09.05.2015 Views

SKM 195 GAL 062 D - Fusibles y Semiconductores Profesionales

SKM 195 GAL 062 D - Fusibles y Semiconductores Profesionales

SKM 195 GAL 062 D - Fusibles y Semiconductores Profesionales

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Absolute Maximum Ratings<br />

Symbol Conditions 1)<br />

V CES<br />

V CGR<br />

I C<br />

I CM<br />

V GES<br />

P tot<br />

T j , (T stg )<br />

V isol<br />

humidity<br />

climate<br />

R GE = 20 kΩ<br />

T case = 25/60 °C<br />

T case = 25/60 °C; t p = 1 ms<br />

per IGBT, T case = 25 °C<br />

AC, 1 min.<br />

DIN 40 040<br />

DIN IEC 68 T.1<br />

Inverse Diode<br />

I F = –I C T case = 25/80 °C<br />

I FM = –I CM T case = 25/80 °C; t p = 1 ms<br />

I FSM t p = 10 ms; sin.; T j = 150 °C<br />

I 2 t t p = 10 ms; T j = 150 °C<br />

Values<br />

600<br />

600<br />

230 / <strong>195</strong><br />

460 / 390<br />

± 20<br />

700<br />

–40 ... +150 (125)<br />

2 500<br />

Class F<br />

40/125/56<br />

200 / 135<br />

460 / 390<br />

1 400<br />

9800<br />

Units<br />

V<br />

V<br />

A<br />

A<br />

V<br />

W<br />

°C<br />

V<br />

A<br />

A<br />

A<br />

A 2 s<br />

SEMITRANS ® M<br />

PT-IGBT Modules<br />

<strong>SKM</strong> <strong>195</strong> GB <strong>062</strong> D<br />

<strong>SKM</strong> <strong>195</strong> <strong>GAL</strong> <strong>062</strong> D 6)<br />

SEMITRANS 2<br />

Characteristics<br />

Symbol Conditions 1) min. typ. max. Units<br />

V (BR)CES<br />

V GE(th)<br />

I CES<br />

I GES<br />

V CEsat<br />

g fs<br />

C CHC<br />

C ies<br />

C oes<br />

C res<br />

L CE<br />

t d(on)<br />

t r<br />

t d(off)<br />

t f<br />

E on<br />

E off<br />

V GE = 0, I C = 4 mA<br />

V GE = V CE , I C = 4 mA<br />

V GE = 0 T j = 25 °C<br />

V CE = V CES T j = 125 °C<br />

V GE = 20 V, V CE = 0<br />

I C = 200 A V GE = 15 V;<br />

T j = 25 (125) °C<br />

V CE = 20 V, I C = 200 A<br />

per IGBT<br />

V GE = 0<br />

V CE = 25 V<br />

f = 1 MHz<br />

V CC = 300 V<br />

V GE = –15 V / +15 V 3)<br />

I C = 200 A, ind. load<br />

R Gon = R Goff = 10 Ω<br />

T j = 125 °C<br />

≥ V CES<br />

4,5<br />

–<br />

–<br />

–<br />

–<br />

–<br />

50<br />

–<br />

Inverse Diode and FWD of type “<strong>GAL</strong>” 8)<br />

V F = V EC I F = 150 A V GE = 0 V;<br />

Q rr I F = 200 A; T j = 125 °C 2) –<br />

V F = V EC I F = 200 A T j = 25 (125) °C<br />

–<br />

V TO<br />

r t<br />

T j = 125 °C<br />

T j = 125 °C<br />

–<br />

–<br />

I RRM I F = 200 A; T j = 125 °C 2)<br />

–<br />

Thermal characteristics<br />

R thjc<br />

R thjc<br />

R thch<br />

per IGBT<br />

per diode<br />

per module<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

5,5<br />

3<br />

13<br />

–<br />

2,1(2,2)<br />

–<br />

–<br />

–<br />

11<br />

1300<br />

800<br />

–<br />

200<br />

150<br />

600<br />

140<br />

11<br />

17<br />

1,45(1,35)<br />

1,55(1,55)<br />

–<br />

4<br />

70<br />

9,4<br />

–<br />

–<br />

–<br />

–<br />

6,5<br />

–<br />

–<br />

1<br />

2,55(2,65)<br />

–<br />

–<br />

350<br />

–<br />

–<br />

–<br />

20<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

1,7<br />

1,9<br />

0,9<br />

5,5<br />

–<br />

–<br />

0,18<br />

0,3<br />

0,05<br />

V<br />

V<br />

mA<br />

mA<br />

µA<br />

V<br />

V<br />

S<br />

pF<br />

nF<br />

pF<br />

pF<br />

nH<br />

ns<br />

ns<br />

ns<br />

ns<br />

mWs<br />

mWs<br />

V<br />

V<br />

V<br />

mΩ<br />

A<br />

µC<br />

°C/W<br />

°C/W<br />

°C/W<br />

GB<br />

6)<br />

<strong>GAL</strong><br />

Features<br />

• N channel, epitaxial Silicon<br />

structure (PT- Punch-through<br />

IGBT)<br />

• High short circuit capability, self<br />

limiting, if term. G is clamped to E<br />

• Latch-up free, if clamped as<br />

above<br />

• Fast & soft inverse CAL diodes 8)<br />

• Isolated copper baseplate using<br />

DCB Direct Copper Bonding<br />

Technology without hard mould<br />

• Large clearance (10 mm) and<br />

creepage distances (20 mm)<br />

Typical Applications → B6 – 43<br />

• Switching (not for linear use)<br />

• Switched mode power supplies<br />

• AC inverter drives<br />

• UPS uninterruptable power<br />

supplies<br />

1) T case = 25 °C, unless otherwise<br />

specified<br />

2) I F = – I C , V R = 300 V,<br />

–di F /dt = 1000 A/µs, V GE = 0 V<br />

3) Use V GEoff = – 5 ... – 15 V<br />

6) The free-wheeling diode of<br />

the <strong>GAL</strong> type have the data<br />

of the inverse diodes of<br />

<strong>SKM</strong> <strong>195</strong> GB <strong>062</strong> D<br />

8) CAL = Controlled Axial Lifetime<br />

Technology<br />

Cases and mech. data → B6 – 44<br />

© by SEMIKRON 0898 B 6 – 39


<strong>SKM</strong> <strong>195</strong> GB <strong>062</strong> D ...<br />

800<br />

W<br />

700<br />

600<br />

M<strong>195</strong>G<strong>062</strong>.XLS-1<br />

mWs<br />

40<br />

30<br />

M<strong>195</strong>G<strong>062</strong>.XLS-2<br />

E off<br />

E on<br />

T j = 125 °C<br />

V CE = 600 V<br />

V GE = + 15 V<br />

R G = 10 Ω<br />

500<br />

400<br />

20<br />

300<br />

200<br />

10<br />

P tot<br />

100<br />

0<br />

0 20 40 60 80 100 120 140 160<br />

T C °C<br />

E<br />

0<br />

0 100 200 300 400 500<br />

I C<br />

A<br />

Fig. 1 Rated power dissipation P tot = f (T C ) Fig. 2 Turn-on /-off energy = f (I C )<br />

mWs<br />

E<br />

40<br />

30<br />

20<br />

10<br />

0<br />

M<strong>195</strong>G<strong>062</strong>.XLS-3<br />

E on<br />

E off<br />

0 20 40 60 80 100<br />

R G<br />

Ω<br />

T j = 125 °C<br />

V CE = 600 V<br />

V GE = + 15 V<br />

I C = 200 A<br />

1000<br />

100<br />

10<br />

I C<br />

A<br />

1<br />

M<strong>195</strong>G<strong>062</strong>.XLS-4<br />

t p =20µs<br />

100µs<br />

1ms<br />

10ms<br />

1 10 100 1000 10000<br />

V CE<br />

V<br />

1 pulse<br />

T C = 25 °C<br />

T j ≤ 150 °C<br />

Not for<br />

linear use<br />

Fig. 3 Turn-on /-off energy = f (R G ) Fig. 4 Maximum safe operating area (SOA) I C = f (V CE )<br />

2,5<br />

2<br />

1,5<br />

M<strong>195</strong>G<strong>062</strong>.XLS-5<br />

T j ≤ 150 °C<br />

V GE = 15 V<br />

R Goff = 10 Ω<br />

I C = 200 A<br />

12<br />

10<br />

8<br />

6<br />

di/dt= 200 A/µs<br />

600 A/µs<br />

1000 A/µs<br />

2000 A/µs<br />

M<strong>195</strong>G<strong>062</strong>.XLS-6<br />

T j ≤ 150 °C<br />

V GE = ± 15 V<br />

t sc ≤ 10 µs<br />

L < 25 nH<br />

I C = 200 A<br />

1<br />

4<br />

allowed numbers of<br />

short circuits: 1s<br />

I Cpuls /I C<br />

I CSC /I C<br />

0<br />

0 100 200 300 400 500 600 700<br />

V CE<br />

V<br />

0<br />

0 100 200 300 400 500 600 700<br />

V CE<br />

V<br />

Fig. 5 Turn-off safe operating area (RBSOA) Fig. 6 Safe operating area at short circuit I C = f (V CE )<br />

B 6 – 40<br />

0898<br />

© by SEMIKRON


250<br />

A<br />

200<br />

150<br />

100<br />

50<br />

I C<br />

0<br />

M<strong>195</strong>G<strong>062</strong>.XLS-8<br />

0 20 40 60 80 100 120 140 160<br />

T C °C<br />

Fig. 8 Rated current vs. temperature I C = f (T C )<br />

T j = 150 °C<br />

V GE ≥ 15V<br />

400<br />

A<br />

350<br />

300<br />

250<br />

200<br />

17V<br />

15V<br />

13V<br />

11V<br />

9V<br />

7V<br />

M<strong>195</strong>G<strong>062</strong>.XLS-9<br />

400<br />

A<br />

350<br />

300<br />

250<br />

200<br />

17V<br />

15V<br />

13V<br />

11V<br />

9V<br />

7V<br />

M<strong>195</strong>G<strong>062</strong>.XLS-10<br />

150<br />

150<br />

100<br />

100<br />

50<br />

I C<br />

0<br />

0 1 2 3 4 5<br />

V CE<br />

V<br />

50<br />

I C<br />

0<br />

0 1 2 3 4 5<br />

V CE<br />

V<br />

Fig. 9 Typ. output characteristic, t p = 250 µs; 25 °C Fig. 10 Typ. output characteristic, t p = 250 µs; 125 °C<br />

P cond(t) = V CEsat(t) · I C(t)<br />

400<br />

A<br />

350<br />

M<strong>195</strong>G<strong>062</strong>.XLS-12<br />

V CEsat(t) = V CE(TO)(Tj) + r CE(Tj) · I C(t)<br />

V CE(TO)(Tj) ≤ 1,3 – 0,003 (T j –25) [V]<br />

300<br />

250<br />

200<br />

typ.: r CE(Tj) = 0,0041 + 0,000021 (T j –25) [Ω]<br />

max.: r CE(Tj) = 0,0064 + 0,000021 (T j –25) [Ω]<br />

valid for V GE = + 15<br />

+2<br />

–1<br />

[V]; I C > 0,3 I Cnom<br />

Fig. 11 Saturation characteristic (IGBT)<br />

Calculation elements and equations<br />

150<br />

100<br />

50<br />

I C<br />

0<br />

0 2 4 6 8 10 12 14<br />

V GE<br />

V<br />

Fig. 12 Typ. transfer characteristic, t p = 250 µs; V CE = 20 V<br />

© by SEMIKRON 0898<br />

B 6 – 41


<strong>SKM</strong> <strong>195</strong> GB <strong>062</strong> D ...<br />

M<strong>195</strong>G<strong>062</strong>.XLS-13<br />

M<strong>195</strong>G<strong>062</strong>.XLS-14<br />

V<br />

20<br />

I Cpuls = 200 A<br />

100<br />

V GE = 0 V<br />

18<br />

nF<br />

f = 1 MHz<br />

Fig. 13 Typ. gate charge characteristic Fig. 14 Typ. capacitances vs.V CE<br />

16<br />

14<br />

12<br />

100V<br />

300V<br />

10<br />

C ies<br />

10<br />

8<br />

1<br />

C oes<br />

6<br />

4<br />

C res<br />

2<br />

C<br />

V GE<br />

0<br />

0,1<br />

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6<br />

0 10 20 30<br />

V<br />

Q CE<br />

V<br />

Gate µC<br />

1000<br />

ns<br />

t don<br />

M<strong>195</strong>G<strong>062</strong>.XLS-15<br />

t doff<br />

T j = 125 °C<br />

V CE = 600 V<br />

V GE = ± 15 V<br />

R Gon = 10 Ω<br />

R Goff = 10 Ω<br />

induct. load<br />

10000<br />

ns<br />

1000<br />

M<strong>195</strong>G<strong>062</strong>.XLS-16<br />

t doff<br />

t don<br />

T j = 125 °C<br />

V CE = 600 V<br />

V GE = ± 15 V<br />

I C = 200 A<br />

induct. load<br />

100<br />

t f<br />

t r<br />

t r<br />

100<br />

t f<br />

t<br />

t<br />

10<br />

0 100 200 300 400 500<br />

I C<br />

A<br />

Fig. 15 Typ. switching times vs. I C<br />

10<br />

0 20 40 60 80 100<br />

R G<br />

Ω<br />

Fig. 16 Typ. switching times vs. gate resistor R G<br />

200<br />

A<br />

150<br />

T j =125°C, typ.<br />

T j =25°C, typ.<br />

M<strong>195</strong>G<strong>062</strong>.XLS-17<br />

mJ<br />

2,5<br />

2<br />

M<strong>195</strong>G<strong>062</strong>.XLS-18<br />

R G =<br />

5 Ω<br />

V R = 300 V<br />

T j = 125 °C<br />

V GE = ± 15 V<br />

1,5<br />

10 Ω<br />

100<br />

24 Ω<br />

50<br />

T j =125°C, max.<br />

T j =25°C, max.<br />

1<br />

0,5<br />

43 Ω<br />

75 Ω<br />

I F<br />

0<br />

0 0,4 0,8 1,2 1,6 2<br />

V F<br />

V<br />

E offD<br />

0<br />

0 50 100 150 200 250<br />

I F<br />

A<br />

Fig. 17 Typ. CAL diode forward characteristic<br />

Fig. 18 Diode turn-off energy dissipation per pulse<br />

B 6 – 42<br />

0898<br />

© by SEMIKRON


1<br />

M<strong>195</strong>G<strong>062</strong>.XLS-19<br />

1<br />

M<strong>195</strong>G<strong>062</strong>.XLS-20<br />

K/W<br />

K/W<br />

0,1<br />

0,1<br />

0,01<br />

0,001<br />

Z thJC<br />

0,01<br />

single pulse<br />

D=0,50<br />

0,20<br />

0,10<br />

0,05<br />

0,02<br />

0,01<br />

0,0001<br />

0,00001 0,0001 0,001 0,01 0,1 1<br />

t p<br />

s<br />

Fig. 19 Transient thermal impedance of IGBT<br />

Z thJC = f (t p ); D = t p / t c = t p · f<br />

0,001<br />

0,0001<br />

Z thJC<br />

single pulse<br />

D=0,5<br />

0,2<br />

0,1<br />

0,05<br />

0,02<br />

0,01<br />

0,00001<br />

0,00001 0,0001 0,001 0,01 0,1 1<br />

t<br />

s<br />

p<br />

Fig. 20 Transient thermal impedance of<br />

inverse CAL diodes Z thJC = f (t p ); D = t p / t c = t p · f<br />

A<br />

120<br />

100<br />

M<strong>195</strong>G<strong>062</strong>.XLS-22<br />

R G =<br />

5 Ω<br />

10 Ω<br />

V R = 300 V<br />

T j = 125 °C<br />

V GE = ± 15 V<br />

A<br />

120<br />

100<br />

10 Ω<br />

M<strong>195</strong>G<strong>062</strong>.XLS-23<br />

R G = 5 Ω<br />

V R = 300 V<br />

T j = 125 °C<br />

V GE = ± 15 V<br />

I F = 200 A<br />

80<br />

60<br />

24 Ω<br />

43 Ω<br />

75 Ω<br />

80<br />

60<br />

75 Ω<br />

43 Ω<br />

24 Ω<br />

40<br />

40<br />

20<br />

20<br />

I RR<br />

0<br />

0 50 100 150 200 250<br />

I F<br />

A<br />

Fig. 22 Typ. CAL diode peak reverse recovery<br />

current I RR = f (I F ; R G )<br />

Typical Applications<br />

include<br />

Switched mode power supplies<br />

DC servo and robot drives<br />

Inverters<br />

DC choppers<br />

AC motor speed control<br />

UPS Uninterruptable power supplies<br />

General power switching applications<br />

I RR<br />

0<br />

14<br />

µC<br />

Q rr<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 500 1000 1500 2000<br />

di F/ dt<br />

A/µs<br />

Fig. 23 Typ. CAL diode peak reverse recovery<br />

current I RR = f (di/dt)<br />

75 A<br />

50 A<br />

M<strong>195</strong>G<strong>062</strong>.XLS-24<br />

R G =<br />

I F =<br />

5 Ω<br />

10 Ω 200 A<br />

24 Ω<br />

43 Ω<br />

150 A<br />

75 Ω<br />

100 A<br />

0 500 1000 1500 2000 2500<br />

di F /dt<br />

A/µs<br />

V R = 300 V<br />

T j = 125 °C<br />

V GE = ± 15 V<br />

Fig. 24 Typ. CAL diode recovered charge<br />

© by SEMIKRON 0898<br />

B 6 – 43


<strong>SKM</strong> <strong>195</strong> GB <strong>062</strong> D ...<br />

SEMITRANS 2<br />

Case D 61<br />

UL Recognized<br />

File no. E 63 532<br />

<strong>SKM</strong> <strong>195</strong> GB <strong>062</strong> D<br />

Dimensions in mm<br />

Case outline and circuit diagram<br />

Mechanical Data<br />

Symbol Conditions Values Units<br />

min. typ. max.<br />

M 1<br />

M 2<br />

a<br />

w<br />

to heatsink, SI Units(M6)<br />

to heatsink, US Units<br />

for terminals, SI Units(M5)<br />

for terminals, US Units<br />

3<br />

27<br />

2,5<br />

22<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

5<br />

44<br />

5<br />

44<br />

5x9,81<br />

160<br />

Nm<br />

lb.in.<br />

Nm<br />

lb.in.<br />

m/s 2<br />

g<br />

This is an electrostatic discharge<br />

sensitive device (ESDS).<br />

Please observe the international<br />

standard IEC 747-1, Chapter IX.<br />

Eight devices are supplied in one<br />

SEMIBOX A without mounting hardware,<br />

which can be ordered separately<br />

under Ident No. 33321100 (for<br />

10 SEMITRANS 2)<br />

Larger packing units of 20 or 42 pieces<br />

are used if suitable<br />

Accessories → B 6 – 4<br />

SEMIBOX → C - 1.<br />

B 6 – 44<br />

0898<br />

© by SEMIKRON

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!