13.05.2015 Views

Description .pdf - Centre for Material Forming (CEMEF) - MINES ...

Description .pdf - Centre for Material Forming (CEMEF) - MINES ...

Description .pdf - Centre for Material Forming (CEMEF) - MINES ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>CEMEF</strong><br />

<strong>Centre</strong> de Mise en Forme des Matériaux<br />

<strong>Material</strong>s <strong>Forming</strong> Center<br />

Polymer Chemical Physics Group<br />

Patrick Navard, Tatiana Budtova, Edith Peuvrel-Disdier<br />

August 2010<br />

Member of the European Polysaccharide Network of<br />

Excellence (EPNOE) and Carnot-Mines


Research areas:<br />

Physics and chemical physics of solutions,<br />

suspensions, blends, gels and other complex structures<br />

based on synthetic and biomass-based polymers.<br />

Physics and chemical physics of polysaccharides.<br />

Rheology and understanding of the influence of<br />

complex flows on the morphological organisation.<br />

Development of rheo-optical tools.


A- Cellulose and cellulose-based materials<br />

B- Bio-based polymers and bioplastics blends<br />

C- Filled polymers and composites<br />

• solutions,<br />

• blends,<br />

• suspensions,<br />

• micro-gels,<br />

• other complex polymer structures<br />

Rheology and rheo-optics are key techniques <strong>for</strong> studying structure evolution


A- Cellulose and cellulose-based materials<br />

Goals:<br />

To improve the use of cellulose, modify and make new materials<br />

• Understand dissolution mechanisms of cellulose coming from<br />

various sources<br />

• Study solution thermodynamics and rheology<br />

• Control cellulose regeneration<br />

• Prepare and process new materials<br />

• Model cellulose biosynthesis


B- Bio-based polymers and bioplastics blends<br />

Goals:<br />

• To understand the structures <strong>for</strong>med during the flow of<br />

immiscible bio-based polymer blends<br />

• To investigate flow and taste perception of starch<br />

suspensions via behaviour of one granule<br />

• To prepare new materials<br />

• To relate morphologies to properties<br />

Bio-based components are:<br />

• Starch<br />

• Cellulose derivatives<br />

• PHA, PLA, etc.


Goals:<br />

C- Filled polymers and composites<br />

To understand :<br />

• the physics of agglomerate and nanoparticle dispersion under<br />

flow<br />

• the relation between this process, final dispersion state, the<br />

processing and the final properties of materials<br />

• the properties of natural fibers-based composites<br />

• De<strong>for</strong>mation and controlled release behaviour of micro-gels<br />

Systems:<br />

- suspensions of nanofillers and agglomerates (silica, carbon black)<br />

- composites based on natural fibres rein<strong>for</strong>cing thermoplastics and lignin.<br />

- micro-gel particles


Summary of recent and present<br />

research projects


A- Cellulose and cellulose-based materials<br />

• Molecular dynamics of plant cell wall biosynthesis<br />

Fibers:<br />

Solutions:<br />

<strong>Material</strong>s:<br />

• Cellulose fiber swelling and dissolution<br />

• Influence of enzymatic and/or chemical treatments <strong>for</strong><br />

improving cellulose fiber processability<br />

• Physics of regenerated cellulose fibre<br />

• Cellulose-NaOH-water solutions<br />

• Cellulose-ionic liquid solutions<br />

• Ultra-light cellulose foams: preparation, structure and<br />

properties.<br />

• Carbonized cellulose <strong>for</strong> electro-chemical applications<br />

• Coating of cellulose surfaces


B- Bio-based polymers and bioplastics blends<br />

• Flow-induced structuring of incompatible biomass-based<br />

polymer blends<br />

• Flow-induced phase inversion in biomass-based polymer<br />

blends<br />

• Starch-polybutylene adipate-co-terephthalate (PBAT) blends<br />

• Flow and taste perception of starch suspensions, behaviour of<br />

one granule


C- Filled polymers and composites<br />

• Natural fibre – thermoplastics composites<br />

• Lignin-based composites<br />

• Dispersion of agglomerated fillers<br />

• Impregnation of polymers in agglomerated fillers<br />

• Clay-polypropylene nanocomposites<br />

• Microgels as delivery matrix <strong>for</strong> controlled release


A- Cellulose and cellulose-based materials


Molecular dynamics of plant cell wall biosynthesis<br />

Goal: to understand the organisation behaviour of cellulose<br />

fibres in the cell wall<br />

• How are cellulose chains organizing right after<br />

exiting from membrane?<br />

• What is the distance membrane – wall?<br />

• Is growth synchronised ?<br />

• What are the states right be<strong>for</strong>e crystallisation?<br />

Applications:<br />

- Optimisation of dissolution process<br />

- Understanding of activation<br />

- Search of new solvents<br />

Numerical simulation of the con<strong>for</strong>mations of six fibres<br />

exiting the plasma membrane during biosynthesis


Cellulose fiber swelling and dissolution<br />

(EPNOE and industrial consortium)<br />

Goal: to understand the swelling and dissolution of cellulose<br />

fibres and to relate them to the fibre morphology<br />

Dissolution behaviour of native cellulose fibres is controled by the existence of<br />

different walls made during biosynthesis. The picture shows how the primary wall<br />

rolls around a swelling secondary wall, making sort of balloons.<br />

Applications:<br />

- Optimisation of dissolution process<br />

- Search of new solvents


Influence of enzymatic and/or chemical treatments <strong>for</strong><br />

improving cellulose fiber processability<br />

(Industrial consortium)<br />

Goal: to improve and find new activations of cellulose pulp<br />

- treatment with Nitren (dissolution of xylan?)<br />

- enzymatic treatment (dissolution of the primary wall?)<br />

- influence of tension<br />

Pulp<br />

treatment, dissolution<br />

Swelling and dissolving in NaOHwater<br />

of treated cellulose fibres<br />

Insolubles<br />

Solubles<br />

• Yield<br />

• Sugar analysis<br />

• Mw distribution<br />

• Optical microscopy<br />

• Crystallinity<br />

• Intrinsic viscosity (Cuen)<br />

Applications:<br />

- Understanding of activation<br />

- Improve pulp quality


Physics of regenerated cellulose fibre<br />

(Direct industrial contract)<br />

Goals:<br />

- To<br />

understand the<br />

fibrillation<br />

mechanisms in Lyocell fibres.<br />

Fibrillated Tencel fibres<br />

- To study swelling and dissolution of<br />

a regenerated fiber.<br />

Applications:<br />

• textile fibres<br />

Waving of the unswollen core of a<br />

swelling Tencel fibre


Dissolution of cellulose in NaOH-water<br />

(Industrial consortium)<br />

Goals:<br />

- to understand cellulose dissolution in aqueous NaOH solutions;<br />

- to understand the influence of additives (urea(<br />

urea, ZnO) ) on the<br />

properties of cellulose-NaOH<br />

solutions (gelation(<br />

gelation, hydrodynamic<br />

properties)<br />

Cellulose+7.6%NaOH/H 2<br />

O<br />

Limit of cellulose dissolution in NaOH/H 2<br />

O:<br />

minimum 4NaOH per 1 AGU<br />

Applications:<br />

• sponges<br />

• beads<br />

• membranes


Cellulose-ionic liquid solutions<br />

(EU and French national projects)<br />

Goals:<br />

- To characterise the properties of cellulose-imidazolium<br />

imidazolium-based<br />

ionic liquid solutions: flow, visco-elasticity<br />

elasticity, solvent quality,<br />

comparison with other cellulose solvents.<br />

- To understand the influence of non-solvent<br />

addition: water,<br />

DMSO.<br />

140<br />

intrinsic viscosity, mL/g<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Cellulose-EMIMAc<br />

Cellulose-BMIMCl<br />

0 50 100 T, °C<br />

Applications:<br />

• New solvents <strong>for</strong><br />

cellulose processing


Ultra-light porous cellulose: Aerocellulose<br />

(EC and French national project)<br />

Goal:<br />

to prepare highly porous cellulose from “green” solvents<br />

Cellulose dissolution (NaOH, ionic liquids)<br />

Samples of Aerocellulose prepared<br />

by Cemef and other partners<br />

Regeneration<br />

Drying in supercritical conditions<br />

Applications:<br />

Pores: 100 nm – 1µm<br />

Density: < 0.1 g/cm 3<br />

Porosity: 95-99%<br />

• Delivery/storage matrix<br />

• Medical<br />

• Insulation


New nanostructured carbons from Aerocellulose<br />

<strong>for</strong> electrochemical applications<br />

(French national project)<br />

Goal:<br />

to prepare highly porous, with a large specific surface,<br />

nanostructured carbons based on cellulose precursors<br />

pyrolysis<br />

Aerocellulose<br />

carbon Aerocellulose<br />

Applications:<br />

• primary batteries,<br />

• proton exchange membrane fuel cell<br />

• supercapacitors<br />

Density : 0.2-1 g/cm 3<br />

Porous volume: 0.2-4 cc/g]<br />

Average macropores diameter: 40-190 nm<br />

Specific surface BET : 70-500 m²/g<br />

Average micropores diameter : 2.4-6 nm


Coating of cellulose surfaces<br />

(EU project)<br />

Goals:<br />

- To understand the properties of<br />

cellulose-stabilised<br />

stabilised nano-particle<br />

suspensions.<br />

- To functionalise cellulose surfaces<br />

with<br />

polysaccharides and nano-<br />

particles, using « green » solvents.<br />

AFM: deposition of cellulose on a cellulose film<br />

Applications:<br />

• functionalised (e.g. anti-microbial, whiteness) cellulose fibers<br />

and films<br />

• modified cellophane barrier properties


B- Bio-based polymers and bioplastics blends


Flow-induced structuring of incompatible biomassbased<br />

polymer blends<br />

(Industrial Chair in Bioplastics, direct industrial contracts)<br />

Goals:<br />

- To prepare new materials by blending bio-based<br />

based polymers<br />

- To understand their morphology and final properties<br />

Blends of thermoplastics:<br />

- PLA-PHA,<br />

- cellulose esters-polyolefines<br />

Co-continous structure of a biomass-based polymer blend


Starch-polybutylene adipate-co-terephthalate<br />

(PBAT) blends<br />

(National project)<br />

Goal:<br />

• Thermoplastic starch rheology<br />

• Effect of processing parameters on the blend morphology<br />

• Relationship with mechanical properties of films<br />

100 kWh/t 230 kWh/t<br />

Applications:<br />

• New polymer materials<br />

• Mulch films<br />

• Biodegradable packaging<br />

SEM micrographs after dissolution of the starchy phase:<br />

Effect of specific mechanical energy


Flow-induced structuring of incompatible biomassbased<br />

polymer blends<br />

Goals:<br />

- to control de<strong>for</strong>mation, breakup and dispersion<br />

- to relate morphology evolution and rheology<br />

1.6<br />

(Industrial project)<br />

N 1<br />

/ N 1, eq<br />

σ / σ eq<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

N 1<br />

σ<br />

0.6<br />

de<strong>for</strong>mation<br />

0.4<br />

0.2<br />

0<br />

rupture<br />

0 100 200 300 400 500<br />

Quantité de dé<strong>for</strong>mation<br />

Applications:<br />

• tailoring blend properties<br />

Rheological behaviour of a HPC solution in PDMS blend


Flow-induced structuring of incompatible model<br />

polymer blends<br />

(EC project)<br />

Goal: to control elementary mechanisms : coalescence<br />

The lower is the shear rate:<br />

- the larger is the final size<br />

- and the slower is the<br />

coalescence.<br />

This is due to the time needed to<br />

eject the fluid layer:<br />

Applications:<br />

• tailoring blend properties<br />

Diameter (µm)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0<br />

1% PDMS in PIB<br />

0,3 s -1<br />

1 s -1<br />

3 s -1<br />

Strain<br />

units<br />

40000 80000 200000


Flow-induced phase inversion in biomass-based<br />

polymer blends<br />

(Industrial project)<br />

Goals:<br />

- To<br />

prepare<br />

new<br />

materials<br />

by<br />

inverting<br />

the morphology of blends<br />

- To<br />

understand<br />

phase<br />

inversion mechanisms<br />

B<br />

Increase of concentration of A<br />

B A<br />

B<br />

A<br />

B<br />

Polymer A<br />

Viscosity<br />

η<br />

A<br />

Φ<br />

⋅<br />

η Φ<br />

B<br />

Shear<br />

?<br />

B<br />

A<br />

⎧><br />

1<br />

⎪<br />

⎨=<br />

1<br />

⎪<br />

⎩<<br />

1<br />

Phase B continuous<br />

Co-continuity<br />

Phase A continuous<br />

A<br />

B Polymer B<br />

Shear rate<br />

η A /η >1<br />

Β<br />

B continuous<br />

η A /η


Microgels as delivery matrix <strong>for</strong> controlled release<br />

(French national project)<br />

Goal:<br />

- to understand the controlled release from soft gels, synthetic and<br />

natural, under shear<br />

Example: release of a solution of linear polymer under shear stress<br />

dry gel<br />

particle<br />

placed into an oil<br />

+<br />

under shear stress<br />

polymer<br />

solution<br />

swollen gel<br />

particle<br />

Applications:<br />

• cosmetics, pharmacology, food<br />

released solvent<br />

The same was found <strong>for</strong> alginate and carrageenan micro-gels, chitosanalginate<br />

capsules and swollen starch granules


Flow and taste perception of starch suspensions<br />

Goal:<br />

- To understand the behaviour of one starch granule and of<br />

starch suspension under flow.<br />

- To correlate with taste perception.<br />

Droplet of a concentrated suspension:<br />

Droplet of a dilute suspension:<br />

Volume fract: ~ 100%<br />

Volume fract: ~ 10%<br />

100µm<br />

100µm<br />

100µm<br />

100µm<br />

Applications:<br />

• food


C- Filled polymers and composites


Natural fibre – thermoplastics composites<br />

(Industrial Chair in Bioplastics)<br />

Goals:<br />

To understand:<br />

- fiber rupture during processing;<br />

- influence of fiber type on the rheological properties of<br />

composites<br />

- influence of fiber treatment on composite properties<br />

a<br />

b<br />

Applications:<br />

• composite materials<br />

Rheo-optical observation of Tencel (a) and flax (b) fibers rupture


Lignin-based composites<br />

(Industrial Chair in Bioplastics)<br />

Goal:<br />

- to use lignin as a matrix <strong>for</strong> making structural materials<br />

Use of lignin and lignin derivatives<br />

to glue natural fibers<br />

Preparation of lignin-based<br />

nanocomposites<br />

Lignin-flax composites<br />

Applications:<br />

• bio-based composites, bio-based polymer fillers


Dispersion of agglomerated objects<br />

(Different projects: EC, national, industrial)<br />

Goals: - to understand elementary mechanisms of dispersion<br />

- to predict dispersion during mixing<br />

Dispersion mechanisms<br />

of carbon black<br />

in SBR under shear:<br />

Rupture<br />

If τ > τ c<br />

c =<br />

f<br />

( ) R 0<br />

Erosion<br />

τ (<br />

Very slow<br />

3 3<br />

Erosion<br />

R<br />

0<br />

− R<br />

t<br />

= α τ − τC<br />

) γ&<br />

t<br />

Applications:<br />

• tyre manufacturing<br />

• filled polymers<br />

Effect of concentrated medium<br />

SBR matrix filled with glass beads


Infiltration of polymers into porous systems<br />

Goal: to understand the influence of impregnation on dispersion<br />

R=R 0<br />

50<br />

R=0<br />

R<br />

(µm)<br />

40<br />

30<br />

20<br />

t R<br />

t infilt<br />

t 0 t 1<br />

t 2 >t 1<br />

0<br />

SBR infiltration in a silica agglomerate<br />

10<br />

To understand the physics behind infiltration:<br />

- role of molecular weight,<br />

- role of agglomerate organisation,<br />

- role of filler/matrix interactions.<br />

0 2 4 6 8<br />

t (h)<br />

Infiltration kinetics<br />

Applications:<br />

• tyre manufacturing<br />

• filled polymers


Clay-polypropylene nanocomposites<br />

(EC project)<br />

Goal: To understand - flow-induced<br />

structuration<br />

- relation with processing<br />

Multiscale structure :<br />

Nanocomposite: PP/PP-g-MA/organoclay<br />

Nanoscale:<br />

Microscale:<br />

Normalized Stress<br />

1,3<br />

1,2<br />

1,1<br />

1<br />

0.1 s-1<br />

1 s-1<br />

5 s-1<br />

0,9<br />

0 5 10 15 20<br />

Strain<br />

Light scattering pattern of the<br />

nanocomposite under shear<br />

Transient behaviour of the nanocomposite<br />

<strong>for</strong> different shear rates<br />

Applications:<br />

• New polymer materials<br />

• Automotive sector


<strong>CEMEF</strong><br />

www.cemef.mines-paristech.fr<br />

www.epnoe.eu

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!