–1114<br />

103. Drory VE, Birnbaum M, Korczyn AD,<br />

Chapman J (2001) Association <strong>of</strong><br />

APOE epsilon4 allele with survival in<br />

amyotrophic lateral sclerosis. J Neurol<br />

Sci 190(1–2):17–20<br />

104. Siddique T, Pericak-Vance MA,<br />

Caliendo J et al. (1998) Lack <strong>of</strong> association<br />

between apolipoprotein E genotype<br />

and sporadic amyotrophic lateral<br />

sclerosis. Neurogenetics 1(3):<br />

213–216<br />

105. Moulard B, Sefiani A, Laamri A,<br />

Malafosse A, Camu W (1996)<br />

Apolipoprotein E genotyping in sporadic<br />

amyotrophic lateral sclerosis:<br />

evidence for a major influence on <strong>the</strong><br />

clinical presentation and prognosis. J<br />

Neurol Sci 139(Suppl):34–37<br />

106. al Chalabi A, Enayat ZE, Bakker MC<br />

et al. (1996) Association <strong>of</strong><br />

apolipoprotein E epsilon 4 allele with<br />

bulbar-onset <strong>motor</strong> <strong>neuron</strong> <strong>disease</strong>.<br />

Lancet 347(8995):159–160<br />

107. Mui S, Rebeck GW, McKenna-Yasek<br />

D, Hyman BT, Brown RH Jr. (1995)<br />

Apolipoprotein E epsilon 4 allele is<br />

not associated with earlier age at onset<br />

in amyotrophic lateral sclerosis.<br />

Ann Neurol 38(3):460–463<br />

108. Siddons MA, Pickering-Brown SM,<br />

Mann DM, Owen F, Cooper PN (1996)<br />

Debrisoquine hydroxylase gene polymorphism<br />

frequencies in patients<br />

with amyotrophic lateral sclerosis.<br />

Neurosci Lett 208(1):65–68<br />

109. Gar<strong>of</strong>alo O, Figlewicz DA, Leigh PN<br />

et al. (1993) Androgen receptor gene<br />

polymorphisms in amyotrophic lateral<br />

sclerosis. Neuromusc Disord<br />

3(3):195–199<br />

110. Kamel F, Umbach DM, Lehman TA<br />

et al. (2003) Amyotrophic lateral sclerosis,<br />

lead, and genetic susceptibility:<br />

polymorphisms in <strong>the</strong> delta-aminolevulinic<br />

acid dehydratase and vitamin<br />

D receptor genes. Environ Health Perspect<br />

111(10):1335–1339<br />

111. Orru S, Mascia V, Casula M et al.<br />

(1999) Association <strong>of</strong> monoamine oxidase<br />

B alleles with age at onset in<br />

amyotrophic lateral sclerosis. Neuromusc<br />

Disord 9(8):593–597<br />

112. Lin FH, Lin R, Wisniewski HM et al.<br />

(1992) Detection <strong>of</strong> point mutations<br />

in codon 331 <strong>of</strong> mitochondrial NADH<br />

dehydrogenase subunit 2 in<br />

Alzheimer’s brains. Biochem Biophys<br />

Res Commun 182(1):238–246


Reproduced with permission <strong>of</strong> <strong>the</strong> copyright owner. Fur<strong>the</strong>r reproduction prohibited without permission.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!