09.05.2015 Views

SKM 150 GB 063 D - Fusibles y Semiconductores Profesionales

SKM 150 GB 063 D - Fusibles y Semiconductores Profesionales

SKM 150 GB 063 D - Fusibles y Semiconductores Profesionales

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Absolute Maximum Ratings<br />

Symbol Conditions 1)<br />

V CES<br />

V CGR<br />

I C<br />

I CM<br />

V GES<br />

P tot<br />

T j , T stg<br />

V isol<br />

humidity<br />

climate<br />

R GE = 20 kΩ<br />

T case = 25/70 °C<br />

T case = 25/70 °C; t p = 1 ms<br />

per I<strong>GB</strong>T, T case = 25 °C<br />

AC, 1 min.<br />

DIN 40040<br />

DIN IEC 68 T.1<br />

Inverse Diode<br />

I F = –I C T case = 25/80 °C<br />

I FM = –I CM T case = 25/80 °C; t p = 1 ms<br />

I FSM t p = 10 ms; sin.; T j = <strong>150</strong> °C<br />

I 2 t t p = 10 ms; T j = <strong>150</strong> °C<br />

Values<br />

600<br />

600<br />

200 / <strong>150</strong><br />

400 / 300<br />

± 20<br />

675<br />

–40 ... +<strong>150</strong> (125)<br />

2500<br />

Class F<br />

40/125/56<br />

130 / 90<br />

400 / 300<br />

880<br />

3800<br />

Units<br />

V<br />

V<br />

A<br />

A<br />

V<br />

W<br />

°C<br />

V<br />

A<br />

A<br />

A<br />

A 2 s<br />

SEMITRANS ® M<br />

Superfast NPT-I<strong>GB</strong>T<br />

Modules<br />

<strong>SKM</strong> <strong>150</strong> <strong>GB</strong> <strong>063</strong> D<br />

SEMITRANS 3<br />

Characteristics<br />

Symbol Conditions 1) min. typ. max. Units<br />

V (BR)CES<br />

V GE(th)<br />

I CES<br />

I GES<br />

V CEsat<br />

V CEsat<br />

g fs<br />

C CHC<br />

C ies<br />

C oes<br />

C res<br />

L CE<br />

t d(on)<br />

t r<br />

t d(off)<br />

t f<br />

E on<br />

E off<br />

V GE = 0, I C = 4 mA<br />

V GE = V CE , I C = 1 mA<br />

V GE = 0 T j = 25 °C<br />

V CE = V CES T j = 125 °C<br />

V GE = 20 V, V CE = 0<br />

I C = 100 A V GE = 15 V;<br />

I C = <strong>150</strong> A T j = 25 (125) °C<br />

V CE = 20 V, I C = <strong>150</strong> A<br />

per I<strong>GB</strong>T<br />

V GE = 0<br />

V CE = 25 V<br />

f = 1 MHz<br />

V CC = 300 V<br />

V GE = –15 V / +15 V 3)<br />

I C = <strong>150</strong> A, ind. load<br />

R Gon = R Goff = 10 Ω<br />

T j = 125 °C<br />

≥ V CES<br />

4,5<br />

–<br />

–<br />

–<br />

–<br />

–<br />

50<br />

A V = 0 V;<br />

–<br />

Inverse Diode 8)<br />

V F = V EC I F = 100<br />

Q rr I F = <strong>150</strong> A; T j = 125 °C 2) –<br />

I F = <strong>150</strong> A<br />

GE<br />

T j = 25 (125) °C<br />

–<br />

V TO<br />

r t<br />

I RRM<br />

T j = 125 °C<br />

T j = 125 °C<br />

I F = <strong>150</strong> A; T j = 125 °C 2)<br />

–<br />

–<br />

–<br />

Thermal characteristics<br />

R thjc<br />

R thjc<br />

R thch<br />

per I<strong>GB</strong>T<br />

per diode<br />

per module<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

5,5<br />

0,2<br />

5<br />

–<br />

1,8(2,0)<br />

2,1(2,4)<br />

–<br />

–<br />

8400<br />

1000<br />

600<br />

–<br />

130<br />

65<br />

450<br />

40<br />

8,5<br />

5,5<br />

1,45(1,35)<br />

1,55(1,55)<br />

–<br />

6<br />

53<br />

8,1<br />

–<br />

–<br />

–<br />

–<br />

6,5<br />

4<br />

–<br />

200<br />

–<br />

2,5(2,8)<br />

–<br />

700<br />

–<br />

–<br />

–<br />

20<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

1,7<br />

1,9<br />

0,9<br />

8<br />

–<br />

–<br />

0,18<br />

0,5<br />

0,038<br />

V<br />

V<br />

mA<br />

mA<br />

nA<br />

V<br />

V<br />

S<br />

pF<br />

pF<br />

pF<br />

pF<br />

nH<br />

ns<br />

ns<br />

ns<br />

ns<br />

mWs<br />

mWs<br />

V<br />

V<br />

V<br />

mΩ<br />

A<br />

µC<br />

°C/W<br />

°C/W<br />

°C/W<br />

<strong>GB</strong><br />

Features<br />

• N channel, homogeneous Silicon<br />

structure (NPT- Non punchthrough<br />

I<strong>GB</strong>T)<br />

• Low tail current with low<br />

temperature dependence<br />

• High short circuit capability, self<br />

limiting if term. G is clamped to E<br />

• Pos. temp.-coeff. of V CEsat<br />

• 50 % less turn off losses 9)<br />

• 30 % less short circuit current 9)<br />

9)<br />

• Very low C ies , C oes , C res<br />

• Latch-up free<br />

• Fast & soft inverse CAL diodes 8)<br />

• Isolated copper baseplate using<br />

DCB Direct Copper Bonding<br />

Technology without hard mould<br />

• Large clearance (13 mm) and<br />

creepage distances (20 mm)<br />

Typical Applications<br />

• Switching (not for linear use)<br />

• Switched mode power supplies<br />

• UPS<br />

• AC inverter servo drives<br />

• Pulse frequencies also above<br />

10 kHz<br />

• Welding inverters<br />

1) T case = 25 °C, unless otherwise<br />

specified<br />

2) I F = – I C , V R = 300 V,<br />

–di F /dt = <strong>150</strong>0 A/µs, V GE = 0 V<br />

3) Use V GEoff = –5... –15 V<br />

8) CAL = Controlled Axial Lifetime<br />

Technology<br />

9) Compared to PT-I<strong>GB</strong>T<br />

Cases and mech. data → B 6 – 38<br />

© by SEMIKRON 0898 B 6 – 33


<strong>SKM</strong> <strong>150</strong> <strong>GB</strong> <strong>063</strong> D<br />

700<br />

W<br />

600<br />

500<br />

M<strong>150</strong><strong>GB</strong> 06.XLS-1<br />

35<br />

mWs<br />

30<br />

25<br />

M<strong>150</strong><strong>GB</strong>06.XLS-2<br />

T j = 125 °C<br />

V CE = 300 V<br />

V GE = ± 15 V<br />

R G = 10 Ω<br />

400<br />

20<br />

E on<br />

300<br />

15<br />

200<br />

10<br />

100<br />

P tot<br />

0<br />

0 20 40 60 80 100 120 140 160<br />

T C<br />

E<br />

5<br />

0<br />

E off<br />

0 50 100 <strong>150</strong> 200 250 300 350<br />

I C<br />

A<br />

Fig. 1 Rated power dissipation P tot = f (T C ) Fig. 2 Turn-on /-off energy = f (I C )<br />

mWs<br />

E<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

M<strong>150</strong><strong>GB</strong>06.XLS-3<br />

E on<br />

E off<br />

0 10 20 30 40 50 60 70<br />

R G<br />

Ω<br />

T j = 125 °C<br />

V CE = 300 V<br />

V GE = ± 15 V<br />

I C = <strong>150</strong> A<br />

1000<br />

100<br />

I C<br />

A<br />

10<br />

1<br />

M<strong>150</strong><strong>GB</strong>06.XLS-4<br />

t p =10µs<br />

100µs<br />

1ms<br />

10ms<br />

1 V 10 100 1000 V 10000<br />

CE<br />

1 pulse<br />

T C = 25 °C<br />

T j ≤ <strong>150</strong> °C<br />

Not for<br />

linear use<br />

Fig. 3 Turn-on /-off energy = f (R G ) Fig. 4 Maximum safe operating area (SOA) I C = f (V CE )<br />

2,5<br />

2<br />

1,5<br />

M<strong>150</strong><strong>GB</strong>06.XLS-5<br />

T j ≤ <strong>150</strong> °C<br />

V GE = ± 15 V<br />

R Goff = 10 Ω<br />

I C = <strong>150</strong> A<br />

12<br />

10<br />

8<br />

di/dt= 500 A/µs<br />

1400 A/µs<br />

2500 A/µs<br />

M<strong>150</strong><strong>GB</strong>06.XLS-6<br />

T j ≤ <strong>150</strong> °C<br />

V GE = ± 15 V<br />

t sc ≤ 10 µs<br />

L < 50 nH<br />

I C = <strong>150</strong> A<br />

6<br />

1<br />

4<br />

allowed numbers of<br />

short circuits: 1s<br />

0<br />

0 100 200 300 400 500 600 700<br />

V CE<br />

V<br />

0<br />

0 100 200 300 400 500 600 700<br />

V CE<br />

V<br />

Fig. 5 Turn-off safe operating area (RBSOA) Fig. 6 Safe operating area at short circuit I C = f (V CE )<br />

B 6 – 34<br />

0898<br />

© by SEMIKRON


I C<br />

A<br />

240<br />

200<br />

160<br />

120<br />

80<br />

40<br />

0<br />

M<strong>150</strong><strong>GB</strong>06.XLS-8<br />

0 20 40 60 80 100 120 140 160<br />

T C °C<br />

Fig. 8 Rated current vs. temperature I C = f (T C )<br />

T j = <strong>150</strong> °C<br />

V GE ≥ 15V<br />

300<br />

M<strong>150</strong><strong>GB</strong>06.XLS-9<br />

300<br />

M<strong>150</strong><strong>GB</strong>06.XLS-10<br />

A<br />

250<br />

200<br />

<strong>150</strong><br />

17V<br />

15V<br />

13V<br />

11V<br />

9V<br />

7V<br />

A<br />

250<br />

200<br />

<strong>150</strong><br />

17V<br />

15V<br />

13V<br />

11V<br />

9V<br />

7V<br />

100<br />

100<br />

50<br />

50<br />

I C<br />

0<br />

0 1 2 3 4 5<br />

V CE<br />

V<br />

I C<br />

0<br />

0 1 2 3 4 5<br />

V CE<br />

V<br />

Fig. 9 Typ. output characteristic, t p = 250 µs; T j = 25 °C Fig. 10 Typ. output characteristic, t p = 250 µs; T j = 125 °C<br />

P cond(t) = V CEsat(t ) · I C(t)<br />

V CEsat(t) = V CE(TO)(Tj) + r CE(Tj) · I C(t)<br />

V CE(TO)(Tj) ≤ 1,2 – 0,001 (T j –25) [V]<br />

300<br />

A<br />

250<br />

200<br />

<strong>150</strong><br />

M<strong>150</strong><strong>GB</strong>06.XLS-12<br />

typ.: r CE(Tj) = 0,006 + 0,000027 (T j –25) [Ω]<br />

max.: r CE(Tj) = 0,0087 + 0,000027 (T j –25) [Ω]<br />

100<br />

50<br />

valid for V GE = + 15<br />

+2<br />

–1<br />

[V]; I C ≥ 0,3 I Cn<br />

Fig. 11 Saturation characteristic (I<strong>GB</strong>T)<br />

Calculation elements and equations<br />

I C<br />

0<br />

0 2 4 6 8 10 12 14<br />

V GE<br />

V<br />

Fig. 12 Typ. transfer characteristic, t p = 250 µs; V CE = 20 V<br />

© by SEMIKRON 0898<br />

B 6 – 35


<strong>SKM</strong> <strong>150</strong> <strong>GB</strong> <strong>063</strong> D<br />

M<strong>150</strong><strong>GB</strong>06.XLS-13<br />

M<strong>150</strong><strong>GB</strong>06.XLS-14<br />

20<br />

100<br />

V<br />

I Cpuls = <strong>150</strong> A<br />

V GE = 0 V<br />

18<br />

nF<br />

f = 1 MHz<br />

16<br />

100V<br />

14<br />

300V<br />

10<br />

C ies<br />

12<br />

10<br />

8<br />

C oes<br />

1<br />

6<br />

4<br />

C res<br />

2<br />

C<br />

V GE<br />

0<br />

0,1<br />

0 Q 100 200 300 400 500<br />

Gate<br />

nC<br />

0 V 10 20 30<br />

CE<br />

V<br />

Fig. 13 Typ. gate charge characteristic Fig. 14 Typ. capacitances vs.V CE<br />

1000<br />

ns<br />

M<strong>150</strong><strong>GB</strong>06.XLS-15<br />

t doff<br />

t don<br />

T j = 125 °C<br />

V CE = 300 V<br />

V GE = ± 15 V<br />

R Gon = 10 Ω<br />

R Goff = 10 Ω<br />

induct. load<br />

10000<br />

ns<br />

1000<br />

M<strong>150</strong><strong>GB</strong>06.XLS-16<br />

t doff<br />

T j = 125 °C<br />

V CE = 300 V<br />

V GE = ± 15 V<br />

I C = <strong>150</strong> A<br />

induct. load<br />

100<br />

t r<br />

t don<br />

t r<br />

t f<br />

100<br />

t f<br />

t<br />

t<br />

10<br />

0 50 100 <strong>150</strong> 200 250 300 350<br />

I C<br />

A<br />

Fig. 15 Typ. switching times vs. I C<br />

10<br />

0 10 20 30 40 50 60 70<br />

R G<br />

Ω<br />

Fig. 16 Typ. switching times vs. gate resistor R G<br />

160<br />

A<br />

120<br />

80<br />

40<br />

T j =125°C, typ.<br />

T j =25°C, typ.<br />

T j =125°C, max.<br />

T j =25°C, max.<br />

M<strong>150</strong><strong>GB</strong>06.XLS-17<br />

1,6<br />

mJ<br />

1,4<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

M<strong>150</strong><strong>GB</strong>06.XLS-18<br />

R G = 5 Ω<br />

8 Ω<br />

12 Ω<br />

25 Ω<br />

60 Ω<br />

V R = 300 V<br />

T j = 125 °C<br />

V GE = ± 15 V<br />

I F<br />

0<br />

0 0,4 0,8 1,2 1,6 2<br />

V F<br />

V<br />

Fig. 17 Typ. CAL diode forward characteristic<br />

0,2<br />

E offD<br />

0<br />

0 20 40 60 80 100 120 140 160 180<br />

I F<br />

A<br />

Fig. 18 Diode turn-off energy dissipation per pulse<br />

B 6 – 36<br />

0898<br />

© by SEMIKRON


1<br />

M<strong>150</strong><strong>GB</strong>06.XLS-19<br />

1<br />

M<strong>150</strong><strong>GB</strong>06.XLS-20<br />

K/W<br />

K/W<br />

0,1<br />

0,1<br />

0,01<br />

0,001<br />

Z thJC<br />

single pulse<br />

D=0,50<br />

0,20<br />

0,10<br />

0,05<br />

0,02<br />

0,01<br />

0,01<br />

0,001<br />

Z thJC<br />

single pulse<br />

D=0,5<br />

0,2<br />

0,1<br />

0,05<br />

0,02<br />

0,01<br />

0,0001<br />

0,00001 0,0001 0,001 0,01 0,1 1<br />

t p<br />

s<br />

Fig. 19 Transient thermal impedance of I<strong>GB</strong>T<br />

Z thJC = f (t p ); D = t p / t c = t p · f<br />

0,0001<br />

0,00001 0,0001 0,001 0,01 0,1 1<br />

t p<br />

s<br />

Fig. 20 Transient thermal impedance of<br />

inverse CAL diodes Z thJC = f (t p ); D = t p / t c = t p · f<br />

120<br />

A<br />

100<br />

80<br />

M<strong>150</strong><strong>GB</strong>06.XLS-22<br />

R G =<br />

5 Ω<br />

8 Ω<br />

12 Ω<br />

V R = 300 V<br />

T j = 125 °C<br />

V GE = ± 15 V<br />

120<br />

A<br />

100<br />

80<br />

12 Ω<br />

8 Ω<br />

R G = 5 Ω<br />

M<strong>150</strong><strong>GB</strong>06.XLS-23<br />

V R = 300 V<br />

T j = 125 °C<br />

V GE = ± 15 V<br />

I F = 100 A<br />

60<br />

40<br />

25 Ω<br />

60 Ω<br />

60<br />

40<br />

60 Ω<br />

25 Ω<br />

20<br />

20<br />

I RR<br />

0<br />

0 20 40 60 80 100 120 140 160 180<br />

I F<br />

A<br />

Fig. 22 Typ. CAL diode peak reverse recovery<br />

current I RR = f (I F ; R G )<br />

I RR<br />

0<br />

0 1000 2000 3000 4000 5000<br />

di F /dt<br />

A/µs<br />

Fig. 23 Typ. CAL diode peak reverse recovery<br />

current I RR = f (di/dt)<br />

12<br />

µC<br />

10<br />

8<br />

60 Ω<br />

25 Ω 12 Ω<br />

M<strong>150</strong><strong>GB</strong>06.XLS-24<br />

8 Ω R G= 5 Ω<br />

I F = <strong>150</strong> A<br />

100 A<br />

V R = 300 V<br />

T j = 125 °C<br />

V GE = ± 15 V<br />

6<br />

75 A<br />

50 A<br />

4<br />

25 A<br />

2<br />

Q rr<br />

0<br />

0 1000 2000 3000 4000 5000<br />

di F /dt<br />

A/µs<br />

© by SEMIKRON 0898<br />

B 6 – 37


<strong>SKM</strong> <strong>150</strong> <strong>GB</strong> <strong>063</strong> D<br />

SEMITRANS 3<br />

Case D 56<br />

UL Recognized<br />

File no. E 63 532<br />

Dimensions in mm<br />

Case outline and circuit diagram<br />

Mechanical Data<br />

Symbol Conditions Values Units<br />

min. typ. max.<br />

M 1<br />

M 2<br />

a<br />

w<br />

to heatsink, SI Units(M6)<br />

to heatsink, US Units<br />

for terminals, SI Units(M6)<br />

for terminals, US Units<br />

3<br />

27<br />

2,5<br />

22<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

5<br />

44<br />

5<br />

44<br />

5x9,81<br />

325<br />

Nm<br />

lb.in.<br />

Nm<br />

lb.in.<br />

m/s 2<br />

g<br />

This is an electrostatic discharge<br />

sensitive device (ESDS).<br />

Please observe the international<br />

standard IEC 747-1, Chapter IX.<br />

Three devices are supplied in one<br />

SEMIBOX A without mounting hardware,<br />

which can be ordered separately<br />

under Ident No. 33321100<br />

(for 10 SEMITRANS 3)<br />

Larger packing units of 12 or 20 pieces<br />

are used if suitable<br />

Accessories → B 6 – 4<br />

SEMIBOX → C - 1.<br />

B 6 – 38<br />

0898<br />

© by SEMIKRON

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!