15.05.2015 Views

Vinyl chloride polymerization in microdroplet reactor - Les thèses en ...

Vinyl chloride polymerization in microdroplet reactor - Les thèses en ...

Vinyl chloride polymerization in microdroplet reactor - Les thèses en ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THÈSE<br />

En vue de l'obt<strong>en</strong>tion du<br />

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE<br />

Délivré par :<br />

Institut National Polytechnique de Toulouse (INP Toulouse)<br />

Discipl<strong>in</strong>e ou spécialité :<br />

Génie des Procédés et de l’<strong>en</strong>vironnem<strong>en</strong>t<br />

<br />

Prés<strong>en</strong>tée et sout<strong>en</strong>ue par<br />

Ioana-Miruna DOROBANTU<br />

le 11 mai 2012<br />

Titre :<br />

<strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> <strong>polymerization</strong> <strong>in</strong> <strong>microdroplet</strong> <strong>reactor</strong><br />

Ecole doctorale :<br />

Mécanique, Energétique, Génie civil et Procédés (MEGEP)<br />

Unité de recherche :<br />

Laboratoire de Génie Chimique (LGC), Toulouse<br />

Directeurs de Thèse :<br />

Christophe GOURDON, Professeur, INP-ENSIACET, Toulouse<br />

Cather<strong>in</strong>e XUEREB, Directrice de Recherches CNRS-LGC/INPT, Toulouse<br />

Rapporteurs :<br />

Christophe SERRA, Professeur, Université de Strasbourg<br />

Michel VAULTIER, Directeur de Recherches, Université de Bordeaux<br />

Membres du jury<br />

André MORTREUX, Présid<strong>en</strong>t du jury, Professeur, ENSC, Lille<br />

Thierry LASUYE, Membre, Manager R&D, Ineos Chlor<strong>V<strong>in</strong>yl</strong>s, Maz<strong>in</strong>garbe<br />

Marc BRANLY, Membre, Manager Développem<strong>en</strong>t <strong>in</strong>dustriel, Ineos Chlor<strong>V<strong>in</strong>yl</strong>s, Maz<strong>in</strong>garbe<br />

Laur<strong>en</strong>t PRAT, Maître de Confér<strong>en</strong>ces, INP-ENSIACET, Toulouse


REMERCIEMENTS<br />

Au terme de ce travail, c’est avec émotion que je ti<strong>en</strong>s à remercier tous ceux qui, de près ou de lo<strong>in</strong>,<br />

ont contribué à la réalisation de ce projet.<br />

Je ti<strong>en</strong>s tout d’abord à remercier à mon <strong>en</strong>cadrant de thèse, Laur<strong>en</strong>t Prat, pour la confiance, le temps<br />

et la pati<strong>en</strong>ce qu’il m’a accordés a<strong>in</strong>si que son souti<strong>en</strong> <strong>en</strong> f<strong>in</strong> de thèse. Tout au long de ces trois années,<br />

il a su ori<strong>en</strong>ter mes recherches aux bons mom<strong>en</strong>ts <strong>en</strong> me faisant découvrir la microfluidique. J’ai<br />

beaucoup appris à ses côtés et je suis très honorée de l’avoir eu pour <strong>en</strong>cadrant.<br />

Mes remerciem<strong>en</strong>ts s'adress<strong>en</strong>t égalem<strong>en</strong>t à mes directeurs de thèse qui m’ont proposé ce sujet:<br />

Christophe Gourdon et Cather<strong>in</strong>e Xuereb. Au travers de nos discussions, ils m'ont apporté une<br />

compréh<strong>en</strong>sion plus approfondie des divers aspects du sujet. Je salue aussi la souplesse et l'ouverture<br />

d'esprit de mes directeurs de thèse qui ont su me laisser une large marge de liberté pour m<strong>en</strong>er à bi<strong>en</strong><br />

ce travail de recherche.<br />

J'adresse mes remerciem<strong>en</strong>ts à Thierry Lasuye, responsable du départem<strong>en</strong>t Qualité & Innovation<br />

d’Ineos Chlor<strong>V<strong>in</strong>yl</strong>s, qui a <strong>in</strong>itié ce projet, m’a ouvert les portes de l’<strong>en</strong>treprise et a suivi de près ce<br />

travail. Merci égalem<strong>en</strong>t à Marc Branly pour ses conseils avisés et l'<strong>in</strong>térêt qu'il a porté au projet.<br />

J’adresse ma reconnaissance à M. Christophe Serra, Professeur à l’Université de Strasbourg et M.<br />

Michel Vaultier, Directeur de recherche à l’Université de Bordeaux, qui ont accepté de juger ce<br />

travail et d’<strong>en</strong> être les rapporteurs. Je remercie égalem<strong>en</strong>t M. André Mortreux, professeur à<br />

l’Université de Lille d’avoir accepté de présider le jury de thèse.<br />

Je souhaite remercier l’équipe technique du LGC pour leur aide et leurs conseils avisés! Tout<br />

particulièrem<strong>en</strong>t, je salue Ala<strong>in</strong> Pontier, pour sa disponibilité jusqu'au bout, pour les derniers détails<br />

de la mise au po<strong>in</strong>t des différ<strong>en</strong>ts montages expérim<strong>en</strong>tales que j’ai employé p<strong>en</strong>dant ma thèse. Je<br />

n’oublie pas Ignace Coghe pour son aide, sa disponibilité et son bon humour ! Je remercie Alec<br />

Maunoury pour sa g<strong>en</strong>tillesse et pour son <strong>in</strong>térêt à ce travail de thèse (je me souvi<strong>en</strong>s <strong>en</strong>core nos<br />

échanges de recettes cul<strong>in</strong>aires lors des manips tardives). Un grand merci à Marie-L<strong>in</strong>e de Solan.<br />

Toujours disponible et souriante, elle a fait des merveilles avec le MEB et mes gra<strong>in</strong>s de PVC.


Je souhaite remercier s<strong>in</strong>cèrem<strong>en</strong>t les membres du Départem<strong>en</strong>t Qualité Innovation PVC d’Ineos<br />

Chlor<strong>V<strong>in</strong>yl</strong>s, <strong>en</strong> particulier Didier Berl<strong>in</strong>et et Juli<strong>en</strong> Lionet, avec qui j’ai pris beaucoup de plaisir à<br />

collaborer.<br />

Merci à tous les doctorants ou post-doctorants du départem<strong>en</strong>t RMS: « les anci<strong>en</strong>s » comme Cél<strong>in</strong>e,<br />

Carole, Raluca, Yao, Aras, Ala<strong>in</strong>, Taissir, Giovanni, Roma<strong>in</strong>, Thomas, You<strong>en</strong> …. a<strong>in</strong>si que « les<br />

nouveaux » comme Maxime, Houaria….Emel<strong>in</strong>e et Tristan, merci de m’avoir supporté (malgré<br />

vous) lors de mes <strong>in</strong>trusions dans votre bureau a<strong>in</strong>si que pour tous les bons mom<strong>en</strong>ts passés <strong>en</strong>semble.<br />

Diana, merci pour nos petites discutions motivantes <strong>en</strong> début ou <strong>en</strong> f<strong>in</strong> de journée ! Emel<strong>in</strong>e, j’ai<br />

beaucoup apprécié de travailler avec toi dans le cadre du même projet, je n’oublie pas les mom<strong>en</strong>ts<br />

rigolos (tu te rappelles SES ?). J’adresse de chaleureux remerciem<strong>en</strong>ts à Félicie, anci<strong>en</strong>ne doctorante<br />

du laboratoire et ma première collègue de bureau, pour sa g<strong>en</strong>tillesse et son amitié. Tanya, mon ami<br />

de toujours j’ai l’impression, tous les souv<strong>en</strong>irs passés sont chers à mon cœur. Pour ta prés<strong>en</strong>ce fidèle,<br />

ton écoute et ton souti<strong>en</strong> <strong>en</strong> f<strong>in</strong> de thèse, merci !<br />

Je remercie ma famille pour leur compréh<strong>en</strong>sion et le souti<strong>en</strong> qu’elles m’ont fourni tout au long de la<br />

réalisation de ces travaux. Mes remerciem<strong>en</strong>ts s’adress<strong>en</strong>t à ma mère, mon père et ma grand-mère qui<br />

m’ont toujours épaulé dans ce projet. Je sais que mon abs<strong>en</strong>ce a été longue et j’espère pouvoir un jour<br />

rattraper le retard accumulé.<br />

Enf<strong>in</strong>, je remercie mon cher époux pour son souti<strong>en</strong> quotidi<strong>en</strong> et son <strong>en</strong>thousiasme contagieux à<br />

l’égard de mes travaux comme de la vie <strong>en</strong> général.


ABSTRACT<br />

<strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> susp<strong>en</strong>sion <strong>polymerization</strong> is a common reaction <strong>in</strong> polymer <strong>in</strong>dustry allow<strong>in</strong>g to<br />

obta<strong>in</strong> one of the world wide most used plastics, known as PVC (polyv<strong>in</strong>yl <strong>chloride</strong>). Its applications<br />

<strong>in</strong>volve mostly the construction <strong>in</strong>dustry but other doma<strong>in</strong>s are also concerned. This <strong>polymerization</strong><br />

process is highly complex due to the toxic nature of the monomer, the good manage of heat transfer<br />

and agitation. The control of these process variables directly impacts the characteristics of the f<strong>in</strong>al<br />

product. Ev<strong>en</strong> though the susp<strong>en</strong>sion <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong> has be<strong>en</strong> ext<strong>en</strong>sively studied <strong>in</strong><br />

batch <strong>reactor</strong>s, there is a lack of data regard<strong>in</strong>g the k<strong>in</strong>etics or the physicochemistry of a s<strong>in</strong>gle<br />

monomer droplet dur<strong>in</strong>g the reactions.<br />

The aim of this pres<strong>en</strong>t work is to propose a microstructured device which <strong>en</strong>ables obta<strong>in</strong><strong>in</strong>g<br />

monodisperse droplets with<strong>in</strong> 200 µm <strong>in</strong> diameter, each one be<strong>in</strong>g considered as a <strong>polymerization</strong><br />

<strong>reactor</strong>. After a good acknowledgem<strong>en</strong>t of the v<strong>in</strong>yl <strong>chloride</strong>/water system <strong>in</strong> microchannel the<br />

<strong>polymerization</strong> reaction was qualitatively described by means of droplet/polymer gra<strong>in</strong> visualization.<br />

Real-time non-<strong>in</strong>vasive Raman measurem<strong>en</strong>t has be<strong>en</strong> performed on stationary v<strong>in</strong>yl <strong>chloride</strong><br />

monomer droplets and has provided values of k<strong>in</strong>etic constants. A theoretical model was proposed,<br />

simulat<strong>in</strong>g the reaction conversion <strong>in</strong> good agreem<strong>en</strong>t with the experim<strong>en</strong>tal values.<br />

The morphologic characteristics of the PVC gra<strong>in</strong>s obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong> pres<strong>en</strong>ted <strong>in</strong>terest<strong>in</strong>g<br />

features <strong>in</strong> terms of primary particle agglomeration or porosity.<br />

Key words: micro<strong>reactor</strong>, <strong>polymerization</strong>, Raman spectroscopy<br />

RESUME<br />

La polymérisation du chlorure de v<strong>in</strong>yle est une réaction très fréqu<strong>en</strong>te dans l’<strong>in</strong>dustrie des polymères,<br />

conduisant à l’obt<strong>en</strong>tion d’un matériau plastique très commun, connu sous le nom de PVC (poly<br />

chlorure de v<strong>in</strong>yle). Ses applications concern<strong>en</strong>t pr<strong>in</strong>cipalem<strong>en</strong>t l’<strong>in</strong>dustrie des constructions<br />

néanmo<strong>in</strong>s d’autres doma<strong>in</strong>es sont égalem<strong>en</strong>t touchés. La complexité de ce procédé de polymérisation<br />

est due à la nature toxique du monomère, à la maitrise du transfert de chaleur ou au ma<strong>in</strong>ti<strong>en</strong> de<br />

l’agitation. Le control de ces variables de procédé <strong>in</strong>flu<strong>en</strong>ce de manière directe les caractéristiques<br />

f<strong>in</strong>ales du produit. Même si la polymérisation <strong>en</strong> susp<strong>en</strong>sion du chlorure de v<strong>in</strong>yle a été largem<strong>en</strong>t<br />

étudiée dans des réacteurs de type batch, il y a un manque de données au niveau de la c<strong>in</strong>étique et de la<br />

physicochimie d’une goutte de monomère p<strong>en</strong>dant la réaction.<br />

L’objectif de ces travaux est de proposer un dispositif microstructuré permettant d’obt<strong>en</strong>ir des gouttes<br />

monodisperses ayant un diamètre de 200 µm <strong>en</strong>viron, chacune étant considérée comme un réacteur de<br />

polymérisation. Une fois id<strong>en</strong>tifiés les verrous liés au système eau/chlorure de v<strong>in</strong>yle <strong>en</strong><br />

microréacteur, la réaction de polymérisation a été décrite de manière qualitative par visualisation des<br />

gouttes/gra<strong>in</strong>s de polymère.<br />

Des mesures Raman non-<strong>in</strong>vasives <strong>en</strong> temps réel ont été réalisées sur une goutte immobile de chlorure<br />

de v<strong>in</strong>yle, cela permettant d’accéder aux valeurs des constantes c<strong>in</strong>étiques. Un modèle théorique <strong>en</strong><br />

bon accord avec les résultats expérim<strong>en</strong>taux a été proposé af<strong>in</strong> de simuler le degré de conversion de la<br />

réaction.<br />

<strong>Les</strong> caractéristiques morphologiques des gra<strong>in</strong>s de PVC obt<strong>en</strong>us <strong>en</strong> microréacteur prés<strong>en</strong>t<strong>en</strong>t des<br />

particularités <strong>in</strong>téressantes <strong>en</strong> termes d’agglomération des particules primaires ou porosité.<br />

Mots clé: microréactor, polymérisation, spectroscopie Raman


TABLE OF CONTENTS<br />

LIST OF SYMBOLS............................................................................................................................. 5<br />

INTRODUCTION AND OUTLINE.................................................................................................... 9<br />

CHAPTER I: BIBLIOGRAPHIC REVIEW.................................................................................... 15<br />

I. RADICAL POLYMERIZATION OF VINYL CHLORIDE......................................................................... 17<br />

I.A. ELEMENTAL CHEMICAL REACTIONS............................................................................................... 17<br />

I.B. RADICAL VINYL CHLORIDE POLYMERIZATION METHODS............................................................. 19<br />

I.C. PHYSICAL CONSIDERATIONS ON VINYL CHLORIDE MONOMER .................................................... 20<br />

I.D. VINYL CHLORIDE SUSPENSION POLYMERIZATION......................................................................... 20<br />

I.D.1) The physical ph<strong>en</strong>om<strong>en</strong>a ............................................................................................................ 23<br />

I.D.2) Differ<strong>en</strong>t elem<strong>en</strong>ts that <strong>in</strong>flu<strong>en</strong>ce the susp<strong>en</strong>sion <strong>polymerization</strong> of <strong>V<strong>in</strong>yl</strong> Chloride................. 25<br />

I.D.3) S-PVC k<strong>in</strong>etics............................................................................................................................ 31<br />

I.D.4) Heat removal............................................................................................................................... 34<br />

II. MICROREACTORS AND CHEMICAL ENGINEERING ........................................................................ 36<br />

II.A. CONSIDERATIONS ON THE FLUID BEHAVIOUR IN MICROREACTORS.............................................. 37<br />

II.B. TECHNOLOGICAL BOTTLENECKS................................................................................................... 39<br />

II.B.1) Droplet g<strong>en</strong>eration systems........................................................................................................ 39<br />

II.B.2) Parameters act<strong>in</strong>g on the droplet g<strong>en</strong>eration.............................................................................. 42<br />

II.C. DIFFERENT POLYMERIZATION REACTIONS PERFORMED IN MICROREACTOR................................. 45<br />

II.C.1) Controlled Radical Polymerization............................................................................................ 46<br />

II.C.2) Ionic Polymerization.................................................................................................................. 47<br />

II.C.3) Free Radical Polymerization...................................................................................................... 48<br />

III. CONCLUSION.................................................................................................................................. 53<br />

CHAPTER II: DEVELOPMENT OF THE MICROREACTOR DEVICE AND ITS<br />

HYDRODYNAMIC CHARACTERIZATION ................................................................................ 55<br />

I. PRELIMINARY CHOICES ................................................................................................................... 57<br />

I.A. CHOICE OF A MODEL FLUID ............................................................................................................ 58<br />

I.B. THE SURFACTANTS EMPLOYED....................................................................................................... 59<br />

I.C. CHOICE OF THE CONVENIENT MICROCHANNEL .............................................................................. 60<br />

I.D. TESTS WITH PFA TUBING ............................................................................................................... 60<br />

I.E. TESTS WITH FUSED SILICA CAPILLARY TUBING .............................................................................. 62<br />

II. FIRST GENERATION MICROREACTOR FOR VCM/WATER HYDRODYNAMIC STUDY.................... 66<br />

II.A. DESCRIPTION OF THE EXPERIMENTAL SET-UP............................................................................... 67<br />

Experim<strong>en</strong>tal protocol ........................................................................................................................... 70<br />

II.B. IMPROVEMENTS OF THE EXPERIMENTAL SET-UP........................................................................... 70<br />

III. SAFETY AND MAINTENANCE ......................................................................................................... 71<br />

IV. PRESSURE DROP STUDY IN MICROCHANNELS .............................................................................. 71<br />

IV.A. SHORT LITERATURE REVIEW ....................................................................................................... 72


IV.B. RESULTS AND DISCUSSION........................................................................................................... 75<br />

IV.B.1) Pressure drop <strong>in</strong> the 180 µm ID capillary tube......................................................................... 78<br />

IV.B.2) Pressure drop <strong>in</strong> the 250 µm ID capillary tube......................................................................... 80<br />

V. FLOW CARTOGRAPHY IN MICROCHANNEL.................................................................................... 82<br />

V.A. THE 180 µM CAPILLARY CIRCUIT .................................................................................................. 82<br />

V.B. THE 250 µM CAPILLARY CIRCUIT .................................................................................................. 89<br />

VI. DROPLET LENGTH MODELLING .................................................................................................... 92<br />

VI.A. SHORT LITERATURE REVIEW ....................................................................................................... 92<br />

VI.B. RESULTS AND DISCUSSION........................................................................................................... 94<br />

VII. DROPLET SHAPE REPRESENTATION ............................................................................................ 96<br />

VIII. PHENOMENA ENCOUNTERED IN MICROCHANNEL .................................................................... 98<br />

IX. CONCLUSION ON THE HYDRODYNAMIC STUDY............................................................................ 99<br />

CHAPTER III: ON-LINE KINETIC MONITORING OF S-PVC .............................................. 101<br />

I. POLYMERIZATION IN MICROCHANNEL ......................................................................................... 103<br />

I.A. POLYMERIZATION WITH LAUROYLE PEROXIDE AS INITIATOR IN THE AQUEOUS PHASE.............. 104<br />

I.B. POLYMERIZATION WITH DI(4-TERT-BUTYLCYCLOHEXYL) PEROXYDICARBONATE AS INITIATOR IN<br />

THE AQUEOUS PHASE........................................................................................................................... 105<br />

I.C. POLYMERIZATION WITH DI(4-TERT-BUTYLCYCLOHEXYL) PEROXYDICARBONATE PRE-DISPERSED<br />

IN THE VCM PHASE ............................................................................................................................. 106<br />

I.D. VOLUME MEASUREMENT.............................................................................................................. 111<br />

II. CHOICE OF THE APPROPRIATE ANALYTICAL TECHNIQUE FOR THE MONITORING OF VINYL<br />

CHLORIDE POLYMERIZATION REACTION ......................................................................................... 114<br />

II.A. THE CONTEXT.............................................................................................................................. 114<br />

II.B. THE CLASSICAL TECHNIQUES FOR ON-LINE/IN-LINE ANALYSIS .................................................. 115<br />

II.B.1) Ultrasound monitor<strong>in</strong>g............................................................................................................. 115<br />

II.B.2) Near Infrared (NIR) Spectroscopy........................................................................................... 115<br />

II.B.3) Raman spectroscopy ................................................................................................................ 117<br />

II.B.4) Choice of the on-l<strong>in</strong>e technique............................................................................................... 118<br />

III. SECOND GENERATION MICROREACTOR FOR THE KINETIC STUDY OF THE VINYL CHLORIDE<br />

POLYMERIZATION REACTION............................................................................................................ 119<br />

III.A. REQUIREMENTS TO COMPLY...................................................................................................... 119<br />

III.B. DIAGRAM OF THE EXPERIMENTAL SET-UP ................................................................................. 119<br />

III.B.1) Experim<strong>en</strong>tal protocol ............................................................................................................ 122<br />

III.B.2) The Raman experim<strong>en</strong>tal device ............................................................................................ 123<br />

III.C. RAMAN SPECTROSCOPY – WORKING PRINCIPLE ........................................................................ 124<br />

III.D. VISUALIZATION OF THE FIRST RESULTS OBTAINED WITH THE SECOND GENERATION<br />

MICROREACTOR SET-UP....................................................................................................................... 124<br />

IV. DEVELOPMENT OF THE MONITORING METHOD......................................................................... 125<br />

IV.A. GLOBAL APPROACH................................................................................................................... 125<br />

IV.B. SPECTRA OF PURE COMPONENTS ............................................................................................... 127<br />

IV.C. REACTION SPECTRA DURING MONITORING................................................................................ 129<br />

IV.D. DATA TREATMENT METHOD ...................................................................................................... 131<br />

V. POLYMERIZATION KINETICS RESULTS ........................................................................................ 132<br />

V.A. KINETIC MODEL AT CONSTANT VOLUME .................................................................................... 133<br />

V.A.1) K<strong>in</strong>etic model at variable volume ........................................................................................... 136<br />

2


VI. TWO-PHASE LITERATURE MODEL FOR S-PVC .......................................................................... 139<br />

VII. THE TWO-PHASE MODEL VALIDATION FOR MICROREACTOR S-PVC..................................... 144<br />

VII.A. DETERMINATION OF THE MONOMER DISTRIBUTION OVER THE ENTIRE POLYMERIZATION RANGE<br />

FOR S-PVC IN MICROCHANNEL........................................................................................................... 145<br />

VII.B. NEW KINETIC CONSTANTS DETERMINATION ............................................................................ 146<br />

VII.C. EXPERIMENTAL AND MODELLED CONVERSION HISTORIES ...................................................... 148<br />

VII.C.1) Influ<strong>en</strong>ce of the temperature on conversion.......................................................................... 148<br />

VII.C.2) Influ<strong>en</strong>ce of the <strong>in</strong>itiator conc<strong>en</strong>tration on conversion ......................................................... 150<br />

VII.C.3) Contribution to the model..................................................................................................... 153<br />

VIII. CONCLUSION............................................................................................................................. 155<br />

CHAPTER IV: MORPHOLOGIC CHARACTERISTICS OF THE PVC OBTAINED IN<br />

MICROREACTOR........................................................................................................................... 157<br />

I. SEM CHARACTERIZATION OF PVC GRAINS................................................................................. 159<br />

I.A. PVC GRAINS OBTAINED FROM MICROREACTOR........................................................................... 160<br />

I.B. INFLUENCE OF THE TEMPERATURE ............................................................................................... 162<br />

I.B.1) Short bibliographic review........................................................................................................ 162<br />

I.B.2) Experim<strong>en</strong>tal results from micro<strong>reactor</strong>.................................................................................... 163<br />

I.C. INFLUENCE OF AGITATION............................................................................................................ 165<br />

I.D. INFLUENCE OF INITIATOR CONCENTRATION................................................................................. 166<br />

II. CONCLUSION ................................................................................................................................. 170<br />

GENERAL CONCLUSION AND PERSPECTIVES OF THIS STUDY..................................... 173<br />

APPENDIX 1 ..................................................................................................................................... 179<br />

APPENDIX 2 ..................................................................................................................................... 185<br />

BIBLIOGRAPHIC REFERENCES ................................................................................................ 191<br />

3


List of symbols<br />

LIST OF SYMBOLS<br />

Lat<strong>in</strong> letters<br />

A - Frequ<strong>en</strong>cy factor<br />

Bo - Bond number<br />

Ca - Capillary number<br />

D m Specific l<strong>en</strong>gth scale<br />

D km.m 3 D<strong>en</strong>sity<br />

De - Dean number<br />

D x m 2 .s -1 Self-diffusion coeffici<strong>en</strong>t of specie y<br />

D x,0 m 2 .s -1 Pre-expon<strong>en</strong>tial factor<br />

∆E kJ mole -1 Appar<strong>en</strong>t activation <strong>en</strong>ergy<br />

f - Darcy coeffici<strong>en</strong>t<br />

f g - Droplet g<strong>en</strong>eration frequ<strong>en</strong>cy<br />

f I - Initiator effici<strong>en</strong>cy<br />

G<br />

f<br />

H , x<br />

- Fractional hole free volume of pure compon<strong>en</strong>t at T g<br />

g m.s -2 Gravitational acceleration<br />

∆H p kJ.mol -1 Polymerization heat<br />

[I] mole.L -1 Initiator conc<strong>en</strong>tration<br />

J<br />

Parameter def<strong>in</strong>ed <strong>in</strong> the model<br />

k - Constant from Weisbach equation<br />

k L mol -1 s -1 Effective rate constant<br />

K - Solubility constant<br />

K* - Precipitation parameter<br />

K’ de s -1 Radical desorption rate constant<br />

K app m 2 .s -1 Appar<strong>en</strong>t reaction rate constant<br />

K chem m 2 .s -1 Intr<strong>in</strong>sic reaction rate constant<br />

K d s -1 Initiator decomposition rate constant<br />

K diff m 2 .s -1 Diffusion contribution to the rate constant<br />

K f L.mole -1 s -1 Cha<strong>in</strong> transfer rate constant<br />

K I - Initiator partition coeffici<strong>en</strong>t<br />

K p L.mole -1 s -1 Propagation rate constant<br />

K t m 3 .kmole -1 m<strong>in</strong> -1 Term<strong>in</strong>ation rate constant<br />

L m Specific l<strong>en</strong>gth<br />

5


List of symbols<br />

M g Mass of monomer<br />

M m g.mole -1 Monomer molecular weight<br />

M m kg.mole -1 Molecular mass of monomer<br />

[M] mol L -1 Monomer conc<strong>en</strong>tration<br />

n - Reaction order<br />

N 0 mole Initial number of monomer moles<br />

N A mol -1 Avogadro constant<br />

P Pa Partial pressure of VCM<br />

P 0 Pa Saturation pressure of VCM<br />

PA - Peak area<br />

Po - Poiseuille number<br />

Q m.s -1 Flow rate<br />

r m Droplet radius<br />

R J mole -1 K -1 Gas constant<br />

[R•] mole.l -1 Radical conc<strong>en</strong>tration<br />

R c m Curvature radius<br />

Re - Reynolds number<br />

R p mole.L -1 m<strong>in</strong> -1 Polymerization rate<br />

S m Channel section<br />

T K Temperature<br />

t s Time<br />

T g K Glass transition temperature<br />

v m.s -1 Characteristic velocity<br />

*<br />

V ) m 3 .kg Specific volume that a molecule needs to make a diffusional jump<br />

x<br />

V ~ FH<br />

m 3 .kg Free volume of polymer-monomer mixture of the polymer phase<br />

available for diffusion<br />

V ) m 3 .kg Specific hole free volume<br />

FH<br />

w m Channel width<br />

We - Weber number<br />

w x - Monomer/polymer weight fraction <strong>in</strong> the polymer phase<br />

X - Conversion degree<br />

X f - Critical conversion<br />

6


List of symbols<br />

Subscripts:<br />

0 Initial state<br />

1 Monomer phase<br />

2 Polymer phase<br />

c<br />

Cont<strong>in</strong>uous phase<br />

d<br />

Descont<strong>in</strong>uous phase<br />

exp<br />

Experim<strong>en</strong>tal value<br />

g<br />

Gas phase<br />

m<br />

Monomer phase<br />

p<br />

Polymer phase<br />

TP<br />

Two-phase<br />

w<br />

Water phase<br />

Greek letters<br />

α c,p K -1 Close-packed crystall<strong>in</strong>e state expansion coeffici<strong>en</strong>t<br />

α x K -1 Monomer/polymer thermal expansion coeffici<strong>en</strong>t<br />

γ - Overlap factor<br />

γ& s -1 Shear rate<br />

γ x - Hole free volume overlap factor<br />

ε - Shr<strong>in</strong>kage factor<br />

ε c - Volume fraction of the cont<strong>in</strong>uous phase<br />

θ - Contact angle<br />

µ Pa.s Viscosity<br />

ρ kg.m -3 D<strong>en</strong>sity<br />

σ N.m -1 Interfacial t<strong>en</strong>sion<br />

σ m m L<strong>en</strong>nard-Jones diameter of a monomer molecule<br />

τ w - Shear stress at the wall<br />

x - Mass fraction<br />

Acronyms<br />

AIBN<br />

ATRP<br />

Azoisobutyronitryle<br />

Atom transfer radical <strong>polymerization</strong><br />

7


List of symbols<br />

BA<br />

BMA<br />

ClBu<br />

CRP<br />

DCHPC<br />

HPMA<br />

ID<br />

MFFD<br />

NMP<br />

OD<br />

PAA<br />

PDI<br />

PDMS<br />

PEEK<br />

PFA<br />

PMMA<br />

PVA<br />

PVC<br />

RAFT<br />

SDS<br />

S-PVC<br />

St<br />

TPGDA<br />

VBz<br />

VCM<br />

Buthyl acrylate<br />

B<strong>en</strong>zyl methacrylate<br />

Buthyl <strong>chloride</strong><br />

Controlled radical <strong>polymerization</strong><br />

Di(4-tert-butylcyclohexyl) peroxydicarbonate<br />

Hydroxypropyl methacrylate<br />

Internal diameter<br />

Micro flow focus<strong>in</strong>g device<br />

Nitroxide-mediated <strong>polymerization</strong><br />

Outer diameter<br />

Polyacrylic acid<br />

Polydispersity <strong>in</strong>dex<br />

Polydimethylsiloxane<br />

Polyetherether ketone<br />

Perfluoroalcoxy alcane<br />

Polymethyl methacrylate<br />

Polyv<strong>in</strong>yl alcohols with acetate cont<strong>en</strong>t<br />

Poly v<strong>in</strong>yl <strong>chloride</strong><br />

Reversible addition-fragm<strong>en</strong>tation cha<strong>in</strong>-transfer <strong>polymerization</strong><br />

Sodium dodecyl sulphate<br />

<strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> susp<strong>en</strong>sion <strong>polymerization</strong><br />

Styr<strong>en</strong>e<br />

Tripropyl<strong>en</strong>e Glycol Diacrylate<br />

<strong>V<strong>in</strong>yl</strong> b<strong>en</strong>zoate<br />

<strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> monomer<br />

8


INTRODUCTION AND<br />

OUTLINE<br />

9


Introduction and outl<strong>in</strong>e<br />

INTRODUCTION AND OUTLINE<br />

Poly(v<strong>in</strong>yl <strong>chloride</strong>) (PVC) is one of the most explored polymers <strong>in</strong> the world, pres<strong>en</strong>t<strong>in</strong>g a wide range<br />

of properties. For <strong>in</strong>stance, it is very durable and firm, it has good electrically nonconductive<br />

properties and withstands rust and corrosion. Moreover, comb<strong>in</strong>ation with additives may result to<br />

almost any colour PVC and a res<strong>in</strong> suitable for a variety of extrusion, cal<strong>en</strong>der<strong>in</strong>g or mold<strong>in</strong>g<br />

processes. The versatility of PVC expla<strong>in</strong>s its large use <strong>in</strong> various applications, such as pipes, fitt<strong>in</strong>gs,<br />

profiles, packag<strong>in</strong>g, cable <strong>in</strong>sulation, sheets, floor<strong>in</strong>g, artificial leather, medical equipm<strong>en</strong>t, bottles, or<br />

molded articles.<br />

PVC is nowadays the second most used plastic <strong>in</strong> the world, next to polyethyl<strong>en</strong>e, repres<strong>en</strong>t<strong>in</strong>g the<br />

source of billions of euros of <strong>in</strong>comes every year. The PVC <strong>in</strong>dustry employs more than 200,000<br />

people <strong>in</strong> Europe and the United States.<br />

<strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> is very differ<strong>en</strong>t from the common monomers such as styr<strong>en</strong>e, methyl methacrylate or<br />

v<strong>in</strong>yl acetate. It is pr<strong>in</strong>cipally dist<strong>in</strong>guished by the fact that the polymer is <strong>in</strong>soluble <strong>in</strong> its monomer,<br />

but slightly swoll<strong>en</strong> by it. The v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong> is also very dist<strong>in</strong>ct with respect to the<br />

heterog<strong>en</strong>eous <strong>polymerization</strong> of monomers, such as acrylonitrile which does not swell its polymer.<br />

This particularity also differ<strong>en</strong>tiates v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong> from the conv<strong>en</strong>tional emulsion<br />

process of unsaturated monomers.<br />

Polymerization of v<strong>in</strong>yl <strong>chloride</strong> at an <strong>in</strong>dustrial scale is exclusively carried out via a free radical<br />

mechanism. The ma<strong>in</strong> processes of PVC obta<strong>in</strong><strong>in</strong>g are: susp<strong>en</strong>sion, emulsion, bulk, and solution<br />

<strong>polymerization</strong>. Susp<strong>en</strong>sion <strong>polymerization</strong> is the most widely used procedure, followed by emulsion<br />

and bulk <strong>polymerization</strong>. Solution <strong>polymerization</strong> is reserved for a few specialty copolymers, or where<br />

the application makes it appropriate, such as solution coat<strong>in</strong>gs. The susp<strong>en</strong>sion <strong>polymerization</strong><br />

repres<strong>en</strong>ts about 80% of worldwide PVC production and it is commonly performed <strong>in</strong> batch type<br />

<strong>reactor</strong>s, repres<strong>en</strong>t<strong>in</strong>g maybe one of the most successfully completed processes <strong>in</strong> <strong>in</strong>dustry.<br />

The drastic precautions ma<strong>in</strong>ly related to the handl<strong>in</strong>g of v<strong>in</strong>yl <strong>chloride</strong> monomer have restricted the<br />

design and pilot<strong>in</strong>g of the PVC plants. The toxicological aspect of the monomer also hampered the<br />

improvem<strong>en</strong>ts of the g<strong>en</strong>eral process. This expla<strong>in</strong>s why the PVC <strong>in</strong>dustry has chos<strong>en</strong> to conserve the<br />

11


Introduction and outl<strong>in</strong>e<br />

function<strong>in</strong>g of the classical <strong>polymerization</strong> process and why fundam<strong>en</strong>tal research of the v<strong>in</strong>yl<br />

<strong>chloride</strong> susp<strong>en</strong>sion <strong>polymerization</strong> at laboratory scale is very limited.<br />

Through this perspective, the <strong>in</strong>terest of micro<strong>reactor</strong>s seems <strong>in</strong>trigu<strong>in</strong>g. It has be<strong>en</strong> confirmed that the<br />

m<strong>in</strong>iaturizations offer new methods for accurately obta<strong>in</strong><strong>in</strong>g and controll<strong>in</strong>g polymer particles with<br />

narrow size distribution. These research studies have be<strong>en</strong> described <strong>in</strong> the literature (Marcati et al.,<br />

2010; Serra et al., 2007; Seo et al., 2005). Polymerization <strong>in</strong> a two-phase dispersion system, such as<br />

susp<strong>en</strong>sion reactions, is the ma<strong>in</strong> method for obta<strong>in</strong><strong>in</strong>g polymer particles and several micro<strong>reactor</strong><br />

related studies have be<strong>en</strong> conducted on this subject. Various authors have thus proved that droplet<br />

microfluidics is an appropriate tool for <strong>polymerization</strong> reactions.<br />

Perform<strong>in</strong>g the susp<strong>en</strong>sion <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong> <strong>in</strong> micro<strong>reactor</strong> <strong>en</strong>ables the good control<br />

of the monomer droplet dim<strong>en</strong>sions. Besides, the cont<strong>in</strong>uous monitor<strong>in</strong>g of the <strong>polymerization</strong><br />

reaction ph<strong>en</strong>om<strong>en</strong>a would guide to a better knowledge of the reaction k<strong>in</strong>etics. In addition, the<br />

reaction may be <strong>in</strong>vestigated <strong>in</strong> difficult conditions <strong>in</strong> terms of pressure or temperature with a m<strong>in</strong>imal<br />

amount of reag<strong>en</strong>ts thus <strong>in</strong>creas<strong>in</strong>g the safety of the process. This research stage, considered as a<br />

fundam<strong>en</strong>tal approach might op<strong>en</strong> an opportunity to a better reaction control and optimisation.<br />

Without ev<strong>en</strong> m<strong>en</strong>tion<strong>in</strong>g the fact that it would certa<strong>in</strong>ly repres<strong>en</strong>t an <strong>in</strong>novation <strong>in</strong> the field of PVC<br />

studies.<br />

The ma<strong>in</strong> objective of this work is to acquire fundam<strong>en</strong>tal <strong>in</strong>formation regard<strong>in</strong>g the <strong>polymerization</strong><br />

ph<strong>en</strong>om<strong>en</strong>a such as the perricellular membrane formation, radical agglomeration, thus the PVC gra<strong>in</strong><br />

morphology. Also a k<strong>in</strong>etic study might furnish data regard<strong>in</strong>g the <strong>in</strong>tr<strong>in</strong>sic reaction rates. The use of<br />

micro<strong>reactor</strong>s would certa<strong>in</strong>ly allow <strong>en</strong>light<strong>en</strong><strong>in</strong>g of the ph<strong>en</strong>om<strong>en</strong>a tak<strong>in</strong>g place at the scale of a<br />

micrometer monomer droplet.<br />

This PhD thesis is structured <strong>in</strong> four chapters. The first one consists of a literature review on the<br />

susp<strong>en</strong>sion v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong>, analys<strong>in</strong>g the elem<strong>en</strong>ts that might change the reaction<br />

course. An overview of the k<strong>in</strong>etic models exist<strong>in</strong>g <strong>in</strong> the bibliography is pres<strong>en</strong>ted. F<strong>in</strong>ally, the<br />

application of micro<strong>reactor</strong>s to polymer synthesis is described, accompanied with literature examples.<br />

Chapter two is focused on the hydrodynamics of v<strong>in</strong>yl <strong>chloride</strong>/water system <strong>in</strong> fused silica<br />

microchannels. The experim<strong>en</strong>tal pilot is described, designed especially for this purpose, allow<strong>in</strong>g<br />

high pressure and temperature conditions, <strong>en</strong>sur<strong>in</strong>g also complete safety with regard to the<br />

12


Introduction and outl<strong>in</strong>e<br />

carc<strong>in</strong>og<strong>en</strong>ic effect of the monomer. The two-phase system is described <strong>in</strong> terms of droplet l<strong>en</strong>gth,<br />

velocities and shapes.<br />

The third chapter of this PhD is dedicated to a k<strong>in</strong>etic study. This was at first performed by means of<br />

microscopy analysis of the droplet shr<strong>in</strong>kage. The stages lead<strong>in</strong>g to the choice of an appropriate <strong>in</strong>-l<strong>in</strong>e<br />

analysis technique are described, followed by the developm<strong>en</strong>t of a k<strong>in</strong>etic monitor<strong>in</strong>g method adapted<br />

to micro<strong>reactor</strong> and to the v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong> particular characteristics.<br />

F<strong>in</strong>ally, the last chapter is dedicated to a morphological analysis of the PVC gra<strong>in</strong>s obta<strong>in</strong>ed <strong>in</strong><br />

micro<strong>reactor</strong> by means of Scann<strong>in</strong>g Electron Microscopy. It reveals <strong>in</strong>terest<strong>in</strong>g aspects related to the<br />

<strong>in</strong>ternal structure of the polymer particles.<br />

The research carried out <strong>in</strong> this thesis arised at the request of Tess<strong>en</strong>derlo Group, the 6th largest<br />

manufacturer of PVC <strong>in</strong> Europe <strong>in</strong> 2007. In 2011 the group becomes part of Ineos Chlor<strong>V<strong>in</strong>yl</strong>s, one of<br />

the major chlor-alkali producers <strong>in</strong> Europe, a global leader <strong>in</strong> chlor<strong>in</strong>e derivatives and Europe's largest<br />

PVC manufacturer.<br />

13


CHAPTER I:<br />

BIBLIOGRAPHIC REVIEW<br />

15


Chapter I : Bibliographic review<br />

This study is related to the design of a micro<strong>reactor</strong> device able to realize the v<strong>in</strong>yl <strong>chloride</strong><br />

<strong>polymerization</strong> reaction.<br />

This chapter will first provide <strong>in</strong>formation regard<strong>in</strong>g various aspects of radical <strong>polymerization</strong> of v<strong>in</strong>yl<br />

<strong>chloride</strong> as well as an <strong>in</strong>troduction to microfluidics and their applications to chemical <strong>en</strong>g<strong>in</strong>eer<strong>in</strong>g. The<br />

most important methods of <strong>polymerization</strong> are pres<strong>en</strong>ted: emulsion, solution, bulk and susp<strong>en</strong>sion.<br />

The latter is discussed more <strong>in</strong> depth, treat<strong>in</strong>g the physical ph<strong>en</strong>om<strong>en</strong>a occurr<strong>in</strong>g <strong>in</strong> the process and the<br />

elem<strong>en</strong>ts that <strong>in</strong>terv<strong>en</strong>e. A brief description of the most important k<strong>in</strong>etic studies on the S-PVC is<br />

realized together to some consideration on the heat g<strong>en</strong>eration dur<strong>in</strong>g the reaction.<br />

The second part of the chapter is dedicated to a novel branch of chemical <strong>en</strong>g<strong>in</strong>eer<strong>in</strong>g: the<br />

micro<strong>reactor</strong>s. Elem<strong>en</strong>ts characteriz<strong>in</strong>g fluid flow at microscale are pres<strong>en</strong>ted, as well as the differ<strong>en</strong>t<br />

techniques allow<strong>in</strong>g droplet g<strong>en</strong>eration <strong>in</strong> such devices. The droplet formation is however strongly<br />

dep<strong>en</strong>d<strong>en</strong>t to microchannel-related geometrical aspects but also to physical properties of the two<br />

phases. This part of the chapter is completed with some applications of differ<strong>en</strong>t <strong>polymerization</strong><br />

reactions performed <strong>in</strong> micro<strong>reactor</strong>s.<br />

F<strong>in</strong>ally the sci<strong>en</strong>tific strategy adopted from the <strong>in</strong>formation furnished <strong>in</strong> the bibliographic study is<br />

pres<strong>en</strong>ted.<br />

I. Radical <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong><br />

<strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> is an important <strong>in</strong>dustrial chemical ma<strong>in</strong>ly used to produce polyv<strong>in</strong>yl <strong>chloride</strong> by<br />

radical <strong>polymerization</strong>. Commonly abbreviated as PVC, it repres<strong>en</strong>ts one of the most widely produced<br />

plastic materials. It is used <strong>in</strong> construction because of its durability, cheapness, and easily to work<br />

characteristics. Due to its excell<strong>en</strong>t mechanical properties, PVC is the third most employed<br />

thermoplastic res<strong>in</strong>, after polyethyl<strong>en</strong>e and polypropyl<strong>en</strong>e. PVC production is expected to exceed 40<br />

million tonnes by 2016 (after a study performed <strong>in</strong> 2008 by Ebner Mart<strong>in</strong>).<br />

I.A. Elem<strong>en</strong>tal chemical reactions<br />

Free radical <strong>polymerization</strong> is a common <strong>polymerization</strong> method by which a polymer is formed by the<br />

successive addition of free radical build<strong>in</strong>g blocks. Free radicals can be obta<strong>in</strong>ed by a number of<br />

differ<strong>en</strong>t mechanisms usually <strong>in</strong>volv<strong>in</strong>g <strong>in</strong>itiator molecules (<strong>in</strong>itiation reaction). Once g<strong>en</strong>erated, the<br />

17


Chapter I : Bibliographic review<br />

<strong>in</strong>itiat<strong>in</strong>g free radical adds nonradical monomer units (propagation stage), thereby grow<strong>in</strong>g the<br />

polymer cha<strong>in</strong>.<br />

The ma<strong>in</strong> reactions occurr<strong>in</strong>g dur<strong>in</strong>g radical <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong> are pres<strong>en</strong>ted below and<br />

<strong>in</strong>clude the <strong>in</strong>itiation of the reaction, the head-to-tail addition (propagation), bimolecular term<strong>in</strong>ation<br />

and cha<strong>in</strong> transfer to monomer.<br />

The <strong>in</strong>itiation reaction <strong>in</strong>volves only <strong>in</strong>itiator molecules and it repres<strong>en</strong>ts a homolytical rupture of a<br />

poor <strong>en</strong>ergy bond by the action of heat, g<strong>en</strong>erat<strong>in</strong>g two radicals:<br />

I I' I• +<br />

I'•<br />

Scheme I- 1: Decomposition of <strong>in</strong>itiator<br />

The propagation reaction repres<strong>en</strong>ts a head-to-tail addition, where a chlor<strong>in</strong>e atom is situated on<br />

alternate carbons of the grow<strong>in</strong>g cha<strong>in</strong>:<br />

I • + H 2 C<br />

CH<br />

I<br />

CH 2<br />

CH •<br />

Cl<br />

Cl<br />

CH 2<br />

CH • + H 2 C<br />

CH<br />

CH 2<br />

CH<br />

CH 2<br />

CH•<br />

Cl<br />

Cl<br />

Cl<br />

Scheme I- 2: Propagation reaction<br />

Cl<br />

The term<strong>in</strong>ation reaction consists of polymer radicals react<strong>in</strong>g together to produce one (recomb<strong>in</strong>ation)<br />

or two (disproportionation) polymer molecules:<br />

2 CH 2 CH<br />

CH 2<br />

CH• CH 2 CH<br />

CH 2<br />

CH<br />

CH<br />

CH 2<br />

HC<br />

CH 2<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

2 CH 2 CH<br />

CH 2<br />

CH• CH 2 CH<br />

CH<br />

CH<br />

+ H 2 C CH 2 HC CH 2<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

Scheme I- 3: Term<strong>in</strong>ation reaction<br />

A reaction of great importance <strong>in</strong> the PVC synthesis is the cha<strong>in</strong> transfer to monomer. It occurs<br />

betwe<strong>en</strong> a grow<strong>in</strong>g macroradical and a VCM molecule and it also repres<strong>en</strong>ts an important term<strong>in</strong>ation<br />

mode:<br />

18


Chapter I : Bibliographic review<br />

CH 2<br />

CH + H C CH<br />

HC CH 2<br />

2 +<br />

C H 2<br />

C<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

CH 2<br />

CH<br />

+ H C CH<br />

HC CH<br />

+<br />

2<br />

C H 3<br />

CH<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

Scheme I- 4 : Cha<strong>in</strong> transfer to monomer reactions<br />

The f<strong>in</strong>al v<strong>in</strong>yl <strong>chloride</strong> polymer structure is repres<strong>en</strong>ted below, where n stands for the degree of<br />

<strong>polymerization</strong> and its value ranges from 500 to 3500 (Summers, 1997).<br />

Figure I- 1 : Structure of PVC<br />

I.B. Radical <strong>V<strong>in</strong>yl</strong> Chloride Polymerization Methods<br />

There are many methods employed at <strong>in</strong>dustrial scale applied for radical <strong>polymerization</strong> reactions.<br />

They can be g<strong>en</strong>erally divided <strong>in</strong> two categories: the homog<strong>en</strong>eous and the heterog<strong>en</strong>eous processes.<br />

The ma<strong>in</strong> features of these differ<strong>en</strong>t radical <strong>polymerization</strong> methods are furnished by K. Endo <strong>in</strong> 2002,<br />

and can be summarized <strong>in</strong> Table I- 1.<br />

Type Advantages Disadvantages<br />

Homog<strong>en</strong>eous<br />

Bulk-batch<br />

Simple equipm<strong>en</strong>t<br />

May require solution and subsequ<strong>en</strong>t<br />

precipitation for purification and/or<br />

fabrication<br />

May need reduction to usable particle sizes<br />

Heat control important<br />

Broad molecular-weight distribution<br />

Bulk-cont<strong>in</strong>uous<br />

Solution<br />

Easier heat control<br />

Narrow molecular weight<br />

distribution<br />

Easy agitation<br />

May allow longer cha<strong>in</strong>s to be<br />

formed<br />

Good heat control<br />

Reactant recycl<strong>in</strong>g is mandatory<br />

May require solution and subsequ<strong>en</strong>t<br />

precipitation for purification and/or<br />

fabrication<br />

Needs more complex equipm<strong>en</strong>t<br />

May require reduction to usable particle sizes<br />

Agitation is required<br />

Solv<strong>en</strong>t must be removed and recycled<br />

Requires polymer recovery<br />

Solv<strong>en</strong>t cha<strong>in</strong> transfer may be harmful (i.e.<br />

reaction with solv<strong>en</strong>t)<br />

Heterog<strong>en</strong>eous<br />

Good heat control<br />

Easy agitation<br />

19


Chapter I : Bibliographic review<br />

Emulsion<br />

Latex may be directly usable<br />

High <strong>polymerization</strong> rates<br />

possible<br />

Usable, small-particle size<br />

possible<br />

Usable <strong>in</strong> produc<strong>in</strong>g soft and<br />

solid particles<br />

Polymer may require additional cleanup and<br />

purification<br />

Difficult to elim<strong>in</strong>ate <strong>en</strong>tr<strong>en</strong>ched coagulants,<br />

emulsifiers, surfactants etc.<br />

Oft<strong>en</strong> requires rapid agitation<br />

Precipitation<br />

Susp<strong>en</strong>sion<br />

Molecular weight distribution<br />

ma<strong>in</strong>ta<strong>in</strong>ed by control of<br />

<strong>polymerization</strong> <strong>en</strong>vironm<strong>en</strong>t<br />

Easy agitation<br />

Higher-purity product wh<strong>en</strong><br />

compared to emulsion<br />

May require solution and reprecipitation of<br />

product to remove unwanted material<br />

Precipitation may act to limit molecularweight<br />

disallow<strong>in</strong>g formation of ultrahighmolecular-weight<br />

products<br />

S<strong>en</strong>sitive to agitation<br />

Particle size difficult to control<br />

Table I- 1: Characteristics of the ma<strong>in</strong> v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong> methods<br />

I.C. Physical Considerations On <strong>V<strong>in</strong>yl</strong> Chloride Monomer<br />

At ambi<strong>en</strong>t temperature and pressure, v<strong>in</strong>yl <strong>chloride</strong> (VCM) is a colorless gas, with its boil<strong>in</strong>g<br />

temperature of -13.8 °C and a sweet, ethereal odor accord<strong>in</strong>g to Blout et al. (1949). VCM is stored or<br />

shipped as a liquid, which has a vapor pressure of about 3 bar at ambi<strong>en</strong>t temperatures. VCM is highly<br />

flammable and forms explosive mixtures with air. Hazardous properties of VCM are its narcotic effect<br />

<strong>in</strong> the case of <strong>in</strong>halation of high conc<strong>en</strong>trations and its carc<strong>in</strong>og<strong>en</strong>ity, caus<strong>in</strong>g angiosarcomas<br />

(Cameron et al., 1981). The toxicological data on VCM are pres<strong>en</strong>ted <strong>in</strong> App<strong>en</strong>dix A1 of this thesis.<br />

The solubility of VCM <strong>in</strong> water is about 8.8·10 -3 P/P 0 (kg/kg water), where P is the partial pressure and<br />

P 0 the saturation pressure of VCM.<br />

The liquid d<strong>en</strong>sity at 25 °C is 901.3 kg/m 3 and the d<strong>en</strong>sity of technical PVC falls <strong>in</strong>to the range of<br />

1390-1400 kg/m 3 . The heat of <strong>polymerization</strong> has be<strong>en</strong> determ<strong>in</strong>ed to be ∆H p = -97.6 kJ/mol (Saeki<br />

and Emura, 2002). The <strong>in</strong>terfacial t<strong>en</strong>sion at the water/VCM <strong>in</strong>terface without additives is found to be<br />

32 mN/m (Nilsson et al., 1985).<br />

I.D. <strong>V<strong>in</strong>yl</strong> Chloride Susp<strong>en</strong>sion <strong>polymerization</strong><br />

The susp<strong>en</strong>sion <strong>polymerization</strong> process of v<strong>in</strong>yl <strong>chloride</strong> (S-PVC) is a process carried out <strong>in</strong> millions<br />

of ‘small <strong>reactor</strong>s’ repres<strong>en</strong>ted by the monomer droplets themselves.<br />

20


Chapter I : Bibliographic review<br />

Actually, the term ‘susp<strong>en</strong>sion <strong>polymerization</strong>’ is a misnomer <strong>in</strong> the s<strong>en</strong>se that it expresses the status<br />

of the dispersed system at the <strong>en</strong>d of the <strong>polymerization</strong>. Before and dur<strong>in</strong>g most of the <strong>polymerization</strong><br />

process, this system is ess<strong>en</strong>tially a liquid-liquid dispersion – which is by def<strong>in</strong>ition, an emulsion.<br />

A typical recipe for S-PVC process has the follow<strong>in</strong>g <strong>in</strong>gredi<strong>en</strong>ts and parameters, which will be all<br />

discussed further <strong>in</strong> detail:<br />

Polymerization degree 1000<br />

VCM<br />

100 parts<br />

Water (de-m<strong>in</strong>eralized)<br />

120 parts<br />

Susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>t (PVA, etc.)<br />

0.05-0.10 parts<br />

Initiator (peroxi compounds, etc.)<br />

0.03-0.16 parts<br />

Polymerization temperature 57°C<br />

Conversion 85-90%<br />

Pressure at <strong>en</strong>d of <strong>polymerization</strong><br />

5 bar<br />

Polymerization time<br />

8h<br />

Table I- 2: Susp<strong>en</strong>sion <strong>polymerization</strong> recipe from Alexopoulos et al. (2007)<br />

In S-PVC, the liquid v<strong>in</strong>yl <strong>chloride</strong> under its autog<strong>en</strong>eous pressure is dispersed <strong>in</strong> the aqueous<br />

cont<strong>in</strong>uous phase and divided <strong>in</strong> small droplets (30 – 50 µm) by vigorous stirr<strong>in</strong>g (see Figure I- 2). The<br />

protective colloids added <strong>in</strong>hibit them to coalesce. The <strong>polymerization</strong> is <strong>in</strong>itiated by organic <strong>in</strong>itiators,<br />

like peroxides or azo-compounds.<br />

Primary stabilizer<br />

Secondary stabilizer<br />

Primary particle<br />

Basic particle<br />

Microscale<br />

Macroscale<br />

Figure I- 2: Macro and micro scale repres<strong>en</strong>tation of <strong>reactor</strong>, monomer droplets and primary particlesprocesses<br />

from Alexopoulos et al. (2007)<br />

Consequ<strong>en</strong>tly, the <strong>polymerization</strong> takes place <strong>in</strong> each monomer droplet. The reaction is carried out at<br />

<strong>polymerization</strong> temperatures <strong>in</strong> the range of 40 – 70°C under the saturated pressure of VCM. The<br />

pressure <strong>in</strong> the autoclave rema<strong>in</strong>s therefore constant until the liquid monomer phase is consumed. At<br />

this po<strong>in</strong>t, a critical conversion (referred to as X f ) is reached and <strong>polymerization</strong> only proceeds <strong>in</strong> the<br />

21


Chapter I : Bibliographic review<br />

polymer phase swoll<strong>en</strong> with monomer (30% weight). With further <strong>in</strong>crease <strong>in</strong> conversion, the pressure<br />

gradually drops. These details are schematically repres<strong>en</strong>ted <strong>in</strong> Figure I- 3.<br />

Figure I- 3: Relationship betwe<strong>en</strong> <strong>reactor</strong> pressure and monomer distribution from Xie et al. (1991a)<br />

It will be th<strong>en</strong> proper to say that the S-PVC process under the commercial temperatures is subject to<br />

both isobaric as well as non-isobaric conditions. This pressure drop (measured as the differ<strong>en</strong>ce<br />

betwe<strong>en</strong> VCM vapour pressure and the f<strong>in</strong>al pressure of the <strong>reactor</strong>) is a good <strong>in</strong>dicator of the f<strong>in</strong>al<br />

conversion of the reaction, as m<strong>en</strong>tioned by Xie et al. (1991a).<br />

Before the pressure drops <strong>in</strong> the <strong>reactor</strong>, there is still an equilibrium established betwe<strong>en</strong> phases.<br />

Therefore until all the liquid VCM is consumed, there will be no diffusion of monomer from vapour<br />

phase to polymer phase. The number of moles of VCM <strong>in</strong> vapour phase will not decrease. Its volume<br />

will <strong>in</strong>crease as a result of the shr<strong>in</strong>kage of the volume of the reaction medium due to the d<strong>en</strong>sity<br />

differ<strong>en</strong>ce betwe<strong>en</strong> VCM and PVC. In order to ma<strong>in</strong>ta<strong>in</strong> a constant pressure, the monomer <strong>in</strong> the<br />

liquid phase must diffuse through the <strong>in</strong>terface and through water phase <strong>in</strong>to the vapour phase. Wh<strong>en</strong><br />

VCM phase is completely dim<strong>in</strong>ished, the monomer conc<strong>en</strong>tration <strong>in</strong> polymer phase decreases<br />

<strong>en</strong>abl<strong>in</strong>g monomer transfer from water and vapour phases to the polymer phase. The result is a<br />

pressure drop correspond<strong>in</strong>g to high conversion values. The mechanism of diffusion of monomer<br />

among phases is shown <strong>in</strong> Figure I- 4.<br />

22


Chapter I : Bibliographic review<br />

Vapour phase<br />

Vapour phase<br />

VCM<br />

Vapour-water <strong>in</strong>terface<br />

VCM<br />

Water phase<br />

VCM<br />

Water phase<br />

PVC-water <strong>in</strong>terface<br />

VCM<br />

X f<br />

Figure I- 4: Monomer transfer before and after the critical conversion X f from Xie et al. (1991a)<br />

I.D.1) The physical ph<strong>en</strong>om<strong>en</strong>a<br />

Because PVC is <strong>in</strong>soluble <strong>in</strong> its own monomer, VCM <strong>polymerization</strong> is a heterog<strong>en</strong>eous process<br />

which implies some physical transitions dur<strong>in</strong>g the reaction. The f<strong>in</strong>al PVC product is composed from<br />

primary particles and their agglomerates. The <strong>en</strong>tire mechanism of growth and aggregation of primary<br />

particles has be<strong>en</strong> the object of many literature studies. In fact, this process plays a ma<strong>in</strong> role <strong>in</strong> the<br />

assignm<strong>en</strong>t of a valid k<strong>in</strong>etic model. Among the authors that have exam<strong>in</strong>ed the formation of primary<br />

particles <strong>in</strong>side the monomer droplet, we cite Boissel et al. (1977) who suggested that the polymer<br />

precipitation from the monomer phase starts at low conversions (0,001%), a value much lower than<br />

that reported before by Ravey et al. (1974) of 0,03 %.<br />

The <strong>polymerization</strong> degree estimated for the beg<strong>in</strong>n<strong>in</strong>g of precipitation was around 25-32 accord<strong>in</strong>g to<br />

Cotman et al. (1967). Other authors such as Rance et al. (1981) established that the solubility of<br />

polymer <strong>in</strong> its own monomer is limited up to 10 monomer units. Although the hypothesis regard<strong>in</strong>g<br />

the beg<strong>in</strong>n<strong>in</strong>g of precipitation are not always id<strong>en</strong>tical, one can conclude that the precipitation starts at<br />

very low values of conversion.<br />

The morphological units exist<strong>in</strong>g from the beg<strong>in</strong>n<strong>in</strong>g of the <strong>polymerization</strong> process can be<br />

summarized <strong>in</strong> Table I- 3 based on <strong>in</strong>formation from Xie et al. (1991b).<br />

23


Chapter I : Bibliographic review<br />

PVC morphology developm<strong>en</strong>t<br />

Particle Unit<br />

Gra<strong>in</strong><br />

Sub-gra<strong>in</strong><br />

Approximate size<br />

Range<br />

Average<br />

(µm)<br />

(µm)<br />

50 – 250 100 – 130<br />

10 – 150 40 – 60<br />

Orig<strong>in</strong> or description<br />

Visible constitu<strong>en</strong>ts of free flow<strong>in</strong>g powders,<br />

made up of more than 1 monomer droplet.<br />

Polymerized monomer droplet.<br />

Agglomerate<br />

3 – 10 ~ 5<br />

Formed by coalesc<strong>en</strong>ce of primary particles (1<br />

µm); grows with conversion (50 – 70 %).<br />

Primary<br />

particle<br />

0.6 – 1.5 ~ 1<br />

Grows from doma<strong>in</strong>. Formed at low conversion<br />

by coalesc<strong>en</strong>ce of microdoma<strong>in</strong> until the<br />

formation of cont<strong>in</strong>uous network <strong>in</strong> droplets (up<br />

to 15 – 30 % conversion).<br />

Doma<strong>in</strong><br />

Nano-doma<strong>in</strong><br />

0.1 – 0.3 ~ 0.2<br />

0.1 – 0.02 ~ 0.02<br />

Primary particle nucleus. Conta<strong>in</strong>s about 10 3<br />

nano-doma<strong>in</strong>s. Only observed at low conversion<br />

(5 – 10 %) and is stabilized by charge (negative<br />

chrge result<strong>in</strong>g from the pres<strong>en</strong>ce of HCl)<br />

Smallest species so far id<strong>en</strong>tified. Aggregate of<br />

polymer cha<strong>in</strong>s (10 – 30 monomer units) at les<br />

than 0.01 % conversion.<br />

Table I- 3 : PVC morphology developm<strong>en</strong>t accord<strong>in</strong>g to Xie et al. (1991b)<br />

The evolution of primary PVC particles is schematically repres<strong>en</strong>ted <strong>in</strong> Figure I- 5.<br />

Nano-doma<strong>in</strong>s<br />

Doma<strong>in</strong>s<br />

80 – 200 nm<br />

Primary Particles (PP)<br />

0,2 – 1,5 µm<br />

PP Agglomerates<br />

1 – 10 µm<br />

Growth and fusion of Agglomerates<br />

1 – 10 µm<br />

X


Chapter I : Bibliographic review<br />

- precipitation of macroradicals and macromolecules on to the formed microdoma<strong>in</strong> or doma<strong>in</strong><br />

- <strong>polymerization</strong> <strong>in</strong>side the microdoma<strong>in</strong> or doma<strong>in</strong><br />

Similarly, the gra<strong>in</strong> formation at higher conversions is controlled by (Tornell and Uustalu., 1988):<br />

- formation and aggregation of primary particles <strong>in</strong> VCM droplets, followed by their<br />

agglomeration<br />

- formation of a PVC-re<strong>in</strong>forced sk<strong>in</strong> around the droplet<br />

- agglomeration of a number of sk<strong>in</strong>-covered droplets<br />

- shr<strong>in</strong>kage of the gra<strong>in</strong> due to volume changes<br />

- <strong>in</strong>vasion of pore system by water.<br />

It has be<strong>en</strong> proved that the primary particles <strong>in</strong>crease <strong>in</strong> size dur<strong>in</strong>g a conversion range of 5-70 % with<br />

growth dep<strong>en</strong>d<strong>in</strong>g on reaction temperature. At high conversion the primary particles fuse together.<br />

Smallwood (1986) has suggested that the conversion at which the primary particles beg<strong>in</strong> to fuse is the<br />

same as that at which the free monomer phase disappears. The limit<strong>in</strong>g size of primary particle is<br />

about 1.4 µm and their number decreases up to 40 – 50 % conversion, their f<strong>in</strong>al number be<strong>in</strong>g 2.0 x<br />

10 11 cm -3 for temperatures <strong>in</strong> the range of 50 – 70°C accord<strong>in</strong>g to the same author.<br />

Bao and Brooks (2001) noted that the mean particle size is established at low conversions (< 20%),<br />

imply<strong>in</strong>g that the VCM droplets f<strong>in</strong>ish the agglomeration at early stages of <strong>polymerization</strong>, while the<br />

primary particles cont<strong>in</strong>ue to aggregate <strong>in</strong> the droplet produc<strong>in</strong>g its shr<strong>in</strong>kage.<br />

I.D.2) Differ<strong>en</strong>t elem<strong>en</strong>ts that <strong>in</strong>flu<strong>en</strong>ce the susp<strong>en</strong>sion <strong>polymerization</strong> of<br />

<strong>V<strong>in</strong>yl</strong> Chloride<br />

I.D.2.a<br />

The susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>ts<br />

As the susp<strong>en</strong>sion system of PVC is thermodynamically unstable, it is ma<strong>in</strong>ta<strong>in</strong>ed by means of<br />

agitation and use of susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>ts, therefore used to prev<strong>en</strong>t coalesc<strong>en</strong>ce of <strong>in</strong>dividual VCM<br />

droplets and control their morphology.<br />

These additives are partially water-soluble polymers such as cellulose derivatives and partially<br />

hydrolyzed poly v<strong>in</strong>yl acetates, commonly m<strong>en</strong>tioned as PVA. The latter, which is available <strong>in</strong> a wide<br />

25


Chapter I : Bibliographic review<br />

variety of hydrolysis degree (measured as a function of degree of hydrolysis of the acetates group), is<br />

g<strong>en</strong>eraly used <strong>in</strong> commercial production of PVC.<br />

The degree of hydrolysis and molecular weight of PVA determ<strong>in</strong>es the protective action and therefore<br />

the f<strong>in</strong>al size, shape and porosity (morphology) of the polymer particles. Also it determ<strong>in</strong>es the<br />

position<strong>in</strong>g of PVA at the surface of the VCM droplets, as shown <strong>in</strong> Figure I- 6:<br />

Hydrophilic<br />

segm<strong>en</strong>t<br />

H 2 O<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH OH OH<br />

OH<br />

OAc OAc<br />

OH<br />

OH<br />

OH<br />

OAc OAc<br />

OH<br />

OAc OH<br />

OAc OAc OAc<br />

OAc<br />

OH OH OAc<br />

OAc<br />

Hydrophobic<br />

MVC<br />

OAc<br />

segm<strong>en</strong>t<br />

VCM<br />

OH<br />

OH<br />

OH<br />

Figure I- 6 : PVA susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>t positioned at the <strong>in</strong>terface monomer - water<br />

The so-called primary susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>t is employed to regulate the size of the polymer particles. This<br />

PVA is a block copolymer with a hydrolysis degree over 70%. Due to its pronounced hydrophilic<br />

character, this k<strong>in</strong>d of ag<strong>en</strong>t is situated ma<strong>in</strong>ly at the outside of the droplet and is able to stabilize it<br />

well <strong>en</strong>ough to control coalesc<strong>en</strong>ce. The result<strong>in</strong>g f<strong>in</strong>al PVC particles are of the same size as the <strong>in</strong>itial<br />

VCM droplet, which makes this PVA very suitable for regulat<strong>in</strong>g the particle size.<br />

A secondary susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>t, on the other hand, acts on the porosity of the polymer particles. PVA<br />

used as secondary susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>t is a copolymer with a medium degree of hydrolysis, usually<br />

rang<strong>in</strong>g from 20 to 60%. This PVA is more withdrawn <strong>in</strong>to the droplet and therefore has a lower<br />

surface t<strong>en</strong>sion, which makes it less able to stabilize the <strong>in</strong>itial droplet. This way the droplet will break<br />

down <strong>in</strong>to several smaller droplets, which will aggregate aga<strong>in</strong> dur<strong>in</strong>g <strong>polymerization</strong>, as they are not<br />

stabilized well <strong>en</strong>ough aga<strong>in</strong>st flocculation. The f<strong>in</strong>al particles thus formed are larger than the <strong>in</strong>itial<br />

droplets and have an irregular shape and a high porosity caused by the voids with<strong>in</strong> the aggregates<br />

(Ormondroyd, 1987). Figure I- 7 illustrates the effect of each susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>t on the gra<strong>in</strong> porosity<br />

and dim<strong>en</strong>sions.<br />

26


Chapter I : Bibliographic review<br />

b)<br />

200<br />

Gra<strong>in</strong> porosity (%)<br />

40<br />

30<br />

a)<br />

150<br />

Mean gra<strong>in</strong> size (µm)<br />

60<br />

70 80<br />

Degree of hydrolysis (%)<br />

120<br />

Figure I- 7: Effect of the degree of hydrolysis of PVA’s on gra<strong>in</strong> porosity (a) and mean gra<strong>in</strong> size (b) of<br />

PVC.<br />

Wh<strong>en</strong> a comb<strong>in</strong>ation of the primary and secondary susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>ts is used, it is possible to obta<strong>in</strong><br />

<strong>in</strong>termediate conditions. The <strong>in</strong>itial droplets will still break down, but to a smaller ext<strong>en</strong>t. These<br />

droplets will aggregate aga<strong>in</strong> dur<strong>in</strong>g <strong>polymerization</strong>, result<strong>in</strong>g <strong>in</strong> a f<strong>in</strong>al particle of a multicellular<br />

structure, formed by several coalesced droplets.<br />

I.D.2.b<br />

Buffer<br />

A buffer salt such as sodium biphosphate is g<strong>en</strong>erally used to prev<strong>en</strong>t any lower<strong>in</strong>g of pH of the<br />

aqueous phase due to HCl loss from PVC dur<strong>in</strong>g <strong>polymerization</strong>. The neutralization of HCl<br />

counteracts thermal degradation dur<strong>in</strong>g <strong>polymerization</strong> and corrosion of the <strong>reactor</strong> wall or tub<strong>in</strong>g.<br />

Furthermore, the neutralization of HCl prev<strong>en</strong>ts a secondary reaction tak<strong>in</strong>g place, such as the acid<br />

catalyzed hydrolysis of the ester groups of PVA. This undesired reaction could lead to substantial<br />

differ<strong>en</strong>ces <strong>in</strong> the f<strong>in</strong>al particle size and size distribution of the PVC gra<strong>in</strong>s.<br />

There are no easy ways to measure the exact value of pH dur<strong>in</strong>g the reaction. It is assumed that the<br />

amount of buffer <strong>in</strong>troduced at the beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong> the <strong>reactor</strong> (0.08 % wt based on water) suffices so that<br />

the reaction medium does not become too acid (pH around 5-6).<br />

I.D.2.c<br />

Inhibitor of <strong>polymerization</strong><br />

The VCM <strong>polymerization</strong> reaction is a highly exothermic reaction, therefore emerg<strong>en</strong>cy situations<br />

such as power failures, temperature runaways or agitation system problems can occur. A temperature<br />

runaway would cause an <strong>in</strong>crease <strong>in</strong> both reaction rate and pressure, lead<strong>in</strong>g ev<strong>en</strong> to an explosion. To<br />

avoid the risks caused by an acceleration of the process, it is necessary to completely stop the reaction.<br />

27


Chapter I : Bibliographic review<br />

This may be achieved by us<strong>in</strong>g <strong>in</strong>hibitors of <strong>polymerization</strong>, chemical compounds such as ph<strong>en</strong>ols,<br />

qu<strong>in</strong>ones, am<strong>in</strong>es or nitro derivatives, which will rapidly react with the free radicals pres<strong>en</strong>ts <strong>in</strong> the<br />

system (Malmonge, 1996). The amount of <strong>in</strong>hibitor used must be stoichiometrically proportional to<br />

the <strong>in</strong>itiator amount. Nitro derivatives are prefer<strong>en</strong>tially used <strong>in</strong> the <strong>in</strong>hibition process, ev<strong>en</strong> though<br />

they are toxic and slightly yellow, affect<strong>in</strong>g res<strong>in</strong> quality after <strong>in</strong>hibition.<br />

I.D.2.d<br />

Agitation<br />

As already m<strong>en</strong>tioned early <strong>in</strong> this study, agitation also plays a key role <strong>in</strong> the S-PVC process. It<br />

<strong>in</strong>itially serves to break the v<strong>in</strong>yl <strong>chloride</strong> <strong>in</strong>to droplets (control of the morphology), but also to<br />

manage the heat transfer betwe<strong>en</strong> the reaction medium and the cooled <strong>reactor</strong> walls.<br />

Basically the higher the level of agitation, the smaller the VCM droplets and the greater the surface<br />

area to be protected. At a certa<strong>in</strong> agitation speed the droplets become too small and cannot be<br />

stabilized well <strong>en</strong>ough, result<strong>in</strong>g <strong>in</strong> the agglomeration and thus ev<strong>en</strong>tually the formation of larger<br />

particles. The m<strong>in</strong>imum agitation speed is def<strong>in</strong>ed as the m<strong>in</strong>imum speed at which complete dispersion<br />

of the organic phase <strong>in</strong> water can be achieved. H<strong>en</strong>ce this agitation speed is suffici<strong>en</strong>t to obta<strong>in</strong> a<br />

complete dispersion of VCM <strong>in</strong> water at the beg<strong>in</strong>n<strong>in</strong>g of the <strong>polymerization</strong>. However with<br />

<strong>in</strong>creas<strong>in</strong>g conversion it may become <strong>in</strong>suffici<strong>en</strong>t, as the viscosity of the <strong>polymerization</strong> system<br />

<strong>in</strong>creases. In the worst case sc<strong>en</strong>ario, this could f<strong>in</strong>ally result <strong>in</strong> one big block of polymer. Therefore,<br />

the m<strong>in</strong>imum agitation speed is also def<strong>in</strong>ed by the speed at which the susp<strong>en</strong>sion is ma<strong>in</strong>ta<strong>in</strong>ed dur<strong>in</strong>g<br />

the <strong>polymerization</strong>, particularly dur<strong>in</strong>g the pressure drop stage.<br />

I.D.2.e<br />

Temperature<br />

The <strong>polymerization</strong> temperature has an important impact on the porosity of PVC particles. A higher<br />

<strong>polymerization</strong> temperature causes a lower porosity, as the <strong>in</strong>ternal particles t<strong>en</strong>d to coalesce more,<br />

which results <strong>in</strong> a more compact <strong>in</strong>ternal structure. With <strong>in</strong>creas<strong>in</strong>g temperature all reaction rate<br />

constants <strong>in</strong>crease, but to differ<strong>en</strong>t ext<strong>en</strong>ts.<br />

However temperature variations may affect negatively the quality of the polymer produced, s<strong>in</strong>ce<br />

changes <strong>in</strong> the <strong>polymerization</strong> temperature may cause an <strong>in</strong>crease <strong>in</strong> polydispersity (broad<strong>en</strong><strong>in</strong>g of the<br />

molecular weight distribution).<br />

Commercial susp<strong>en</strong>sion-PVC is manufactured <strong>in</strong> the temperature range of 40-80 °C. As the result<strong>in</strong>g<br />

polymers differ <strong>in</strong> molecular weight and morphology, they are suitable for differ<strong>en</strong>t types of<br />

28


Chapter I : Bibliographic review<br />

application. PVC for commercial applications is d<strong>en</strong>oted with K-values, which is a measure of relative<br />

viscosity of PVC.<br />

I.D.2.f<br />

Oxyg<strong>en</strong><br />

The pres<strong>en</strong>ce of oxyg<strong>en</strong> causes an <strong>in</strong>duction period <strong>in</strong> the <strong>polymerization</strong> process of VCM.<br />

Nevertheless, the rate of <strong>polymerization</strong> of VCM is <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t of the <strong>in</strong>itial amount of oxyg<strong>en</strong>.<br />

<strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> may copolymerize with oxyg<strong>en</strong>, form<strong>in</strong>g peroxides (v<strong>in</strong>yl <strong>chloride</strong> polyperoxides<br />

VCPP) <strong>in</strong> the polymer cha<strong>in</strong>. And precisely these VCPP are responsible for the <strong>in</strong>duction period<br />

dur<strong>in</strong>g the <strong>polymerization</strong> process of VCM.<br />

Scheme I- 5: Reaction mechanism for the formation of VCPP<br />

Besides, these VCPP are liable to decompose under <strong>polymerization</strong> conditions giv<strong>in</strong>g rise to hydrog<strong>en</strong><br />

<strong>chloride</strong>, carbon monoxide, and formaldehyde (Garton and George, 1974).<br />

Scheme I- 6: Reaction mechanism for the decomposition of VCPP<br />

I.D.2.g<br />

Initiators<br />

The <strong>polymerization</strong> starts by the addition of a monomer-soluble <strong>in</strong>itiator, such as organic peroxides or<br />

azo compounds. In g<strong>en</strong>eral, S-PVC process may take betwe<strong>en</strong> 4 to 11 hours and both <strong>polymerization</strong><br />

time and the temperature determ<strong>in</strong>e the reactivity of the <strong>in</strong>itiator. This reactivity is expressed as the<br />

half-life time (t 1/2 ), the time necessary for that half of the <strong>in</strong>itiator to form free radicals. In practice,<br />

Verhelst et al. (1980) summarizes that <strong>in</strong>itiators with the follow<strong>in</strong>g half lives are preferred:<br />

29


Chapter I : Bibliographic review<br />

2 hours at 80° C > t 1/2 > 2/3 hour at 40° C.<br />

Organic peroxides are unstable chemical compounds, decompos<strong>in</strong>g at relatively low temperatures.<br />

They can, however, be handled and stored safely if proper precautions are followed. They can be solid<br />

long-cha<strong>in</strong> alkyl peroxydicarbonates, available <strong>in</strong> differ<strong>en</strong>t formulations. Among the latter, the water<br />

based peroxide susp<strong>en</strong>sions and emulsions are much safer than the usual solid, liquid or solv<strong>en</strong>t based<br />

peroxides.<br />

The conc<strong>en</strong>tration and type of <strong>in</strong>itiator dep<strong>en</strong>ds on the <strong>polymerization</strong> temperature and the required<br />

<strong>polymerization</strong> rate. It is common to use differ<strong>en</strong>t types and oft<strong>en</strong> comb<strong>in</strong>ations of two or more<br />

<strong>in</strong>itiators <strong>in</strong> order to optimize the reaction. For <strong>in</strong>stance, at low temperatures, a fast <strong>in</strong>itiator may be<br />

employed <strong>in</strong> comb<strong>in</strong>ation with a slower one. The fast <strong>in</strong>itiator ma<strong>in</strong>ly steps <strong>in</strong> at the very beg<strong>in</strong>n<strong>in</strong>g of<br />

the reaction <strong>in</strong> order to boost the slow <strong>in</strong>itial rate while the slow one <strong>en</strong>ables a constant reaction rate<br />

until the limit<strong>in</strong>g conversion is reached. (P<strong>in</strong>to et al., 2001).<br />

Dur<strong>in</strong>g the first stages of the reaction, the small droplets of <strong>in</strong>itiator rapidly diffuse <strong>in</strong>to the VCM. The<br />

break-up and coalesc<strong>en</strong>ce processes of the VCM droplets at the beg<strong>in</strong>n<strong>in</strong>g of the reaction positively<br />

contribute to the <strong>in</strong>itiator distribution. This distribution over the VCM droplets was found to <strong>in</strong>flu<strong>en</strong>ce<br />

the morphology of the f<strong>in</strong>al PVC particles. If the <strong>in</strong>itiator is not equally partitioned <strong>in</strong> each VCM<br />

droplet, particles without any porosity can be formed, which are therefore called clear particles. These<br />

non-porous particles have a glassy character, a high d<strong>en</strong>sity and they are very difficult to process. The<br />

pres<strong>en</strong>ce of these particles causes the appearance of visible imperfections, the so-called fish-eyes, on<br />

the surface of f<strong>in</strong>ished PVC products.<br />

The distribution of <strong>in</strong>itiator over VCM droplets can be homog<strong>en</strong>ized <strong>in</strong> a very short period of time (5<br />

m<strong>in</strong>utes) by dos<strong>in</strong>g the <strong>in</strong>itiator <strong>in</strong> solution <strong>in</strong> an <strong>in</strong>ert solv<strong>en</strong>t or as a susp<strong>en</strong>sion <strong>in</strong>stead of a dosage as<br />

a solid material with non-uniform particle sizes (PVC Symposium 1990a, PVC Symposium 1990b).<br />

The <strong>polymerization</strong> k<strong>in</strong>etics is <strong>in</strong>flu<strong>en</strong>ced by the type of <strong>in</strong>itiator, <strong>in</strong> particular by its decomposition<br />

rate or by the rate of distribution betwe<strong>en</strong> monomer and polymer phases as highlighted by Titova et al.<br />

(1982).<br />

30


Chapter I : Bibliographic review<br />

I.D.3) S-PVC k<strong>in</strong>etics<br />

I.D.3.a<br />

Chronological overview of the literature k<strong>in</strong>etic models for S-PVC<br />

Various k<strong>in</strong>etic models have be<strong>en</strong> proposed for the S-PVC process, with significant differ<strong>en</strong>ces <strong>in</strong><br />

complexity and with respect to the level of details of the chemical and physical ph<strong>en</strong>om<strong>en</strong>a tak<strong>in</strong>g<br />

place.<br />

Ev<strong>en</strong> though <strong>polymerization</strong> <strong>in</strong> the two phases was suggested earlier, Talam<strong>in</strong>i was the first to propose<br />

a two-phase <strong>polymerization</strong> scheme and modell<strong>in</strong>g approach, <strong>in</strong> 1966. The major assumption <strong>in</strong> his<br />

model was to set the ratio of radical <strong>in</strong> monomer phase to polymer phase constant. However, the<br />

authors neglected important parameters like:<br />

• Unequal <strong>in</strong>itiator partition betwe<strong>en</strong> the two phases<br />

• Consumption of the <strong>in</strong>itiator<br />

• Volume shr<strong>in</strong>kage due to the d<strong>en</strong>sity differ<strong>en</strong>ce betwe<strong>en</strong> VCM and PVC<br />

• Radical migration betwe<strong>en</strong> the two phases<br />

Abdel-Alim and Hamielec <strong>in</strong> 1972 modified Talam<strong>in</strong>i’s model by consider<strong>in</strong>g reaction volume change<br />

and <strong>in</strong>itiator consumption and first ext<strong>en</strong>ded the model to conversions above X f . However, it was<br />

neglected:<br />

• Unequal <strong>in</strong>itiator partition betwe<strong>en</strong> phases<br />

• Radical migration betwe<strong>en</strong> phases<br />

Ugelstad <strong>in</strong> 1977 proposed the radical change betwe<strong>en</strong> phases but he underl<strong>in</strong>ed the importance of<br />

absorption and desorption of radicals and still assumed a constant ratio of <strong>in</strong>itiator <strong>in</strong> the two phases.<br />

The k<strong>in</strong>etic model rema<strong>in</strong>s basically the same as the preced<strong>en</strong>t (Abdel-Alim and Hamielec, 1972), but<br />

the authors expla<strong>in</strong>ed differ<strong>en</strong>tly the magnitude of the ratio m<strong>en</strong>tioned before.<br />

Kuchanov and Bort <strong>in</strong> 1973 considered that the radical’s desorption from the polymer phase can be<br />

ignored because only a small fraction of the radicals with short cha<strong>in</strong> l<strong>en</strong>gths desorb from the polymer<br />

phase. They further assumed that the ratio of mole fraction of <strong>in</strong>itiator <strong>in</strong> both phases rema<strong>in</strong>s constant.<br />

Unfortunately, they only compared the model prediction with low conversion data. Wh<strong>en</strong> they<br />

ext<strong>en</strong>ded the model to high conversions, they still considered the monomer as a separate phase, which<br />

contradicts the physical ph<strong>en</strong>om<strong>en</strong>a earlier discussed.<br />

31


Chapter I : Bibliographic review<br />

In 1977, Olaj further assumed that all of the radicals formed <strong>in</strong> the monomer phase transfer to the<br />

polymer phase, mean<strong>in</strong>g that there is no term<strong>in</strong>ation reaction <strong>in</strong> the monomer phase. H<strong>en</strong>ce, <strong>in</strong> this<br />

model, the reaction order with respect to <strong>in</strong>itiator conc<strong>en</strong>tration is 1.0, which is higher than the one<br />

observed experim<strong>en</strong>tally.<br />

Suresh and Chanda <strong>in</strong> 1982 proposed the concept of ‘k<strong>in</strong>etic solubility’, which assumed that rapidly<br />

grow<strong>in</strong>g polymer cha<strong>in</strong>s have considerably greater solubility than the thermodynamic solubility of<br />

preformed polymer molecules of the same size. Therefore they can rema<strong>in</strong> <strong>in</strong> solution ev<strong>en</strong> under<br />

thermodynamically unfavourable conditions. In this model, radical precipitation and transfer to<br />

monomer was considered, but on the other hand, radical term<strong>in</strong>ation <strong>in</strong> the monomer phase was<br />

neglected. H<strong>en</strong>ce the rate equation features are similar to those <strong>in</strong> Olaj’s model.<br />

In the light of this observation, one can conclude that the <strong>polymerization</strong> <strong>in</strong> the two phases is widely<br />

accepted. Ev<strong>en</strong> if the k<strong>in</strong>etic models are close to the real ph<strong>en</strong>om<strong>en</strong>a, they cannot be applied at<br />

<strong>in</strong>dustrial scale because of the lack of data on the <strong>reactor</strong> operation conditions, not all of the diffusion<br />

controlled reactions have be<strong>en</strong> tak<strong>en</strong> <strong>in</strong>to account, or not all the conversion range was considered.<br />

However, the most complete model <strong>in</strong> terms of k<strong>in</strong>etic <strong>in</strong>formation seems to be the one proposed by<br />

Xie et al. (1991) and the one of Kiparissides et al. (1997). The ma<strong>in</strong> differ<strong>en</strong>ce betwe<strong>en</strong> them is that <strong>in</strong><br />

Xie’s model, the rate constants are modelled us<strong>in</strong>g the free volume theory, while Kiparissides’ model<br />

expresses term<strong>in</strong>ation and propagation rates as reaction and diffusional limit<strong>in</strong>g terms. The ma<strong>in</strong><br />

dynamic features of VCM <strong>polymerization</strong> can be summarized as follows (accord<strong>in</strong>gly to Xie et al.,<br />

1991a):<br />

• The <strong>polymerization</strong> rate <strong>in</strong>creases with conversion at a low critical conversion, i.e. the socalled<br />

acceleration. The maximum rate of polimerization occurs just after the <strong>reactor</strong> pressure starts to<br />

drop, than the rate decreases dramatically with conversion. Before achiev<strong>in</strong>g 100 % of conversion, the<br />

<strong>polymerization</strong> rate decreases to zero. The evolution of conversion, <strong>polymerization</strong> rate and the<br />

pressure drop measured by Kiparissides et al. (1997) are pres<strong>en</strong>ted <strong>in</strong> Figure I- 8.<br />

32


Chapter I : Bibliographic review<br />

Figure I- 8 : Comparison betwe<strong>en</strong> theoretical and experim<strong>en</strong>tal <strong>reactor</strong> pressure values. Model<br />

predictions of conversion and <strong>polymerization</strong> rate with respect to time. Experim<strong>en</strong>tal conditions: T= 63°C,<br />

<strong>in</strong>itial <strong>reactor</strong> charge: 1.5 L of VCM, 1.5 L of water and 1.57g of dilauroyl peroxide/kg VCM from<br />

Kiparissides et al. (1997)<br />

• For isothermal <strong>polymerization</strong>, the <strong>reactor</strong> pressure rema<strong>in</strong>s constant up to a certa<strong>in</strong> value,<br />

th<strong>en</strong> start<strong>in</strong>g to decrease gradually with conversion, due to the decrease <strong>in</strong> monomer conc<strong>en</strong>tration.<br />

• The reaction order with respect to the <strong>in</strong>itiator conc<strong>en</strong>tration is betwe<strong>en</strong> 0.5 and 0.8 (values<br />

determ<strong>in</strong>ed before critical conversion is achieved).<br />

• The molecular weight of the f<strong>in</strong>al PVC <strong>in</strong>creases with decreas<strong>in</strong>g <strong>polymerization</strong> temperature.<br />

This parameter does not dep<strong>en</strong>d on <strong>in</strong>itiator conc<strong>en</strong>tration. Only at very high conversions, it decreases<br />

with conversion.<br />

The solubility of PVC <strong>in</strong> its own monomer is so low (~ 0.001 %) that the monomer phase is<br />

considered to be ess<strong>en</strong>tially pure, while the polymer phase is considered to be swoll<strong>en</strong> with 30 %<br />

monomer. Therefore, it is reasonable to assume for k<strong>in</strong>etic modell<strong>in</strong>g that <strong>polymerization</strong> occurs <strong>in</strong><br />

monomer and polymer phase simultaneously from the very beg<strong>in</strong>n<strong>in</strong>g of the <strong>polymerization</strong>.<br />

As the reaction proceeds, the mass of the monomer phase decreases while that of the polymer<br />

<strong>in</strong>creases. Nevertheless, the composition of each phase rema<strong>in</strong>s constant, because the rate of monomer<br />

diffusion <strong>in</strong>to polymer particles is suffici<strong>en</strong>tly high to <strong>en</strong>sure equilibrium dur<strong>in</strong>g <strong>polymerization</strong>. There<br />

is a constant equilibrium conc<strong>en</strong>tration of monomers <strong>in</strong> the particles before the monomer phase is<br />

consumed. As long as VCM exists as a separate phase, it will exert its own vapour pressure and the<br />

pressure <strong>in</strong> the <strong>reactor</strong> will be ess<strong>en</strong>tially constant dur<strong>in</strong>g isothermal <strong>polymerization</strong>. Wh<strong>en</strong> conversion<br />

reaches a value of X f , the pressure <strong>in</strong> the <strong>reactor</strong> beg<strong>in</strong>s to drop and the <strong>polymerization</strong> proceeds <strong>in</strong> the<br />

33


Chapter I : Bibliographic review<br />

polymer phase until the limit<strong>in</strong>g conversion is reached. Thus, a model valid for the <strong>en</strong>tire conversion<br />

range describes the two-phase <strong>polymerization</strong> before X f and s<strong>in</strong>gle phase after conversion value X f , <strong>in</strong><br />

good agreem<strong>en</strong>t with experim<strong>en</strong>tal values. In fact, the ma<strong>in</strong> features of VCM <strong>polymerization</strong> are<br />

summarized <strong>in</strong> the scheme <strong>in</strong> Figure I- 9:<br />

Two phase scheme for<br />

S-PVC<br />

Radical formation <strong>in</strong><br />

monomer phase<br />

Radical formation <strong>in</strong><br />

polymer phase<br />

Radical migration<br />

Cha<strong>in</strong> propagation <strong>in</strong><br />

monomer phase<br />

Cha<strong>in</strong> propagation <strong>in</strong><br />

polymccer phase<br />

Cha<strong>in</strong> term<strong>in</strong>ation <strong>in</strong><br />

monomer phase<br />

Cha<strong>in</strong> term<strong>in</strong>ation <strong>in</strong><br />

polymer phase<br />

Polymer<br />

Figure I- 9: Radical history of VCM <strong>polymerization</strong> proposed by Xie et al. (1991a)<br />

I.D.4) Heat removal<br />

The VCM <strong>polymerization</strong> is highly exothermic, as illustrated <strong>in</strong> Table I- 4. The differ<strong>en</strong>ce of adiabatic<br />

temperature corresponds to a reaction tak<strong>in</strong>g place without any heat exchange with the exterior, so it is<br />

the rise of the temperature <strong>in</strong> a monomer/polymer medium (bulk <strong>polymerization</strong>).<br />

Monomer Physical state [a] Temperature (°C) -∆H R (kJ.mol -1 ) -∆H R (kJ.kg -1 ) +∆T ad (°C)<br />

Ethyl<strong>en</strong>e g c 25 101.5 3620 1810<br />

Butadi<strong>en</strong>e l c 25 73 1350 676<br />

Acrylonitrile l c’ 74.5 76.5 1423 721<br />

Methyl<br />

l c 74.5 55.5 550 277<br />

methacrylate<br />

<strong>V<strong>in</strong>yl</strong> acetate l c 74.5 88 1022 511<br />

34


Chapter I : Bibliographic review<br />

<strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> l c 25 71 1135 542<br />

Styr<strong>en</strong>e l c 25 70 672 336<br />

Table I- 4: Reaction <strong>en</strong>thalpies and adiabatic differ<strong>en</strong>ce of reaction temperature (Saeki and Emura, 2002).<br />

Physical state [a] : l – liquid; g – gas; c – cond<strong>en</strong>sed amorphous; c’ – crystall<strong>in</strong>e or part crystall<strong>in</strong>e.<br />

The values clearly show the <strong>in</strong>terest of a susp<strong>en</strong>sion <strong>polymerization</strong>. The water used absorbs an<br />

important part of this exothermicity by its calorific capacity, improv<strong>in</strong>g the thermal control. The small<br />

size of the droplets allows a fast heat transfer to the cont<strong>in</strong>uous phase. Also the water serves to limit<br />

the viscosity of the system. The only disadvantage <strong>in</strong> the use of aqueous susp<strong>en</strong>sion is the cost of the<br />

post-operat<strong>in</strong>g procedures of stripp<strong>in</strong>g, dry<strong>in</strong>g or recycl<strong>in</strong>g.<br />

The diffusion-controlled term<strong>in</strong>ation and propagation steps are marked by the ‘gel effect’, and the<br />

‘glass effect’ respectively. These processes contribute to the auto-acceleration of the <strong>polymerization</strong><br />

(an exothermicity peak) and to the limit<strong>in</strong>g conversion.<br />

The ‘gel effect’ appears with the <strong>in</strong>crease <strong>in</strong> polymer conc<strong>en</strong>tration, the medium becom<strong>in</strong>g very<br />

viscous, thus restrict<strong>in</strong>g the term<strong>in</strong>ation step. Therefore, the conc<strong>en</strong>tration of radicals <strong>in</strong> the medium<br />

will be high and the propagation rate will be greater than the term<strong>in</strong>ation rate. This ph<strong>en</strong>om<strong>en</strong>on<br />

g<strong>en</strong>erates a release of reaction heat. This <strong>in</strong>crease <strong>in</strong> radical conc<strong>en</strong>tration <strong>in</strong>duces an acceleration of<br />

the <strong>polymerization</strong> rate. However, no appreciable growth of monomer conversion is observed as a<br />

consequ<strong>en</strong>ce of an <strong>in</strong>creas<strong>in</strong>g reaction rate dur<strong>in</strong>g the formation of this hot spot.<br />

The ‘glass effect’ takes place wh<strong>en</strong> the <strong>polymerization</strong> temperature reaches the glass transition<br />

temperature (glass transition temperature of PVC is estimated at 80°C). This happ<strong>en</strong>s at values of<br />

conversions superior to X f . At this particular mom<strong>en</strong>t the monomer-polymer composition <strong>in</strong> the<br />

polymer rich phase equals a composition for which the glass transition temperature has the same value<br />

as the <strong>polymerization</strong> temperature. At this po<strong>in</strong>t, the molecules become rigid, loos<strong>in</strong>g any transitional<br />

or rotational movem<strong>en</strong>t and the reaction freezes.<br />

This overview of the S-PVC process allowed to underl<strong>in</strong>e its key features and also the <strong>in</strong>flu<strong>en</strong>ce of<br />

operat<strong>in</strong>g parameters on the k<strong>in</strong>etics or the gra<strong>in</strong> morphology. It was compulsory to understand the <strong>in</strong>s<br />

and outs of the process before perform<strong>in</strong>g any attempt of reproduc<strong>in</strong>g it at microscale.<br />

35


Chapter I : Bibliographic review<br />

II. Micro<strong>reactor</strong>s and chemical <strong>en</strong>g<strong>in</strong>eer<strong>in</strong>g<br />

Microreaction technology is pres<strong>en</strong>tly a well implanted subfield of chemical <strong>en</strong>g<strong>in</strong>eer<strong>in</strong>g that focuses<br />

on the study of chemical reactions <strong>in</strong>side under-millimetric channels - commonly referred to as<br />

micro<strong>reactor</strong>s.<br />

Micro<strong>reactor</strong>s have ga<strong>in</strong> a particular <strong>in</strong>terest <strong>in</strong> process <strong>en</strong>g<strong>in</strong>eer<strong>in</strong>g dur<strong>in</strong>g last decade due to the<br />

b<strong>en</strong>efits brought by m<strong>in</strong>iaturization compared to their macro-scale counterparts. Their dim<strong>en</strong>sions vary<br />

from t<strong>en</strong>s of microns up to several hundred of micrometers which offer unique features serv<strong>in</strong>g <strong>in</strong><br />

process <strong>in</strong>t<strong>en</strong>sification. Their advantages relate to their high surface-to-volume ratio (up to 5000 times<br />

more important than the conv<strong>en</strong>tional batch <strong>reactor</strong>s) as observed <strong>in</strong> Table I- 5. Thus, fast mix<strong>in</strong>g by<br />

diffusion <strong>in</strong> the range of milliseconds is possible <strong>in</strong>side micro<strong>reactor</strong>s ev<strong>en</strong> <strong>in</strong> lam<strong>in</strong>ar flow (Knight et<br />

al., 1998; Ehrfeld et al., 1999; Löb et al.; 2004; Sarraz<strong>in</strong> et al., 2006). Also due to their specific<br />

exchange surfaces the mass and heat transfer rates are substantially greater. This implies an <strong>en</strong>hanced<br />

heat control permitt<strong>in</strong>g to perform highly <strong>en</strong>dothermic or exothermic reactions otherwise nonreachable<br />

<strong>in</strong> conv<strong>en</strong>tional macroscopic equipm<strong>en</strong>ts (Brandner et al., 2000; Schubert et al., 2001;<br />

Anxionnaz PhD thesis, 2009).<br />

Parameter Batch <strong>reactor</strong>s Cont<strong>in</strong>uous-flow <strong>reactor</strong>s<br />

Industrial scale Lab scale Milimetric scale Micrometric scale<br />

Scale l<strong>en</strong>gth m dm - cm cm - mm mm - µm<br />

Internal volume several m 3 10 ml - 1L several mL –<br />

several L<br />

several µL – several<br />

mL<br />

Surface to volume<br />

≈ 100 m 2 .m -3 up to 2000 m 2 .m -3 up to 5000 m 2 .m -3 up to 50000 m 2 .m -3<br />

ratio<br />

Specific <strong>in</strong>terfaces ≈ 100 m 2 .m -3 up to 2000 m 2 .m -3 up to 5000 m 2 .m -3 up to 30000 m 2 .m -3<br />

Mix<strong>in</strong>g time > 1s > 1s several 100ms – 1s several ms<br />

Table I- 5: Typical magnitudes for characteristic parameters <strong>in</strong> batch and cont<strong>in</strong>uous-flow <strong>reactor</strong>s from<br />

Bally et al. (2010)<br />

Another obvious advantage of micro<strong>reactor</strong>s consists of the small volumes they imply <strong>in</strong> a microliter<br />

magnitude range. This small hold-up consequ<strong>en</strong>tly <strong>in</strong>creases <strong>in</strong>her<strong>en</strong>t safety of operation especially<br />

wh<strong>en</strong> deal<strong>in</strong>g with dangerous reactions otherwise difficult to perform at laboratory scale. However, if<br />

high production volumes are desired, number<strong>in</strong>g-up of micro<strong>reactor</strong>s without chang<strong>in</strong>g their size<br />

offers a reliable solution to the scal<strong>in</strong>g-up approach (Ehrfeld et al., 2001). This strategy offers a high<br />

36


Chapter I : Bibliographic review<br />

degree of flexibility and versatility to perform a large variety of chemical reactions. Moreover,<br />

scal<strong>in</strong>g-up guarantees the same performances as a s<strong>in</strong>gle micro<strong>reactor</strong> unit wh<strong>en</strong> <strong>in</strong>creas<strong>in</strong>g their<br />

number. This k<strong>in</strong>d of strategy has already be<strong>en</strong> implem<strong>en</strong>ted <strong>in</strong> fields such as pharmaceutical <strong>in</strong>dustry<br />

where its performances turned out to be better than the conv<strong>en</strong>tional large <strong>reactor</strong>s.<br />

However number<strong>in</strong>g-up process takes the results from processes <strong>in</strong> a s<strong>in</strong>gle device and extrapolates<br />

them to the <strong>en</strong>tire production unit by multiply<strong>in</strong>g it by the number of devices. Parameters like<br />

pressure, temperature, and conc<strong>en</strong>tration are kept constant. This simple approach has various<br />

disadvantages, such as the <strong>in</strong>homog<strong>en</strong>eous flow distribution or parallel number<strong>in</strong>g-up of the<br />

measurem<strong>en</strong>t and control systems. A possible solution for this <strong>in</strong>conv<strong>en</strong>i<strong>en</strong>ce is the equall<strong>in</strong>g concept<br />

(also called <strong>in</strong>ternal number<strong>in</strong>g-up). In this case the number of the s<strong>in</strong>gle devices is kept m<strong>in</strong>imal, but<br />

the number of the s<strong>in</strong>gle microstructures, hav<strong>in</strong>g their characteristic l<strong>en</strong>gths and reasonable outer<br />

dim<strong>en</strong>sions to fit the process demands, is <strong>in</strong>creased. Thus, the properties (and advantages) of the<br />

microstructure systems are ma<strong>in</strong>ta<strong>in</strong>ed, the measurem<strong>en</strong>t and control issues are limited, and the mass<br />

flow range is <strong>in</strong>creased.<br />

II.A. Considerations on the fluid behaviour <strong>in</strong><br />

micro<strong>reactor</strong>s<br />

This discussion will refer to two-phase flow <strong>in</strong> micro<strong>reactor</strong> which pres<strong>en</strong>t some advantages compared<br />

to s<strong>in</strong>gle-phase flow, such as the <strong>in</strong>creased <strong>in</strong>terfacial area, <strong>en</strong>hanced mix<strong>in</strong>g therefore less mass<br />

transfer limitations. Basically the two-phase flow properties at microscale are mostly <strong>in</strong>flu<strong>en</strong>ced by<br />

parameters related to the channel geometry, the properties of the phases and the flow conditions. All<br />

these factors can be reduced to several dim<strong>en</strong>sionless parameters.<br />

Ess<strong>en</strong>tially, two-phase flows are determ<strong>in</strong>ed by the balance of <strong>in</strong>ertial, viscous and <strong>in</strong>terfacial forces. It<br />

is the Reynolds (Re) number that describes the relative importance of <strong>in</strong>ertial to viscous forces and it<br />

repres<strong>en</strong>ts one of the most important dim<strong>en</strong>sionless numbers:<br />

ρvD<br />

=<br />

µ<br />

Re (I- 1)<br />

where ρ is the fluid d<strong>en</strong>sity, v the characteristic velocity, D a specific l<strong>en</strong>gth scale and µ is the dynamic<br />

viscosity.<br />

37


Chapter I : Bibliographic review<br />

Another important dim<strong>en</strong>sionless parameter is the Bond number (Bo) tak<strong>in</strong>g <strong>in</strong>to account the<br />

importance of gravitational forces to the <strong>in</strong>terfacial t<strong>en</strong>sion forces:<br />

Bo<br />

∆ρgD<br />

σ<br />

2<br />

= (I- 2)<br />

where ∆ρ repres<strong>en</strong>ts the fluid d<strong>en</strong>sity differ<strong>en</strong>ce, g is the gravitational acceleration and σ the surface<br />

or <strong>in</strong>terfacial t<strong>en</strong>sion of the two fluids <strong>in</strong> contact. In microfluidic applications the Reynolds and the<br />

Bond numbers are g<strong>en</strong>erally much <strong>in</strong>ferior to 1 mean<strong>in</strong>g that the <strong>in</strong>ertial and the gravity effects can be<br />

ignored.<br />

A third quantity is the Weber number (We) compar<strong>in</strong>g the <strong>in</strong>ertial forces to the surface forces.<br />

We<br />

2<br />

ρv<br />

D<br />

σ<br />

= (I- 3)<br />

The values of Weber number are also <strong>in</strong>ferior to 1 at microscale. From these def<strong>in</strong>itions it seems that<br />

<strong>in</strong>ertia becomes unimportant <strong>in</strong> flow geometries at micrometer scale. Exceptions arise <strong>in</strong> the case of<br />

flows at high speeds such as those sometimes performed <strong>in</strong> flow-focus<strong>in</strong>g devices or co-flow (detailed<br />

<strong>in</strong> section II.B of this chapter). Otherwise the forces govern<strong>in</strong>g microscale flows are <strong>in</strong>terfacial and<br />

viscous. Consequ<strong>en</strong>tly, the Capillary number (Ca) repres<strong>en</strong>ts the relative effect of viscous forces to<br />

<strong>in</strong>terfacial t<strong>en</strong>sion forces and it is one of the most important parameter <strong>in</strong> microfluidic applications:<br />

µv<br />

Ca = (I- 4)<br />

σ<br />

The <strong>in</strong>terfacial t<strong>en</strong>sion normally t<strong>en</strong>ds to reduce the <strong>in</strong>terfacial area, which is mandatory for the<br />

formation of droplets and their stability further on. At Capillary numbers <strong>in</strong>ferior to 1 the <strong>in</strong>terfacial<br />

t<strong>en</strong>sion dom<strong>in</strong>ates, traduced by the formation of spherical drops. Contrary, at Capillary numbers<br />

superior to 1, viscous forces become more important and droplets of deformed or asymmetric shapes<br />

may be formed. In some geometrical configuration of the droplet g<strong>en</strong>erator (described <strong>in</strong> section<br />

II.B.1) the high Capillary numbers may <strong>in</strong>duce a transition betwe<strong>en</strong> differ<strong>en</strong>t droplet g<strong>en</strong>eration<br />

regimes or ev<strong>en</strong> completely change the flow architecture, produc<strong>in</strong>g stratified flow.<br />

Other dim<strong>en</strong>sionless parameters may be <strong>in</strong>troduced to describe the microfluidic flow. For <strong>in</strong>stance,<br />

because the geometry of the micro<strong>reactor</strong>s is close related to the droplet/bubble formation, it was<br />

compulsory to def<strong>in</strong>e geometric similarities from a device to another. Quantitative relationships relate<br />

droplet size expressed as a dim<strong>en</strong>sionless number and differ<strong>en</strong>t parameters such as viscosity, d<strong>en</strong>sity,<br />

or flow rate ratios.<br />

38


Chapter I : Bibliographic review<br />

II.B. Technological bottl<strong>en</strong>ecks<br />

II.B.1) Droplet g<strong>en</strong>eration systems<br />

Micro droplet g<strong>en</strong>erators play an important role <strong>in</strong> controll<strong>in</strong>g the liquid–liquid flows. In this section,<br />

the most frequ<strong>en</strong>tly used microfluidic geometries and result<strong>in</strong>g flow patterns are discussed. The<br />

primary pr<strong>in</strong>ciple <strong>in</strong> all microfluidic g<strong>en</strong>erators is the <strong>in</strong>jection of one phase, the discrete phase, <strong>in</strong>to a<br />

second, immiscible, cont<strong>in</strong>uous phase. The most widely used implem<strong>en</strong>tations of this idea are<br />

g<strong>en</strong>erators such as T-junctions (see Thors<strong>en</strong> et al., 2001) or flow-focus<strong>in</strong>g junction (see Gañán and<br />

Calvo, 1998; Anna et al., 2003). The dynamics underly<strong>in</strong>g both the T-junction and flow-focus<strong>in</strong>g<br />

devices are controlled by compet<strong>in</strong>g betwe<strong>en</strong> stresses such as surface t<strong>en</strong>sion, pressure, viscous and<br />

<strong>in</strong>ertial at the fluid–fluid <strong>in</strong>terface.<br />

II.B.1.a<br />

T-junction g<strong>en</strong>erator<br />

In spite of the <strong>in</strong>terest aroused by microtechnologies nowadays there are some ph<strong>en</strong>om<strong>en</strong>a still not<br />

fully approached <strong>in</strong> the literature. For <strong>in</strong>stance, the theoretical compreh<strong>en</strong>sion of droplet formation<br />

and break-up <strong>in</strong> T-junction is still quite limited. Some studies have be<strong>en</strong> focused on a quantitative<br />

analysis of droplet sizes but only partial observations are available (Thorst<strong>en</strong> et al., 2001; Anna et al.,<br />

2003). In Figure I- 10 a schematic picture of droplet formation may be observed: the liquid p<strong>en</strong>etrates<br />

the ma<strong>in</strong> channel, forms a blob, and develops a neck. The neck elongates and becomes th<strong>in</strong>ner as the<br />

blob advances downstream. It ev<strong>en</strong>tually breaks up and the droplet detaches.<br />

G<strong>en</strong>erally, authors such as Garstecki et al. (2006) have concluded that the break-up is more likely to<br />

be caused by an <strong>in</strong>creased upstream pressure due to lubrication flow <strong>in</strong> a th<strong>in</strong> film trapped betwe<strong>en</strong> the<br />

drop and the channel wall. This theory is valid at low values of the Capillary number wh<strong>en</strong> shear stress<br />

is dom<strong>in</strong>ated by <strong>in</strong>terfacial forces. The size of droplets is determ<strong>in</strong>ed only by the ratio of the<br />

volumetric flow rates of the two phases. Other authors, such as Urbant et al. (2007) support this theory<br />

of break-up and validated it by numerical simulations.<br />

39


Chapter I : Bibliographic review<br />

Figure I- 10 : Droplet g<strong>en</strong>eration <strong>in</strong> a T-junction<br />

II.B.1.b<br />

Flow-focus<strong>in</strong>g devices<br />

In the case of these droplet g<strong>en</strong>erators, the discrete phase is <strong>in</strong>jected <strong>in</strong>to a co-flow<strong>in</strong>g cont<strong>in</strong>uous<br />

phase. At the flow-focus<strong>in</strong>g junction, there can be a narrow constriction to focus the flow.<br />

Figure I- 11: Differ<strong>en</strong>t regimes observed <strong>in</strong> flow-focus<strong>in</strong>g devices from Sullivan et al. (2008). (a)<br />

Geometrically controlled break up, (b) dripp<strong>in</strong>g, (c) ‘narrow<strong>in</strong>g jett<strong>in</strong>g’, and (d) ‘wid<strong>en</strong><strong>in</strong>g jett<strong>in</strong>g’.<br />

Several flow regimes were observed <strong>in</strong> flow-focus<strong>in</strong>g devices and they are pres<strong>en</strong>ted <strong>in</strong> Figure I- 11.<br />

Garstecki et al. (2006) expla<strong>in</strong>ed that the dynamics of geometrically controlled break-up <strong>in</strong> a<br />

microfluidic flow-focus<strong>in</strong>g device is directed by the rate of supply of the cont<strong>in</strong>uous phase to the<br />

region where break-up takes place. Droplets are produced <strong>in</strong> a uniform manner by the uniform<br />

collapse of the liquid thread formed at the nozzle as a result of the slow progression of collapse and<br />

the equilibrium betwe<strong>en</strong> <strong>in</strong>terfacial t<strong>en</strong>sion and hydrostatic pressure fields (a). Dripp<strong>in</strong>g (b) is very<br />

similar to geometrically controlled break-up, except that p<strong>in</strong>ch-off is not controlled by blockage of the<br />

constriction, but <strong>in</strong>stead by viscous drag on the gas thread. In both cases (a,b), the <strong>in</strong>ner phase is<br />

observed to grow from a m<strong>in</strong>imum size, form a th<strong>in</strong>n<strong>in</strong>g neck beh<strong>in</strong>d a lead<strong>in</strong>g drop, p<strong>in</strong>ch-off, and<br />

f<strong>in</strong>ally retract to the orig<strong>in</strong>al m<strong>in</strong>imum. Stable and unstable jett<strong>in</strong>g occurs wh<strong>en</strong> a long, th<strong>in</strong> thread<br />

forms and subsequ<strong>en</strong>tly breaks up due to capillary <strong>in</strong>stabilities (c,d). These regimes have be<strong>en</strong><br />

described more <strong>in</strong> depth by Anna et al. (2006) or Utada et al. (2007).<br />

40


Chapter I : Bibliographic review<br />

II.B.1.c<br />

Co-curr<strong>en</strong>t g<strong>en</strong>erator<br />

This technique was firstly used by Umbanhowar et al. (2000) for the production of highly<br />

monodisperse emulsions. The droplets are formed at the <strong>en</strong>d of a small tube by the drag forces<br />

g<strong>en</strong>erated by the co- flow<strong>in</strong>g, cont<strong>in</strong>uous phase (Cramer et al., 2004; Hong and Wang, 2007; Hua et<br />

al., 2007). Precise control is achieved by vary<strong>in</strong>g the velocity of the cont<strong>in</strong>uous phase. The advantage<br />

of such a method is that it may be simply manufactured with laboratory tub<strong>in</strong>g or small gauge needles.<br />

Most micro<strong>reactor</strong>s are designed so that the fluid <strong>in</strong>terface touches the walls of the channels and <strong>in</strong><br />

some cases may ev<strong>en</strong> adhere to it. In this k<strong>in</strong>d of coaxial system the dispersed phase is shielded by the<br />

cont<strong>in</strong>uous phase from touch<strong>in</strong>g the channel wall, and the surface problems are subsequ<strong>en</strong>tly<br />

overcome.<br />

Figure I- 12: Droplet g<strong>en</strong>eration <strong>in</strong> co-curr<strong>en</strong>t from Serra et al. (2007)<br />

Droplets <strong>in</strong> co-flow<strong>in</strong>g microfluidic devices can be formed either right at the tip of the tube or needle<br />

(Figure I- 12) or further <strong>in</strong>to the ma<strong>in</strong> channel, at the <strong>en</strong>d of a fluid stream, similarly to the flow<br />

regimes <strong>in</strong> flow-focus<strong>in</strong>g microchannels: dripp<strong>in</strong>g and jett<strong>in</strong>g. Qualitatively speak<strong>in</strong>g, dripp<strong>in</strong>g takes<br />

place at low flow rates, while jett<strong>in</strong>g occurs at higher flow rates, although the transition mechanism<br />

from a regime to another is still not fully understood. Cramer et al. (2004) performed an <strong>in</strong>vestigation<br />

on the droplet formation at the capillary tip by study<strong>in</strong>g the effect of some parameters on the droplet<br />

regime. This axisymmetric g<strong>en</strong>eration device was used by several authors <strong>in</strong> applications such as<br />

<strong>polymerization</strong> (Quevedo et al., 2005; Serra et al., 2007) or porous materials (Studart et al., 2010).<br />

This study only furnishes a brief non-exhaustive description of the mostly used droplet g<strong>en</strong>erators.<br />

Techniques such as membrane emulsification (droplets produced by dispers<strong>in</strong>g one fluid <strong>in</strong>to the<br />

cont<strong>in</strong>uous phase through a membrane or sieve, form<strong>in</strong>g an array of T-junctions), Y-junction (a<br />

variation of the T-junction) or the X-junction (droplet is formed due to shear stress applied by the two<br />

streams of cont<strong>in</strong>uous phase act<strong>in</strong>g perp<strong>en</strong>dicular on the discont<strong>in</strong>uous phase) were not developed. In<br />

addition, emerg<strong>in</strong>g technologies have <strong>en</strong>abled electrodes to be <strong>in</strong>tegrated <strong>in</strong>to microdevices to provide<br />

electrical control over droplet formation. Two examples of these electrohydrodynamic (EHD) methods<br />

are dielectrophoresis (DEP) and electrowett<strong>in</strong>g on dielectric (EWOD).<br />

41


Chapter I : Bibliographic review<br />

II.B.2) Parameters act<strong>in</strong>g on the droplet g<strong>en</strong>eration<br />

Several authors such as Nisisako et al. (2004), Seo et al. (2005), Garstecki et al. (2006) have already<br />

studied the differ<strong>en</strong>t parameters act<strong>in</strong>g on the droplet g<strong>en</strong>eration <strong>in</strong> microdevices and its diameter. The<br />

exist<strong>in</strong>g literature g<strong>en</strong>erally agrees that the droplet diameter <strong>in</strong> microfluidic emulsions is imposed by<br />

the flow rates, phase viscosities (Husny et al., 2006; Serra et al., 2007) or <strong>in</strong>terfacial t<strong>en</strong>sion (Cramer<br />

et al., 2004). Serra et al. (2007) reunited all these parameters under dim<strong>en</strong>sionless numbers and<br />

evaluated their impact on the droplet diameter. More rec<strong>en</strong>tly Marcati et al. (2009) studied oil <strong>in</strong> water<br />

emulsions and determ<strong>in</strong>ed a predictive model for the droplet formation. This model takes <strong>in</strong>to account<br />

dim<strong>en</strong>sionless numbers of the two phases and the <strong>in</strong>flu<strong>en</strong>ce of differ<strong>en</strong>t g<strong>en</strong>eration systems.<br />

II.B.2.a<br />

Flow rates<br />

There is a tight connection betwe<strong>en</strong> the flow rates and the evolution of the droplet dim<strong>en</strong>sions: the<br />

diameter of the droplets decreases wh<strong>en</strong> the flow rate of the dispersed phase decrease or wh<strong>en</strong> the flow<br />

rate of the cont<strong>in</strong>uous phase <strong>in</strong>creases. Several authors have already studied the <strong>in</strong>flu<strong>en</strong>ce of phases<br />

flow rates on the droplet dim<strong>en</strong>sions <strong>in</strong> microfluidic devices (Seo et al., 2005; Nisisako et al., 2004;<br />

Cygan et al., 2005). But the actual govern<strong>in</strong>g parameter is the ratio of the cont<strong>in</strong>uous and respectively<br />

discrete flow rate. So at higher values of this ratio the droplet is smaller than at lower values.<br />

II.B.2.b<br />

Channel diameter<br />

It has be<strong>en</strong> se<strong>en</strong> that g<strong>en</strong>erally the size of the droplet is <strong>in</strong> the order of the channel width. For a smaller<br />

channel diameter, the droplet volume and thus the slug l<strong>en</strong>gth correspond<strong>in</strong>g to the critical size for<br />

break-off is decreased. Also the size of the orifice of the T-junction or flow focus<strong>in</strong>g nozzle strongly<br />

<strong>in</strong>flu<strong>en</strong>ces the size of droplets formed. Nisisako et al. (2002) concluded that smaller drops are obta<strong>in</strong>ed<br />

<strong>in</strong> T-shaped microdevices by dim<strong>in</strong>ish<strong>in</strong>g the cont<strong>in</strong>uous phase channel width without chang<strong>in</strong>g its<br />

depth nor the discrete’s phase channel characteristics. For an axysimmetrical device Bouquey et al.<br />

(2008) proved that the reduction of the diameter of the g<strong>en</strong>eration needle results <strong>in</strong> smaller droplets<br />

obta<strong>in</strong>ed.<br />

II.B.2.c<br />

Viscosity of the phases<br />

Literature studies show that regular droplets can be formed for both low viscous and high viscous<br />

dispersed and cont<strong>in</strong>uous phases respectively. Tice et al. (2004) performed experim<strong>en</strong>ts for all the four<br />

42


Chapter I : Bibliographic review<br />

comb<strong>in</strong>ations of low/high viscosity of the two phases. The authors described the differ<strong>en</strong>t flow<br />

regimes and noted the formation of regular plugs. The <strong>in</strong>flu<strong>en</strong>ce of viscosity may sometimes be<br />

complicated to evaluate because it dep<strong>en</strong>ds on the microchannel’s geometry and properties. For<br />

<strong>in</strong>stance, Kobayashi et al. (2005) found that droplet size is greatly <strong>in</strong>flu<strong>en</strong>ced by the dispersed phase<br />

viscosity (µ d ) and not by its nature. Wh<strong>en</strong> the viscosity of the dispersed phase (µ d ) is lower than a<br />

threshold value (of about 100 mPas), the droplet size decreases with <strong>in</strong>creas<strong>in</strong>g viscosity µ d . At values<br />

of µ d higher than a threshold value, the droplet size slightly <strong>in</strong>creases with µ d . Köhler et al. (2005) or<br />

Husny et al. (2006) concluded that <strong>in</strong> T-shaped microchannels smaller droplets can be obta<strong>in</strong>ed by<br />

<strong>in</strong>creas<strong>in</strong>g the viscosity of the cont<strong>in</strong>uous phase. In order to simplify the complex <strong>in</strong>teractions betwe<strong>en</strong><br />

the differ<strong>en</strong>t properties, the impact of the viscosity on droplet formation was <strong>in</strong>corporated <strong>in</strong>to the<br />

Capillary number (Serra et al., 2007).<br />

II.B.2.d<br />

Interfacial t<strong>en</strong>sion<br />

Due to important surface-to-volume ratio <strong>en</strong>countered <strong>in</strong> micro<strong>reactor</strong>s, the role of surface effects<br />

becomes major. Thus to obta<strong>in</strong> regular droplet formation, surfactants are usually added to the<br />

cont<strong>in</strong>uous or dispersed phase. Xu et al. (2006) concluded that <strong>in</strong> order to achieve droplets of uniform<br />

dim<strong>en</strong>sions the surfactant conc<strong>en</strong>tration added to the system must be situated above the critical<br />

micellar conc<strong>en</strong>tration. Van der Graaf et al. (2005) stated that the use of surfactants <strong>in</strong> T-junction<br />

microchannels results <strong>in</strong> a decrease <strong>in</strong> droplet diameter compared with experim<strong>en</strong>ts without<br />

surfactants. Moreover, droplet size decreases with an <strong>in</strong>creas<strong>in</strong>g conc<strong>en</strong>tration of surfactant <strong>in</strong> the<br />

cont<strong>in</strong>uous phase, and ev<strong>en</strong> smaller droplets are formed <strong>in</strong> the pres<strong>en</strong>ce of surfactants <strong>in</strong> the dispersed<br />

phase <strong>in</strong> the case of flow-focus<strong>in</strong>g microchannels (Wu et al., 2008).<br />

The role of surfactants <strong>in</strong> the droplet formation process is important and complex. On one hand they<br />

can reduce the equilibrium <strong>in</strong>terfacial t<strong>en</strong>sion, but on the other hand they can also exert dynamic<br />

effects by alter<strong>in</strong>g dynamic <strong>in</strong>terfacial t<strong>en</strong>sion, <strong>in</strong>duc<strong>in</strong>g <strong>in</strong>terfacial t<strong>en</strong>sion gradi<strong>en</strong>ts, and by alter<strong>in</strong>g<br />

<strong>in</strong>terfacial rheology (Schroder et al., 1998; van der Graaf et al., 2004). These effects comb<strong>in</strong>e <strong>in</strong> a<br />

complex and poorly understood way the effect on droplet formation. The dynamic <strong>in</strong>terfacial t<strong>en</strong>sion<br />

betwe<strong>en</strong> two liquid phases is neither constant nor uniform wh<strong>en</strong> droplets are g<strong>en</strong>erated, and its effect<br />

becomes more important at low surfactant conc<strong>en</strong>trations (Sugiura et al., 2004).<br />

II.B.2.e<br />

Wettability<br />

The design and compreh<strong>en</strong>sion of microfluidic systems require tak<strong>in</strong>g <strong>in</strong>to account forces that are<br />

usually neglected at macroscopic scale. Interfaces are omnipres<strong>en</strong>t and capillary or surface t<strong>en</strong>sion<br />

43


Chapter I : Bibliographic review<br />

forces have a huge <strong>in</strong>flu<strong>en</strong>ce. These forces are of great importance at the microscopic level, while at<br />

macroscopic scale, they are usually ignored <strong>in</strong> the behalf of forces like pressure or gravity.<br />

So far, only <strong>in</strong>terfaces betwe<strong>en</strong> two fluids were m<strong>en</strong>tioned <strong>in</strong> this study. Interfaces of three differ<strong>en</strong>t<br />

materials are repres<strong>en</strong>ted by the <strong>in</strong>tersection of their three contact l<strong>in</strong>es. For <strong>in</strong>stance, a droplet of<br />

water on a solid substrate has a triple contact l<strong>in</strong>e. Liquids spread differ<strong>en</strong>tly on a horizontal surface<br />

accord<strong>in</strong>g to their nature. Actually, it dep<strong>en</strong>ds also on the third constitu<strong>en</strong>t, which is the gas or the<br />

fluid surround<strong>in</strong>g the drop. Two differ<strong>en</strong>t situations are imag<strong>in</strong>able: either the liquid forms a th<strong>in</strong> film<br />

wett<strong>in</strong>g the solid surface, with the horizontal dim<strong>en</strong>sion of the film dep<strong>en</strong>d<strong>in</strong>g on the <strong>in</strong>itial volume of<br />

liquid. In this case the contact angle θ betwe<strong>en</strong> the two surfaces is <strong>in</strong>ferior to 90°. In the second case<br />

the liquid forms a droplet and the wett<strong>in</strong>g is therefore partial with θ superior to 90° (Figure I- 13).<br />

Hydrophilic contact θ < 90° Hydrophobic contact θ > 90°<br />

a) b)<br />

water<br />

Glass<br />

θ<br />

water<br />

PDMS<br />

θ<br />

Figure I- 13 :Example of water droplet wett<strong>in</strong>g a surface: a) droplet wett<strong>in</strong>g a glass surface form<strong>in</strong>g a<br />

film; b) water droplet partially wett<strong>in</strong>g a PDMS surface.<br />

Moreover, it has be<strong>en</strong> confirmed that liquid–liquid two-phase flow patterns <strong>in</strong> microchannels are more<br />

seriously affected by the wettability betwe<strong>en</strong> the wall and the fluids (Eggers, 1997; Squires and<br />

Quake, 2005). The wettability of the walls of the carrier liquid should be chos<strong>en</strong> so that the carrier<br />

liquid wets the walls, forc<strong>in</strong>g the <strong>in</strong>com<strong>in</strong>g immiscible liquid to form droplets. By a clever<br />

comb<strong>in</strong>ation of multiple junctions, <strong>en</strong>capsulation of two aqueous liquids <strong>in</strong> an oil droplet was achieved<br />

by At<strong>en</strong>cia et al. (2005); Okushima et al. (2004); Zh<strong>en</strong>g et al. (2004) as pres<strong>en</strong>ted <strong>in</strong> Figure I- 14.<br />

44


Chapter I : Bibliographic review<br />

Internal aqueous phase<br />

Oil phase<br />

Hydrophobic junction<br />

Hydrophilic junction<br />

External aqueous phase<br />

Figure I- 14 : Concept for prepar<strong>in</strong>g double emulsion (water/oil/water) <strong>in</strong> a T-shaped micro<strong>reactor</strong> from<br />

Okushima et al. (2004)<br />

Zhao et al. (2010) studied the effect of surface properties on the flow characteristics and mass transfer<br />

<strong>in</strong> polymethyl methacrylate (PMMA) and sta<strong>in</strong>less steel micro<strong>reactor</strong>. In order to <strong>in</strong>crease surface<br />

wettability, differ<strong>en</strong>t treatm<strong>en</strong>t methods were applied to the two devices. Hydrophobic treatm<strong>en</strong>ts such<br />

as silanization and siliconization are used to r<strong>en</strong>der a hydrophilic surface hydrophobic accord<strong>in</strong>g to the<br />

work of Mart<strong>in</strong> et al. (2003). Surface treatm<strong>en</strong>ts such channel coat<strong>in</strong>g with PEG has be<strong>en</strong> used as a<br />

hydrophilic surface treatm<strong>en</strong>t and a mean to prev<strong>en</strong>t prote<strong>in</strong> adsorption (Hu et al., 2004). The surface<br />

wettability can also be modified with the addition of surfactants. Xu et al. (2006) demonstrated that<br />

the addition of Span 80 to water act<strong>in</strong>g as the immiscible phase can change a partially hydrophilic<br />

PMMA surface <strong>in</strong>to a completely hydrophobic surface. The addition of Twe<strong>en</strong> 20 to the aqueous<br />

phase converts PMMA <strong>in</strong>to an oleophobic surface.<br />

II.C. Differ<strong>en</strong>t <strong>polymerization</strong> reactions performed <strong>in</strong><br />

micro<strong>reactor</strong><br />

Free-radical <strong>polymerization</strong> is one the most important methods for the synthesis of polymers <strong>in</strong> the<br />

<strong>in</strong>dustrial <strong>en</strong>vironm<strong>en</strong>t. The free-radical <strong>polymerization</strong> reactions are oft<strong>en</strong> characterized by high<br />

exothermic behaviour with reaction <strong>en</strong>thalpies up to 100 kJ.mol -1 . Therefore perfect control of the heat<br />

transfer must be achieved. Indeed the temperature regulation has a strong impact on polymer<br />

properties such as molecular weight or molecular weight distribution. In common batch <strong>reactor</strong>s the<br />

heat of reaction <strong>in</strong> <strong>polymerization</strong>s <strong>in</strong>creases wh<strong>en</strong> <strong>in</strong>creas<strong>in</strong>g the <strong>reactor</strong> volume while the heat<br />

removal capacity decreases due to the reduction of the surface-to-volume ratio. On the other hand, at<br />

microscale, the heat transfer rate <strong>in</strong>creases due to the large surface-to-volume ratios. It is important to<br />

m<strong>en</strong>tion also the <strong>en</strong>hanced mass transport at such small scales and together with the high heat transfer<br />

capabilities, microtechnologies may offer an <strong>in</strong>terest<strong>in</strong>g alternative for the study of highly exothermic,<br />

fast chemical reactions.<br />

45


Chapter I : Bibliographic review<br />

The first attempt of <strong>polymerization</strong> <strong>in</strong> cont<strong>in</strong>uous flow-type process goes back to early 1960’s with the<br />

work of Geact<strong>in</strong>ov et al. (1962), who performed the anionic <strong>polymerization</strong> of styr<strong>en</strong>e <strong>in</strong> a capillary<br />

tube. The authors obta<strong>in</strong>ed data on the rapid k<strong>in</strong>etics of the reaction. Nowadays the advances <strong>in</strong><br />

technology allowed to accomplish difficult reactions and to test more and more ambitious conditions<br />

every time. A brief summary of the rec<strong>en</strong>t progress achieved <strong>in</strong> the field of <strong>polymerization</strong> <strong>in</strong><br />

micro<strong>reactor</strong> will be outl<strong>in</strong>ed further on.<br />

II.C.1) Controlled Radical Polymerization<br />

This type of reaction has unique features of radical cha<strong>in</strong> reaction control for the synthesis of complex<br />

macromolecular structures. Important progress <strong>in</strong> the fields of polymer chemistry has be<strong>en</strong> achieved<br />

because of the special characteristics of the three techniques of controlled radical <strong>polymerization</strong><br />

(CRP): atom transfer radical <strong>polymerization</strong> (ATRP), nitroxide-mediated <strong>polymerization</strong> (NMP) and<br />

reversible addition-fragm<strong>en</strong>tation cha<strong>in</strong> transfer <strong>polymerization</strong> (RAFT).<br />

Wu et al. (2004) performed the ATRP of 2- hydroxypropylmethacrylate (HPMA) <strong>in</strong> a microfluidic<br />

device of large dim<strong>en</strong>sions <strong>in</strong> order to prev<strong>en</strong>t clogg<strong>in</strong>g of highly viscous polymer (Figure I- 15). The<br />

work of Wu and his co-workers repres<strong>en</strong>ted a premiere for <strong>in</strong>dividually designed micro<strong>reactor</strong>s also<br />

for the good molecular weight control of the f<strong>in</strong>al product.<br />

Figure I- 15 : Microfluidic device for the ATRP of HPMA manufactured by Wu et al. (2004).<br />

The first study of NMP <strong>in</strong> a real microdim<strong>en</strong>sional device was performed <strong>in</strong> 2007 by Ros<strong>en</strong>feld et al.<br />

(2007) who studied the <strong>polymerization</strong> of styr<strong>en</strong>e and n-butyl acrylate <strong>in</strong> a cont<strong>in</strong>uous-flow<br />

microtubular <strong>reactor</strong> (Figure I- 16). Although the NMP of n-butyl acrylate is highly exothermic the<br />

authors note an improvem<strong>en</strong>t of <strong>polymerization</strong> control due to the effici<strong>en</strong>t heat and mass transport <strong>in</strong><br />

the micro<strong>reactor</strong>.<br />

46


Chapter I : Bibliographic review<br />

Figure I- 16: Cont<strong>in</strong>uous micro<strong>reactor</strong> setup for NMRP by Ros<strong>en</strong>feld et al. (2007)<br />

Russum et al. (2004) studied RAFT <strong>polymerization</strong> <strong>in</strong> a millitubular <strong>reactor</strong> us<strong>in</strong>g a m<strong>in</strong>i-emulsion<br />

technique for latex formation. The authors found the similar character of k<strong>in</strong>etics and liv<strong>in</strong>g character<br />

of styr<strong>en</strong>e <strong>in</strong> millitube as well as <strong>in</strong> batch rector.<br />

II.C.2) Ionic Polymerization<br />

A dist<strong>in</strong>ct feature of ionic <strong>polymerization</strong> is repres<strong>en</strong>ted by the fact that propagation stage takes place<br />

after electrophilic or nucleophilic attack of an <strong>in</strong>itiat<strong>in</strong>g specie at the monomer. The reaction exhibits a<br />

fast character and high exothermicity. Some examples of ionic <strong>polymerization</strong> performed <strong>in</strong><br />

micro<strong>reactor</strong> devices are m<strong>en</strong>tioned <strong>in</strong> the subsections below.<br />

II.C.2.a<br />

Cationic Polymerization<br />

Nagaki et al. (2004) performed an <strong>in</strong>terest<strong>in</strong>g study by coupl<strong>in</strong>g the concept of cation pool as <strong>in</strong>itiator<br />

with micro<strong>reactor</strong> technology. The microfluidic system allowed molecular weight and molecularweight<br />

distribution controlled effectively by fast mix<strong>in</strong>g, temperature control, and resid<strong>en</strong>ce-time<br />

control without decelerat<strong>in</strong>g the propagation by the active species/dormant species equilibrium. Ouchi<br />

et al. (2005) carried out the liv<strong>in</strong>g cationic <strong>polymerization</strong> of v<strong>in</strong>yl ethers <strong>in</strong> a cont<strong>in</strong>uous flow system<br />

with micromixers, obta<strong>in</strong><strong>in</strong>g well–def<strong>in</strong>ed <strong>en</strong>d-functionalized poly(v<strong>in</strong>yl ether)s and block<br />

copolymers.<br />

II.C.2.b<br />

Anionic Polymerization<br />

This type of reaction allows to synthesize highly def<strong>in</strong>ed block copolymers, stars or other<br />

macromolecules with complex architecture. The reactions proceed rapidly at low temperature<br />

therefore control of the reaction temperature is imperative. We will refer to the work of Wurm et al.<br />

(2008) who performed liv<strong>in</strong>g carbanionic <strong>polymerization</strong> of styr<strong>en</strong>e <strong>in</strong> a microstructured <strong>reactor</strong><br />

equipped with an IMM <strong>in</strong>terdigital mixer and capillary flow-tube. Polystyr<strong>en</strong>es with narrow<br />

47


Chapter I : Bibliographic review<br />

polydispersity were obta<strong>in</strong>ed <strong>in</strong> a cont<strong>in</strong>uous procedure after only a few m<strong>in</strong>utes from the <strong>reactor</strong><br />

<strong>in</strong>stead of hours <strong>in</strong> the conv<strong>en</strong>tional batch procedure. Iida et al. (2009) carried out the anionic<br />

<strong>polymerization</strong> of styr<strong>en</strong>e <strong>in</strong> cyclohexane at 60°C <strong>in</strong> an alum<strong>in</strong>ium-polyimide microchannel <strong>reactor</strong>.<br />

The superior heat transfer allowed a very good temperature control and no hot spots were registered.<br />

II.C.3) Free Radical Polymerization<br />

Bayer et al. (2000) was one of the first to report the advantages of microreaction technology <strong>in</strong><br />

polymer reaction <strong>en</strong>g<strong>in</strong>eer<strong>in</strong>g. The authors <strong>in</strong>vestigated the solution <strong>polymerization</strong> of acrylates such<br />

as polymethyl methacrylate (PMMA) and polyacrylic acid (PAA). They observed reduction of the<br />

distribution of molecular weights thus prev<strong>en</strong>t<strong>in</strong>g foul<strong>in</strong>g of the tubular <strong>reactor</strong>.<br />

Nisisako et al. (2004) successfully obta<strong>in</strong>ed functional poly(1,6-hexanediol diacrylate) polymer beads<br />

susp<strong>en</strong>ded <strong>in</strong> polyv<strong>in</strong>yl alcohol us<strong>in</strong>g a two-stage process <strong>in</strong>volv<strong>in</strong>g the use of a T-shaped<br />

microchannel (Figure I- 17 ). Two immiscible fluids were <strong>in</strong>troduced <strong>in</strong>to separate microchannels and<br />

th<strong>en</strong> one liquid was forced <strong>in</strong>to the ma<strong>in</strong> flow at a T-junction to form micro droplets. The latter were<br />

polymerized <strong>in</strong> batch at a subsequ<strong>en</strong>t stage by means of UV-light radiation. Monodispersed particles<br />

were obta<strong>in</strong>ed <strong>in</strong> the range of 30 – 120 µm <strong>in</strong> diameter.<br />

Figure I- 17: Schematics of the T-shaped channel layouts used by Nisisako et al. (2004) for the synthesis of<br />

microspheres of poly(1,6-hexanediol diacrylate)<br />

Chang et al. (2004a, 2004b) synthesized polymer beads <strong>in</strong> a self-developed microfluidic device made<br />

of glass. Polymer particles of polymethyl acrylate (PMA) and polyv<strong>in</strong>yl acetate (PVA) were prepared<br />

<strong>in</strong> a similar procedure to that of Nisisako et al. (2004) us<strong>in</strong>g gamma-ray <strong>in</strong>itiated dispersion<br />

<strong>polymerization</strong> <strong>in</strong> a <strong>reactor</strong> consist<strong>in</strong>g of 120 straight microchannels with cross-sections of 50 µm x 50<br />

µm and 120 mm <strong>in</strong> l<strong>en</strong>gth. The particle had a m<strong>in</strong>imum 1.3 µm <strong>in</strong> diameter size which was controlled<br />

by the pulse rate of the gamma rays. After droplet formation the <strong>polymerization</strong> was cont<strong>in</strong>ued <strong>in</strong> the<br />

downstream channel and was ess<strong>en</strong>tially a batch process with a <strong>polymerization</strong> time of 360 m<strong>in</strong>utes.<br />

48


Chapter I : Bibliographic review<br />

Serra et al. (2005, 2007) have studied by means of CFD the free-radical <strong>polymerization</strong> of styr<strong>en</strong>e <strong>in</strong><br />

two multilam<strong>in</strong>ated micromixers (HPIMM and SFIMM models both from IMM) and <strong>in</strong> a conv<strong>en</strong>tional<br />

T-junction micro<strong>reactor</strong>. They obta<strong>in</strong>ed almost isothermal conditions <strong>in</strong> their simulations and found<br />

that a low polydispersity <strong>in</strong>dex (PDI) (i.e.


Chapter I : Bibliographic review<br />

Marcati et al. (2009) performed the photo<strong>polymerization</strong> of tripropyl<strong>en</strong>e glycol diacrylate (TPGDA) <strong>in</strong><br />

microdevices composed only by Plexiglas plates and fused silica capillaries. In 180 µm capillarybased<br />

systems particles <strong>in</strong> the range of 70 -700 µm were obta<strong>in</strong>ed and further manipulated. Differ<strong>en</strong>t<br />

operations were performed on solid gra<strong>in</strong>s such as frequ<strong>en</strong>cy modification, change of solv<strong>en</strong>t or<br />

<strong>en</strong>capsulation. For <strong>in</strong>stance, particles were brought closer together by means of cont<strong>in</strong>uous aspiration<br />

of the cont<strong>in</strong>uous phase (see Figure I- 19). The differ<strong>en</strong>t limitations <strong>in</strong> terms of system geometry,<br />

aspiration flow rate were described. This study offers <strong>in</strong>terest<strong>in</strong>g perspective on the manipulation of<br />

solid <strong>in</strong> micro<strong>reactor</strong>s and the g<strong>en</strong>eration of appeal<strong>in</strong>g particle architectures.<br />

Figure I- 19 : Progressive aspiration of the cont<strong>in</strong>uous phase <strong>in</strong> a particle flow by Marcati et al. (2010)<br />

Furthermore he proved that it is possible to change the cont<strong>in</strong>uous phase carry<strong>in</strong>g the particles by<br />

<strong>in</strong>ject<strong>in</strong>g a new phase and simultaneously withdraw<strong>in</strong>g the old one. Consequ<strong>en</strong>tly by add<strong>in</strong>g another<br />

phase immiscible to the cont<strong>in</strong>uous fluid the authors obta<strong>in</strong>ed a droplet conta<strong>in</strong><strong>in</strong>g one ore more<br />

polymer particles as observed <strong>in</strong> Figure I- 20.<br />

Figure I- 20 : G<strong>en</strong>eration of aqueous droplets conta<strong>in</strong><strong>in</strong>g TPGDA (PhD thesis of Marcati, 2009)<br />

50


Chapter I : Bibliographic review<br />

Okubo et al. (2010) used two differ<strong>en</strong>t reaction systems for the free-radical <strong>polymerization</strong> of styr<strong>en</strong>e:<br />

susp<strong>en</strong>sion <strong>polymerization</strong> us<strong>in</strong>g emulsion droplets, and slug <strong>polymerization</strong> us<strong>in</strong>g segm<strong>en</strong>ted flow. In<br />

the first system an emulsion is formed through the K-M micromixer (Nagasawa et al., 2005) us<strong>in</strong>g<br />

lauroyl peroxide and polyv<strong>in</strong>yl alcohol as chemical <strong>in</strong>itiator and surfactant respectively. The K-M<br />

micromixer is based on the pr<strong>in</strong>ciple of multilam<strong>in</strong>ation of flow. In this specific mixer the th<strong>in</strong> fluid<br />

layers are produced by two conc<strong>en</strong>tric annuli and th<strong>en</strong> channelled towards the c<strong>en</strong>tre. Afterwards they<br />

are forced <strong>in</strong>to a c<strong>en</strong>tral channel that collects all the layers and directs them towards the outlet. The<br />

microfluidic device was used solely for the emulsification stage whereas the <strong>polymerization</strong> reaction<br />

was conducted <strong>in</strong> a coiled tube of <strong>in</strong>ternal diameter of 2.15 mm and 10 m of l<strong>en</strong>gth for a mean<br />

resid<strong>en</strong>ce time of 8 m<strong>in</strong>utes. For the second system the segm<strong>en</strong>ted flow was obta<strong>in</strong>ed by a T-junction<br />

while the <strong>polymerization</strong> was conducted aga<strong>in</strong> <strong>in</strong> a coiled tube with an <strong>in</strong>ternal diameter of 1 mm and<br />

55 m of l<strong>en</strong>gth for mean resid<strong>en</strong>ce times betwe<strong>en</strong> 8 and 10 m<strong>in</strong>utes. The authors note that the PDI was<br />

reduced from a value of 2 <strong>in</strong> a batch process to a value of 1.53 <strong>in</strong> the slug <strong>polymerization</strong> case.<br />

Another emerg<strong>in</strong>g field concerns the developm<strong>en</strong>t of new strategies for the g<strong>en</strong>eration of polymer<br />

particles with differ<strong>en</strong>t shapes or morphologies us<strong>in</strong>g microfluidic technology. The differ<strong>en</strong>t shapes of<br />

the polymer particles may dictate various <strong>in</strong>terest<strong>in</strong>g applications. It is <strong>in</strong>terest<strong>in</strong>g to cite the work of<br />

Xu et al. (2005) who were able to <strong>in</strong>corporate dye, quantum dots, and liquid crystal <strong>in</strong>to poly(TPGDA)<br />

particles and to synthesize porous microspheres as well as copolymer particles made out of TPGDA<br />

and acrylic acid.<br />

By add<strong>in</strong>g two side channels to the orig<strong>in</strong>al MFFD (Figure I- 21a), Nie et al. (2005) performed the<br />

flow focus<strong>in</strong>g of three immiscible fluids. The authors managed to obta<strong>in</strong> multiple emulsions, the fluid<br />

A (silicon oil) flow<strong>in</strong>g <strong>in</strong> the c<strong>en</strong>tral channel was emulsified <strong>in</strong> multiple droplets wrapped <strong>in</strong> a droplet<br />

of a polymerizable fluid B (TPGDA). B was afterwards surrounded by the cont<strong>in</strong>uous phase fluid C<br />

(aqueous SDS solution). The downstream photo<strong>polymerization</strong> of the monomer droplets led to core–<br />

shell particles hav<strong>in</strong>g various morphologies (Figure I- 21c).<br />

51


Chapter I : Bibliographic review<br />

A)<br />

B)<br />

C)<br />

Figure I- 21: A) Microfluidic flow-focus<strong>in</strong>g device for the production of multiple emulsions; B) optical<br />

microscopy images of TPGDA droplets conta<strong>in</strong><strong>in</strong>g several silicon oil cores; C) SEM images of differ<strong>en</strong>t<br />

core-shell particles after remov<strong>in</strong>g the silicon oil shell<br />

The before m<strong>en</strong>tioned examples of particle synthesis <strong>in</strong> micro<strong>reactor</strong> devices repres<strong>en</strong>t only a small<br />

part of the exist<strong>in</strong>g literature on this subject. However they contribute to str<strong>en</strong>gth<strong>en</strong> the conviction that<br />

microtechnologies repres<strong>en</strong>t a fasc<strong>in</strong>at<strong>in</strong>g tool for the production of shape-controlled polymer<br />

particles. They also op<strong>en</strong> new perspectives <strong>in</strong> this area very <strong>in</strong>trigu<strong>in</strong>g for fields such as drug delivery<br />

or electronics.<br />

However, from an <strong>in</strong>dustrial po<strong>in</strong>t of view there is still scepticism around the pot<strong>en</strong>tial applications of<br />

micro<strong>reactor</strong>s, despite the aforem<strong>en</strong>tioned advantages These ‘<strong>in</strong>conv<strong>en</strong>i<strong>en</strong>ces’ are ma<strong>in</strong>ly related to<br />

limited yields (Ehrfeld et al., 2001) and to the high <strong>en</strong>ergy consumption <strong>in</strong> processes <strong>in</strong>volv<strong>in</strong>g highly<br />

viscous and/or non-Newtonian fluids (such as <strong>polymerization</strong> reactions). The ma<strong>in</strong> matter of concern<br />

for the chemical producers is associated to possible foul<strong>in</strong>g problems <strong>in</strong> micro<strong>reactor</strong>s and the<br />

acceptable levels of reliability that could be reached for automated <strong>in</strong>dustrial process<strong>in</strong>g.<br />

In order to atta<strong>in</strong> the large manufacturers production levels, the chemical process has to occur <strong>in</strong><br />

hundreds or ev<strong>en</strong> thousands of parallel streams. Reservations are towards uniformity of divid<strong>in</strong>g one<br />

ma<strong>in</strong> stream <strong>in</strong>to a multitude of substreams. Also clean<strong>in</strong>g procedures after shutdown of the system,<br />

common for laboratory equipm<strong>en</strong>t, are said to be impossible for <strong>in</strong>dustrial production plants composed<br />

of thousands of microchannels (Hessel and Löwe, 2004).<br />

Therefore, <strong>in</strong> order to be <strong>in</strong>dustrially accepted microreaction technology must be able to respond to<br />

certa<strong>in</strong> g<strong>en</strong>eral criteria wh<strong>en</strong> compared to conv<strong>en</strong>tional production techniques. These criteria can be<br />

related to atta<strong>in</strong><strong>in</strong>g the necessary operat<strong>in</strong>g conditions to improve the quality of the f<strong>in</strong>al product or<br />

improve the characteristics of the process itself (such as <strong>in</strong>creased safety, improved selectivity and<br />

52


Chapter I : Bibliographic review<br />

yield, <strong>en</strong>ergy sav<strong>in</strong>gs). Besides, micro<strong>reactor</strong>s must be capable to susta<strong>in</strong> a reliable cont<strong>in</strong>uous<br />

operation by the number<strong>in</strong>g-up approach <strong>in</strong> order to achieve targeted production levels.<br />

III. Conclusion<br />

This chapter was structured <strong>in</strong>to two parts: the first one was focused on the susp<strong>en</strong>sion <strong>polymerization</strong><br />

of v<strong>in</strong>yl <strong>chloride</strong>. The reaction was briefly pres<strong>en</strong>ted along with the actors that play an important role<br />

<strong>in</strong> its evolution. The second part of the chapter is c<strong>en</strong>tred on micro<strong>reactor</strong> technologies and their<br />

specific characteristics. Some examples of application to <strong>polymerization</strong> reactions were m<strong>en</strong>tioned.<br />

In this context the microtechnologies offer promis<strong>in</strong>g perspectives for the synthesis of PVC, s<strong>in</strong>ce they<br />

imply g<strong>en</strong>eration of droplets with the same size, shape and chemical composition. The safety of the<br />

process would be granted by the small quantities of VCM <strong>in</strong>volved and by the facility to evacuate the<br />

reaction heat. The next chapter will detail the reason<strong>in</strong>g <strong>in</strong> the design of a micro<strong>reactor</strong> suited for this<br />

application and the first experim<strong>en</strong>tal results <strong>in</strong>volv<strong>in</strong>g VCM at microscale.<br />

53


CHAPTER II:<br />

DEVELOPMENT OF THE<br />

MICROREACTOR DEVICE<br />

AND ITS HYDRODYNAMIC<br />

CHARACTERIZATION<br />

55


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

The ma<strong>in</strong> objective of this chapter is to describe the experim<strong>en</strong>tal test b<strong>en</strong>ch designed for the study of<br />

the S-PVC reaction. The various stages of reason<strong>in</strong>g which led to the outcome of this pilot will be<br />

detailed along with the technical means employed. Further on, this study focuses on the behaviour of<br />

the fluid flows <strong>en</strong>countered <strong>in</strong> microchannel, their characteristics and the parameters that <strong>in</strong>flu<strong>en</strong>ce<br />

them. The experim<strong>en</strong>tal rig pres<strong>en</strong>ted here appears as the first g<strong>en</strong>eration micro<strong>reactor</strong> set-up used for<br />

the VCM/water hydrodynamic study and some prelim<strong>in</strong>ary <strong>polymerization</strong> tests.<br />

I. Prelim<strong>in</strong>ary choices<br />

The objective of this study is to design and test a novel experim<strong>en</strong>tal set-up based on<br />

microtechnologies allow<strong>in</strong>g to perform the S-PVC reaction.<br />

Some particular aspects of the VCM <strong>polymerization</strong> are worthy to be highlighted. The <strong>in</strong>itiator must<br />

be uniformly distributed <strong>in</strong> all droplets <strong>in</strong> order to produce PVC gra<strong>in</strong>s with homog<strong>en</strong>eous properties.<br />

A characteristic feature of the S-PVC reaction is that the polymer is not soluble <strong>in</strong> its monomer. Thus<br />

ev<strong>en</strong> at low conversions polymer macroradicals start to grow and precipitate <strong>in</strong>to the droplets. The<br />

monomer droplets become viscous, sticky, and t<strong>en</strong>d to agglomerate. All these aspects are controlled by<br />

the hydrodynamics which are a key parameter also govern<strong>in</strong>g the size of the monomer droplet and the<br />

resid<strong>en</strong>ce time <strong>in</strong> the microchannel.<br />

For the design of the experim<strong>en</strong>tal test b<strong>en</strong>ch several important po<strong>in</strong>ts need to be tak<strong>en</strong> <strong>in</strong>to<br />

consideration. The major constra<strong>in</strong>t is the VCM’s toxicity at ambi<strong>en</strong>t pressure and its explosive<br />

character. VCM is relatively stable and shows no t<strong>en</strong>d<strong>en</strong>cy to polymerise. However, once<br />

contam<strong>in</strong>ated with oxyg<strong>en</strong> it might produce v<strong>in</strong>yl <strong>chloride</strong> polyperoxide which decomposes and<br />

<strong>in</strong>itiates <strong>polymerization</strong>. The system has to be perfectly safe and therefore completely closed <strong>in</strong> order<br />

to prev<strong>en</strong>t any possible monomer loss and to reduce any contact with oxyg<strong>en</strong>.<br />

In order to handle only liquid monomer at any time <strong>in</strong> the microchannel the system has to allow high<br />

pressures up to 20 bar. The temperature is also a key parameter that has to be controlled as it <strong>en</strong>ables<br />

the <strong>in</strong>itiation of the <strong>polymerization</strong>.<br />

Some elem<strong>en</strong>ts were pre-established <strong>in</strong> the framework of the study. For <strong>in</strong>stance, the surfactants used<br />

for the experim<strong>en</strong>ts were a PVA mixture of low and high hydrolysis degree classically employed at<br />

Ineos Chlor<strong>V<strong>in</strong>yl</strong> plant <strong>in</strong> Maz<strong>in</strong>garbe, France (described <strong>in</strong> Section I.B). As for the choice of<br />

57


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

peroxide <strong>in</strong>itiators (described <strong>in</strong> Chapter III, section III.A), we were limited to the ones provided by<br />

the chemical market availability.<br />

In the common batch <strong>polymerization</strong> <strong>reactor</strong>s the resid<strong>en</strong>ce time is about several hours dep<strong>en</strong>d<strong>in</strong>g on<br />

the <strong>polymerization</strong> temperature. Therefore the microsystem designed has to allow a similar resid<strong>en</strong>ce<br />

time.<br />

In the <strong>in</strong>dustrial <strong>reactor</strong>s, the VCM is dispersed by means of agitation <strong>in</strong>to droplets <strong>in</strong> the range of 30-<br />

50 µm <strong>in</strong> diameter. This droplet size will also be aimed for the micro<strong>reactor</strong> studies although it does<br />

not repres<strong>en</strong>t a major constra<strong>in</strong>t.<br />

At the <strong>en</strong>d of the reaction the monomer droplets are transformed <strong>in</strong>to solid polymer beads. Handl<strong>in</strong>g<br />

of solid might be a delicate issue with<strong>in</strong> microchannels because of block<strong>in</strong>gs, therefore a low-cost<br />

microsystem completely replaceable was considered.<br />

I.A. Choice of a model fluid<br />

The first part of this study has as ma<strong>in</strong> objective to determ<strong>in</strong>e the flow cartography of a liquid-liquid<br />

system <strong>in</strong> order to def<strong>in</strong>e the optimal operat<strong>in</strong>g conditions. But due to the carc<strong>in</strong>og<strong>en</strong>ic character of<br />

VCM and to its gaseous form at ambi<strong>en</strong>t temperature, the study of VCM/water system requires special<br />

equipm<strong>en</strong>t and particular precautions. Therefore, the prelim<strong>in</strong>ary studies were conducted with a model<br />

liquid pres<strong>en</strong>t<strong>in</strong>g similar properties to those of VCM.<br />

The literature shows differ<strong>en</strong>t solv<strong>en</strong>ts which were used to replace VCM, such as v<strong>in</strong>yl acetate or<br />

trichloroethyl<strong>en</strong>e (Shiraishi et al., 1973), the mixture dichloroethane/ethylb<strong>en</strong>z<strong>en</strong>e (Chung et al., 1978)<br />

or butyl<strong>chloride</strong> (Padovan et al., 1986; Chatzi et al., 1994; Hong et al.., 2006).<br />

On the basis of the rec<strong>en</strong>t work of Hong et al. (2006), the 1-butyl<strong>chloride</strong> (ClBu) was chos<strong>en</strong> upon<br />

selection criteria such as: commercial availability, price, boil<strong>in</strong>g po<strong>in</strong>t, water solubility, d<strong>en</strong>sity or<br />

toxicity. The Table II- 1 compares some of the physical properties of VCM and ClBu. Note the<br />

similar values of d<strong>en</strong>sities, <strong>in</strong>terfacial t<strong>en</strong>sion, viscosity and the high boil<strong>in</strong>g temperature of ClBu<br />

which allows easy liquid handl<strong>in</strong>g.<br />

58


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

ClBu VCM<br />

Boil<strong>in</strong>g temperature (°C) 78 -13.4<br />

Total solubility parameter (J/cm 3 ) 1/2 17.0 17.4<br />

D<strong>en</strong>sity at 20°C (g/cm 3 ) 0.886 0.911<br />

Molar mass (g/mol) 93.6 62.5<br />

Refraction <strong>in</strong>dex<br />

1.402 1.370<br />

at 20°C<br />

Viscosity (mPa.s) 0.51 at 20°C 0.23 at 0°C<br />

Water solubility (mg/kg) 370 1100<br />

Interfacial t<strong>en</strong>sion /H2O (mN/m) 38.7 32<br />

Table II- 1: Comparison of physical and chemical properties of VCM and ClBu<br />

Once the model liquid selected, special care was directed to the choice of a suited material for the<br />

microchannel and an appropriate droplet g<strong>en</strong>eration system. For the follow<strong>in</strong>g tests the 1-butyl<strong>chloride</strong><br />

was purchased from Sigma Aldrich and water was deionised <strong>in</strong> our laboratory.<br />

I.B. The surfactants employed<br />

For our study the surfactants employed were two types of Poly<strong>V<strong>in</strong>yl</strong>icAlcohol (PVA) commonly used<br />

<strong>in</strong> the VCM susp<strong>en</strong>sion <strong>polymerization</strong> process and furnished by Ineos Chlorv<strong>in</strong>yl Maz<strong>in</strong>garbe,<br />

France. The first one is a primary surfactant, PVA I, with a hydrolysis degree superior to 70%. It<br />

consists of a white powder and it controls the monomer droplet size and consequ<strong>en</strong>tly the f<strong>in</strong>al PVC<br />

gra<strong>in</strong> dim<strong>en</strong>sions. The secondary surfactant, PVA II, is usually used together with the PVA I <strong>in</strong> order<br />

to control the porosity of the f<strong>in</strong>al gra<strong>in</strong>. It is commercialized <strong>in</strong> ethanol/ethylacetate (60/40).<br />

A solution of PVA I was prepared at 5%wt <strong>in</strong> deionised water by stirr<strong>in</strong>g dur<strong>in</strong>g 2 hours at 70°C. This<br />

mother solution was r<strong>en</strong>ewed each week and stored at refrigerator conditions. 30 ppm of the 5% wt<br />

solution were collected and re-dissolved <strong>in</strong> 100 mL deionised water. 15 ppm with respect to the water<br />

phase of the PVA II were added to the latter solution and kept under vigorous agitation for several<br />

m<strong>in</strong>utes at ambi<strong>en</strong>t temperature.<br />

59


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

I.C. Choice of the conv<strong>en</strong>i<strong>en</strong>t microchannel<br />

The first tests <strong>in</strong>volved the choice of a microchannel material. The latter was selected from the<br />

commercially available microcapillaries, which pres<strong>en</strong>t good biocompatibility, are <strong>in</strong>ert to most<br />

chemical solv<strong>en</strong>ts and may replace sta<strong>in</strong>less steel tub<strong>in</strong>gs ev<strong>en</strong> for high pressure applications.<br />

Therefore, the experim<strong>en</strong>ts were performed with two types of capillary tubes as outlet: one <strong>in</strong> PFA<br />

(perfluoroalcoxyalkane) and another <strong>in</strong> fused silica. Both of them pres<strong>en</strong>t a smooth <strong>in</strong>ternal surface<br />

texture. Droplets were obta<strong>in</strong>ed us<strong>in</strong>g a commercially available T-junction purchased from Upchurch<br />

Sci<strong>en</strong>tific. This g<strong>en</strong>eration system is produced from PolyEtherEtherKetone (PEEK), a thermostable<br />

plastic material display<strong>in</strong>g a hydrophobic character. This T-junction pres<strong>en</strong>ts a 500 µm <strong>in</strong>ternal<br />

diameter and it was directly connected to the capillary tubes through standard head fitt<strong>in</strong>gs also made<br />

<strong>in</strong> PEEK. A schematic <strong>in</strong>terior view of a T-junction is pres<strong>en</strong>ted <strong>in</strong> Figure II- 1.<br />

Figure II- 1: Commercially available T junction<br />

I.D. Tests with PFA tub<strong>in</strong>g<br />

Initially the PFA tub<strong>in</strong>g with a 0.5 mm <strong>in</strong>ternal diameter (ID) and a 1 mm outer diameter (OD) was<br />

tested with an experim<strong>en</strong>tal set-up as shown <strong>in</strong> Figure II- 2. The water phase was prepared as<br />

described <strong>in</strong> section I.B and butyl<strong>chloride</strong> was used without further purification. Two syr<strong>in</strong>ge pumps<br />

(type Harvard Apparatus PHP 2000) were used to deliver the water/ClBu phases <strong>in</strong>to the T junction.<br />

The PFA tub<strong>in</strong>g was placed at the exit of the T-junction allow<strong>in</strong>g the formation of droplets flow<strong>in</strong>g<br />

<strong>in</strong>to the cont<strong>in</strong>uous phase. Droplet visualization was performed with a b<strong>in</strong>ocular Nikon SMZ-10<br />

coupled with a high speed camera HCC -1000 (VDS Vosskühler GmbH) acquir<strong>in</strong>g up to 1800<br />

images/second. Optical fibers placed underneath the microchannel <strong>en</strong>sure <strong>en</strong>ough light which is<br />

afterwards s<strong>en</strong>t to the b<strong>in</strong>ocular. Images were transferred to a PC and processed with NV 1000<br />

software (New Vision Technologies).<br />

60


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

Acquisition<br />

camera<br />

Syr<strong>in</strong>ge pump<br />

ClBu<br />

Microchannel<br />

Syr<strong>in</strong>ge pump<br />

Water+PVAs<br />

Optical fibers<br />

Figure II- 2: Experim<strong>en</strong>tal set-up for the tests with PFA tub<strong>in</strong>g<br />

Due to its hydrophobic character, PFA tub<strong>in</strong>g <strong>en</strong>abled the formation of an <strong>in</strong>versed emulsion (water<br />

droplets <strong>in</strong> ClBu). This regime was observed for water flow rates betwe<strong>en</strong> 5000 to 10000 µL/h and<br />

500 to 1000 µL/h for ClBu respectively. A dye was added <strong>in</strong>to the water phase (blue of bromothymol)<br />

which allowed confirmation of the hydrophilic nature of the drops. A photo of the droplets flow<strong>in</strong>g<br />

<strong>in</strong>to the outlet tube is pres<strong>en</strong>ted <strong>in</strong> Figure II- 3 for a water/ClBu flow rate ratio of 4.<br />

Figure II- 3: Water droplets <strong>in</strong>to the organic phase obta<strong>in</strong>ed <strong>in</strong> PFA tub<strong>in</strong>g<br />

It was observed that <strong>in</strong>creas<strong>in</strong>g the water flow rate would be possible to atta<strong>in</strong> a regime of ClBu<br />

droplets <strong>in</strong>to the water cont<strong>in</strong>uous phase. This would subsequ<strong>en</strong>tly imply to manipulate important<br />

volumes and oft<strong>en</strong> refill the water syr<strong>in</strong>ge. Also droplet velocities <strong>in</strong>crease substantially and the use of<br />

a PFA channel for the S-PVC would lead to a <strong>reactor</strong> of several doz<strong>en</strong>s of meters long. Therefore this<br />

type of material was considered unsuited for our application.<br />

61


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

I.E. Tests with fused silica capillary tub<strong>in</strong>g<br />

The advantages of the fused silica tubes are that they are transpar<strong>en</strong>t allow<strong>in</strong>g thus good visualization,<br />

they are commercially available and cheap. Therefore, they may be replaced with new ones easily.<br />

Contrary to PFA, these microtubes have a hydrophilic character. Thus, due to this favourable<br />

wettability property, they <strong>en</strong>able the formation of ClBu droplets carried by the cont<strong>in</strong>uous phase. Thus<br />

the tests that followed were conducted <strong>in</strong> this type of tub<strong>in</strong>g of 180 µm ID/ 365 µm OD. In order to<br />

facilitate the droplet formation, we added two surfactants <strong>in</strong>to the water phase. It consists of the two<br />

types of PVA (polyv<strong>in</strong>yl alcohols) already described.<br />

The flow rates varied betwe<strong>en</strong> 1000 to 10000 µL/h for water and 100 to 1000 µL/h for ClBu<br />

respectively. The Figure II- 4 shows an example of flow cartography obta<strong>in</strong>ed after image process<strong>in</strong>g<br />

for a fixed flow rate of ClBu at 500 µL/h.<br />

250<br />

230<br />

210<br />

Droplet l<strong>en</strong>gth (µm)<br />

190<br />

170<br />

150<br />

130<br />

110<br />

90<br />

0 2000 4000 6000 8000 10000 12000<br />

Cont<strong>in</strong>uous phase flow rate (µL/h)<br />

Figure II- 4: Flow cartography for a fixed ClBu flow rate of 500 µL/h<br />

As described <strong>in</strong> the literature, and we cite the work of Nisisako et al. (2002), Garsteki et al. (2006),<br />

PhD thesis Marcati (2009), the droplets’ dim<strong>en</strong>sions decrease with the <strong>in</strong>crease of the cont<strong>in</strong>uous<br />

phase flow rate, at constant dispersed phase flow rate. Therefore <strong>in</strong> the case of the water/ClBu flow,<br />

the droplets dim<strong>in</strong>ish <strong>in</strong> order of about 100 µm at a 5 times <strong>in</strong>crease of the cont<strong>in</strong>uous phase flow rate<br />

(from 1000 to 5000 µL/h). The droplets obta<strong>in</strong>ed have differ<strong>en</strong>t shapes, go<strong>in</strong>g from slugs (wh<strong>en</strong> their<br />

l<strong>en</strong>gth is superior to the channel diameter), to spheres with the same diameter as the capillary or<br />

62


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

<strong>in</strong>ferior to the channel diameter. One may observe that droplets atta<strong>in</strong>ed a limit diameter of about 110<br />

at water flow rate of 6000 µL/h. From that po<strong>in</strong>t on, any <strong>in</strong>crease <strong>in</strong> water flow rate does not have an<br />

important impact on the droplets’ dim<strong>en</strong>sions.<br />

In terms of droplets’ velocities, the latter is proportional to the total flow rate. Thus by modify<strong>in</strong>g the<br />

total flow rate but conserv<strong>in</strong>g the two-phase flow rate ratio, droplets would preserve their dim<strong>en</strong>sions<br />

but they would circulate with differ<strong>en</strong>t velocities <strong>in</strong> the channel. The measured velocities are very<br />

close to the velocities applied from the flow rates of every phase as pres<strong>en</strong>ted <strong>in</strong> Figure II- 5. We may<br />

suppose that the ClBu droplets do not undergo any slip velocity, as they are carried out by the<br />

cont<strong>in</strong>uous phase.<br />

120<br />

Measured velocity (mm/s)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80 100 120<br />

Applied velocity (mm/s)<br />

Figure II- 5: Measured versus applied velocity for fixed ClBu flow rate at 500 µL/h<br />

These tests allowed us to def<strong>in</strong>e the operat<strong>in</strong>g conditions with the 180 µm <strong>in</strong>ternal diameter capillary,<br />

namely droplets of 100 -180 µm <strong>in</strong> diameter g<strong>en</strong>erated with total flow rates superior to 2000 µL/h.<br />

In our study an issue of importance was to try decreas<strong>in</strong>g the droplet dim<strong>en</strong>sions, <strong>in</strong> order to better<br />

mimic the <strong>in</strong>dustrial conditions where VCM droplets have 30 – 50 µm wh<strong>en</strong> dispersed <strong>in</strong>to the water<br />

phase. Therefore we considered us<strong>in</strong>g capillaries with smaller ID. Our att<strong>en</strong>tion was directed to fused<br />

silica tubes of 60 µm ID (150 µm OD). The g<strong>en</strong>eration system was the same type of T device with a<br />

500 µm thru-hole.<br />

63


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

Flow direction<br />

Q c /Q d = 1 Q c /Q d = 1,5 Q c /Q d = 2<br />

Figure II- 6: Droplets <strong>in</strong> 60 µm ID fused silica capillary at fixed ClBu flow rate of 100 µL/h and differ<strong>en</strong>t<br />

flow rate ratios Qc/Qd<br />

Droplets have g<strong>en</strong>erally a bullet-like shape (Figure II- 6) and their l<strong>en</strong>gth decreases with <strong>in</strong>creas<strong>in</strong>g the<br />

water flow rate. The flow rates were adapted for the capillary’s dim<strong>en</strong>sions <strong>in</strong> order to obta<strong>in</strong> a<br />

dispersed regime. Therefore, the ClBu flow rate varied betwe<strong>en</strong> 100 – 200 µL/h and the water flow<br />

rate from 100 – 1000 µL/h. However, due to the channel’s small dim<strong>en</strong>sions the flow regime was<br />

difficult to stabilize. A possible reason for that might be the T g<strong>en</strong>eration system which might conta<strong>in</strong><br />

dead volumes. Therefore, <strong>in</strong> the future studies, the 60 µm ID capillaries were not employed for our<br />

future VCM studies.<br />

A differ<strong>en</strong>t g<strong>en</strong>eration system was th<strong>en</strong> tested <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> the same droplet sizes but at lower<br />

velocities <strong>in</strong> the channel. This latter constra<strong>in</strong>t would allow perform<strong>in</strong>g long <strong>polymerization</strong> times <strong>in</strong><br />

microchannel. Droplets were g<strong>en</strong>erated <strong>in</strong> a round fused silica capillary of <strong>in</strong>ner diameter 180 µm<br />

us<strong>in</strong>g as nozzle another fused silica capillary of 50 µm <strong>in</strong>ternal diameter. The outer dim<strong>en</strong>sion (150<br />

µm) of this <strong>in</strong>ternal capillary is very close to the <strong>in</strong>ner diameter of the external tube (180 µm) this<br />

allow<strong>in</strong>g a good alignm<strong>en</strong>t and c<strong>en</strong>tre. A schematic diagram of the microfluidic device is pres<strong>en</strong>ted <strong>in</strong><br />

Figure II- 7:<br />

ClBu phase<br />

Dispersed ClBu<br />

droplets<br />

Water phase<br />

Figure II- 7: Axisymmetric g<strong>en</strong>eration device<br />

The axisymmetric g<strong>en</strong>eration system tested has the particularity that the two phases flow <strong>in</strong> the same<br />

direction. The dispersed phase flows <strong>in</strong>to a small capillary and the cont<strong>in</strong>uous one <strong>in</strong>to a conc<strong>en</strong>tric<br />

larger capillary tube. The droplets are therefore formed due to the shear force at the exit of the small<br />

capillary nozzle and are delivered <strong>in</strong>to the coflow<strong>in</strong>g cont<strong>in</strong>uous phase as pres<strong>en</strong>ted <strong>in</strong> Figure II- 8.<br />

The droplet formation is regular and reproducible.<br />

64


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

Figure II- 8: Drops obta<strong>in</strong>ed <strong>in</strong> the axysimmetrical capillary device<br />

With this k<strong>in</strong>d of device we were able to obta<strong>in</strong> droplets with<strong>in</strong> the same order of dim<strong>en</strong>sions and a<br />

significantly reduced velocity as compared <strong>in</strong> Figure II- 9.<br />

260<br />

240<br />

220<br />

T junction<br />

Axysimmetrical g<strong>en</strong>eration<br />

Drop l<strong>en</strong>gth (µm)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

500 1500 2500 3500 4500 5500<br />

Q water (µL/h)<br />

Figure II- 9: Flow cartography <strong>in</strong> an axysimmetrical g<strong>en</strong>eration device and with a T junction at constant<br />

ClBu flow rate of 100 µL/h<br />

It can be observed that for the same flow rates of the cont<strong>in</strong>uous phase, smaller droplets are obta<strong>in</strong>ed.<br />

The diameter <strong>in</strong> the axisymmetrical system is about half of the value resulted with the T device. This<br />

differ<strong>en</strong>ce slightly decreases at high flow rates until stabilization. Therefore with this g<strong>en</strong>eration<br />

system the droplet diameter is reduced and the work<strong>in</strong>g flow rates are respectively dim<strong>in</strong>ished.<br />

These prelim<strong>in</strong>ary tests allowed us to def<strong>in</strong>e the first <strong>reactor</strong>-design related characteristics. A type of<br />

microchannel was selected for the future <strong>polymerization</strong> tests with VCM. It consists of fused silica<br />

capillary tubes with 180 µm ID. The axisymmetrical droplet g<strong>en</strong>eration device <strong>en</strong>ables formation of<br />

ClBu droplets with<strong>in</strong> 80 µm <strong>in</strong> diameter and velocities up to 100 mm/s. These <strong>in</strong>formation are of great<br />

importance for the design of an appropriate set-up allow<strong>in</strong>g to perform the S-PVC reaction.<br />

65


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

II. First g<strong>en</strong>eration micro<strong>reactor</strong> for VCM/water<br />

hydrodynamic study<br />

The previous section furnished conclusions as to the type of capillary tube and the g<strong>en</strong>eration system<br />

to be used. However due to safety measures the capillary system was only employed with a model<br />

fluid. In order to apply it to VCM tests the <strong>en</strong>tire capillary tube and its connections were placed <strong>in</strong> a<br />

completely sealed hous<strong>in</strong>g especially fashioned <strong>in</strong> our laboratory. Figure II- 10 shows a photo of this<br />

shell surround<strong>in</strong>g the tubes. It consists of a larger volume (a) where the connections are placed.<br />

Afterwards the capillary tube b<strong>en</strong>ds along the circular sta<strong>in</strong>less steel tube. It can therefore perform<br />

several loops before atta<strong>in</strong><strong>in</strong>g the desired l<strong>en</strong>gth. One capillary loop is 1.35 m long. A second volume<br />

is pres<strong>en</strong>t on the loop (b) provided with a 3 cm diameter glass w<strong>in</strong>dow at the bottom and on top. It<br />

allows visualization of the capillary tubes <strong>in</strong> the hous<strong>in</strong>g with a speed camera connected to a<br />

microscope (already described <strong>in</strong> section I-VIC).<br />

c<br />

e<br />

f<br />

d<br />

a<br />

b<br />

g<br />

e<br />

Figure II- 10: Photo of the sta<strong>in</strong>less steel hous<strong>in</strong>g of the capillary tubes<br />

The <strong>en</strong>tire hous<strong>in</strong>g is filled with heated and pressurized water which stands for counter-pressure to the<br />

capillaries also provid<strong>in</strong>g thermo <strong>in</strong>itiation of the <strong>polymerization</strong> reaction. A uniform temperature <strong>in</strong><br />

the <strong>en</strong>tire volume is obta<strong>in</strong>ed by a pump which perman<strong>en</strong>tly <strong>en</strong>sures hot water recirculation <strong>in</strong> a closed<br />

pressurized loop. A heat<strong>in</strong>g cable surrounds the capillary hous<strong>in</strong>g and a hotplate is placed under the<br />

larger volume of the hous<strong>in</strong>g (a).<br />

The differ<strong>en</strong>t <strong>en</strong>tries pres<strong>en</strong>t on the circuit (c) stand for a pressure and temperature s<strong>en</strong>sor respectively.<br />

The 2 jo<strong>in</strong>ts (e) are the water <strong>in</strong>let and respectively outlet allow<strong>in</strong>g the circulation <strong>in</strong> closed system.<br />

The d <strong>en</strong>try stands for a security expansion tube coupled with a security 30 bar valve. And the f <strong>in</strong>let is<br />

66


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

connected to a nitrog<strong>en</strong> gas tank which <strong>en</strong>sures pressur<strong>in</strong>g of the water circuit. The connection with<br />

the capillary tubes correspond<strong>in</strong>g to the two phases is performed through the g <strong>in</strong>lets.<br />

The hydraulic connections betwe<strong>en</strong> the steel tube and capillaries pres<strong>en</strong>ted <strong>in</strong> Figure II- 11a. The<br />

reag<strong>en</strong>ts flow through sta<strong>in</strong>less steel tubes before <strong>en</strong>ter<strong>in</strong>g the microchannel hous<strong>in</strong>g. Here they<br />

connect with the capillary tubes via a sta<strong>in</strong>less steel union. The capillaries are jo<strong>in</strong>ed with microtight<br />

fitt<strong>in</strong>gs that require tub<strong>in</strong>g sleeves of 340-360 µm OD (Figure II- 11b). The macro/microfluidic<br />

connections are commercially available and rather easy to put <strong>in</strong> place. However, the system was<br />

difficultly qu<strong>en</strong>ched because the seal<strong>in</strong>g is quite delicate: too tight might crush the capillaries and<br />

block them and too weak g<strong>en</strong>erates leaks.<br />

a)<br />

To recovery tank<br />

Capillary tubes<br />

b)<br />

Nut<br />

Tub<strong>in</strong>g<br />

Sleeve<br />

Ferrule<br />

VCM<br />

Cont<strong>in</strong>uos phase<br />

Figure II- 11: a) Photo of the connexions betwe<strong>en</strong> sta<strong>in</strong>less steel tub<strong>in</strong>g and fused silica capillaries; b)<br />

Microtight fitt<strong>in</strong>gs adapted to capillary tubes.<br />

Once the micro<strong>reactor</strong>’s hous<strong>in</strong>g developed, the other elem<strong>en</strong>ts of the experim<strong>en</strong>tal set-up were<br />

designed to allow the same demands <strong>in</strong> terms of pressure, temperature and safety.<br />

II.A. Description of the experim<strong>en</strong>tal set-up<br />

The test b<strong>en</strong>ch used for the hydrodynamic characterization of the VCM/water system as well as for the<br />

further <strong>polymerization</strong> tests is pres<strong>en</strong>ted <strong>in</strong> Figure II- 12.<br />

67


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

Figure II- 12: Schematic diagram of the experim<strong>en</strong>tal set-up: Px. Differ<strong>en</strong>tial pressure s<strong>en</strong>sor; Tx.<br />

Temperature s<strong>en</strong>sor; SP. Safety valve<br />

The liquid v<strong>in</strong>yl <strong>chloride</strong> is transported from a high-pressure cyl<strong>in</strong>der directly to the micro<strong>reactor</strong> via a<br />

feed tube, by act<strong>in</strong>g on nitrog<strong>en</strong> pressure. Water phase flow is <strong>en</strong>sured by a Gilson 307 HPLC pump<br />

and VCM flow is adjusted with a micrometric valve. The compon<strong>en</strong>ts, which are exposed to VCM,<br />

such as tub<strong>in</strong>g or valves, are obta<strong>in</strong>ed from Swagelok and are all made of sta<strong>in</strong>less steel. This setup<br />

allows a f<strong>in</strong>e control of the water phase flow rate, and a manual adjustm<strong>en</strong>t of monomer flow. The<br />

flow develops by <strong>en</strong>sur<strong>in</strong>g at the <strong>en</strong>d of the circuit a pressure level <strong>in</strong>ferior to that at the <strong>in</strong>let <strong>in</strong>dicated<br />

by the HPLC pump or by the pressure s<strong>en</strong>sor P1 placed on the VCM l<strong>in</strong>e (Figure II- 12). The<br />

capillary tube was placed <strong>in</strong> the steel hous<strong>in</strong>g filled with heated and pressurized water.<br />

The reaction mixture is collected <strong>in</strong> a sta<strong>in</strong>less steel sealed outlet <strong>reactor</strong> pres<strong>en</strong>ted <strong>in</strong> Figure II- 13. It<br />

repres<strong>en</strong>ts a volume of 300 mL and stands to pressures up to 100 bar. The <strong>en</strong>tire system is closed and<br />

pressurized. Pressure is measured on the heated water circuit and <strong>in</strong> the collect<strong>in</strong>g vessel by pressure<br />

s<strong>en</strong>sors with an accuracy of +/- 0.15% (Serv Instrum<strong>en</strong>tation).<br />

68


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

Figure II- 13: Photo of the outlet collect<strong>in</strong>g vessel<br />

The test b<strong>en</strong>ch was designed to allow a maximum work<strong>in</strong>g pressure of 30 bar and a 90°C work<strong>in</strong>g<br />

temperature. The limit<strong>in</strong>g elem<strong>en</strong>ts <strong>in</strong> terms of pressure are the safety valves fixed at 30 bar and <strong>in</strong><br />

terms of temperature is the water boil<strong>in</strong>g po<strong>in</strong>t. The Figure II- 14 shows a picture of the test b<strong>en</strong>ch.<br />

1<br />

5<br />

8<br />

6<br />

3<br />

2<br />

7<br />

4<br />

Figure II- 14: Photo of the experim<strong>en</strong>tal set-up; 1. VCM tank; 2. Gilson 307 HPLC pump; 3. Micro<strong>reactor</strong><br />

hous<strong>in</strong>g; 4. Optical fibers; 5. Visualization system; 6. Pressure and temperature control scre<strong>en</strong>s; 7.<br />

Hotplate; 8. VOC detector<br />

Note that the two feed<strong>in</strong>g l<strong>in</strong>es were equipped with Swagelok filters stopp<strong>in</strong>g ev<strong>en</strong>tual impurities with<br />

diameter superior to 7 µm to pass <strong>in</strong>to the capillaries. Also check valves were placed on the two<br />

reag<strong>en</strong>ts’ l<strong>in</strong>es <strong>in</strong> order to prev<strong>en</strong>t any undesired comeback of the reaction medium <strong>in</strong>to the VCM tank<br />

or <strong>in</strong>to the water phase.<br />

69


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

Because of the carc<strong>in</strong>og<strong>en</strong>icity of VCM the whole system was cont<strong>in</strong>uously scanned for any leakage<br />

with a portable photoionization monitor for volatile organic compounds (VOC) measurem<strong>en</strong>t. The<br />

experim<strong>en</strong>tal set-up was placed under a fume cupboard prev<strong>en</strong>t<strong>in</strong>g any gaseous VCM leaks <strong>in</strong>to the<br />

operat<strong>in</strong>g room dur<strong>in</strong>g experim<strong>en</strong>ts.<br />

Experim<strong>en</strong>tal protocol<br />

Before each experim<strong>en</strong>t, several cycles of nitrog<strong>en</strong> purg<strong>in</strong>g are conducted to evacuate oxyg<strong>en</strong> cont<strong>en</strong>t<br />

from the system. After that an aqueous flow rate is fixed (betwe<strong>en</strong> 1 – 10 mL/h) <strong>in</strong> the capillaries. The<br />

pressure <strong>in</strong> the outlet <strong>reactor</strong> is th<strong>en</strong> progressively raised by means of nitrog<strong>en</strong>. The control <strong>in</strong> the<br />

capillary system is realized by tun<strong>in</strong>g the pressure of the outlet <strong>reactor</strong>. Once the flow is well<br />

established <strong>in</strong> the circuit, VCM is <strong>in</strong>troduced at flow rates betwe<strong>en</strong> 0.1-1 mL/h. The water circuit from<br />

the hous<strong>in</strong>g is subsequ<strong>en</strong>tly pressurized and heated at temperatures vary<strong>in</strong>g from 50 – 75 °C. Images<br />

are recorded with the CCD camera coupled to the microscope and transferred to computer. After a few<br />

m<strong>in</strong>utes of regular flow the flow rates may be changed aga<strong>in</strong>. At the <strong>en</strong>d of the experim<strong>en</strong>t, capillary<br />

tubes are th<strong>en</strong> cleaned with water phase dur<strong>in</strong>g 1 hour. VCM collected <strong>in</strong> the outlet <strong>reactor</strong> is slowly<br />

released <strong>in</strong>to the fume cupboard. It was assumed that dur<strong>in</strong>g a one-day experim<strong>en</strong>t at a maximum<br />

VCM flow rate, less than 10 mL of liquid monomer would be accumulated <strong>in</strong> the recovery tank. Also<br />

we supposed the fume cupboard would only provide a m<strong>in</strong>imum extraction rate of 200 m 3 /h. Ev<strong>en</strong> <strong>in</strong><br />

these conditions the volume of gaseous VCM not exceed<strong>in</strong>g 5·10 -3 m 3 repres<strong>en</strong>ts much less than the<br />

extraction capacity of the fume cupboard. Therefore this operation does not pres<strong>en</strong>t any danger for the<br />

laboratory <strong>en</strong>vironm<strong>en</strong>t.<br />

II.B. Improvem<strong>en</strong>ts of the experim<strong>en</strong>tal set-up<br />

The manual adjustm<strong>en</strong>t of the VCM flow rate by means of micrometric valve caused some issues for<br />

the repeatability tests. Therefore control of the VCM flow rate seemed mandatory for a better<br />

monitor<strong>in</strong>g and understand<strong>in</strong>g of the system’s hydrodynamics. For this reason the test b<strong>en</strong>ch was<br />

equipped with high-pressure neMESYS syr<strong>in</strong>ge pumps (Figure II- 15). This device is computer<br />

controlled and allows aspiration of VCM <strong>in</strong>to the syr<strong>in</strong>ge, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the appropriate work<strong>in</strong>g<br />

pressure and <strong>en</strong>sur<strong>in</strong>g a precise control of the flow rate. Each module was equipped with an item<br />

especially conceived to stop the syr<strong>in</strong>ge <strong>in</strong> case of computer or power failure. The sta<strong>in</strong>less steel<br />

syr<strong>in</strong>ges employed were purchased from Harvard Apparatus and are <strong>in</strong>t<strong>en</strong>ded for high pressure<br />

applications.<br />

70


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

Figure II- 15: Improvem<strong>en</strong>ts of the test b<strong>en</strong>ch: a) photo of the Nemesys syr<strong>in</strong>ges module<br />

A pressure s<strong>en</strong>sor of a s<strong>en</strong>sibility of ± 1 bar is <strong>in</strong>tegrated <strong>in</strong>to each syr<strong>in</strong>ge pump. An obvious<br />

advantage of this change is that the use of the VCM tank is limited, therefore smaller amounts of<br />

monomer are <strong>in</strong>volved dur<strong>in</strong>g experim<strong>en</strong>ts. By this way, the safety of the process is <strong>in</strong>creased.<br />

III. Safety and ma<strong>in</strong>t<strong>en</strong>ance<br />

Because of the carc<strong>in</strong>og<strong>en</strong>ic nature of v<strong>in</strong>yl <strong>chloride</strong>, special precautions must be tak<strong>en</strong> as for the<br />

operator and for the ma<strong>in</strong>t<strong>en</strong>ance of the experim<strong>en</strong>tal rig. Particular equipm<strong>en</strong>t was purchased such as<br />

suited gas mask and a volatile organic compound detector especially calibrated for v<strong>in</strong>yl <strong>chloride</strong>. In<br />

order to <strong>en</strong>sure its good function<strong>in</strong>g, the detector was checked and recalibrated every month. The setup<br />

was placed under a fume cupboard <strong>en</strong>sur<strong>in</strong>g an air flow rate up to 600 m 3 /h. The neMESYS syr<strong>in</strong>ge<br />

pumps modules were equipped with stoppers prev<strong>en</strong>t<strong>in</strong>g the syr<strong>in</strong>ge op<strong>en</strong><strong>in</strong>g <strong>in</strong> case of power drop or<br />

computer failure. The high pressure syr<strong>in</strong>ges for VCM use were constantly checked for leaks. The<br />

<strong>en</strong>tire set-up was periodically put under nitrog<strong>en</strong> pressure <strong>in</strong> order to check leaks on valves or<br />

connections. After each experim<strong>en</strong>t, the system was purged with nitrog<strong>en</strong> <strong>in</strong> order to elim<strong>in</strong>ate any<br />

traces of VCM <strong>in</strong> pipes which might polymerize <strong>in</strong> the pres<strong>en</strong>ce of oxyg<strong>en</strong> therefore block<strong>in</strong>g the<br />

circuit.<br />

IV. Pressure drop study <strong>in</strong> microchannels<br />

One of the most important control parameter both <strong>in</strong> <strong>in</strong>dustrial as <strong>in</strong> pilot scale is the pressure drop,<br />

oft<strong>en</strong> used to design <strong>reactor</strong>s or to optimize operational conditions. Furthermore, once a cont<strong>in</strong>uous<br />

flow is established, a pressure gradi<strong>en</strong>t <strong>in</strong>terv<strong>en</strong>es all along the micro<strong>reactor</strong>. This parameter must<br />

71


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

therefore be precisely controlled <strong>in</strong> order to master the fluids states and the reactions conditions. This<br />

is why this chapter is mostly dedicated to the liquid-liquid flow experim<strong>en</strong>tal results as well as to their<br />

<strong>in</strong>terpretations.<br />

IV.A. Short literature review<br />

Among the factors govern<strong>in</strong>g the characteristics of liquid-liquid dispersions are the physical properties<br />

of the system. These are ma<strong>in</strong>ly the d<strong>en</strong>sity, the viscosity and the <strong>in</strong>terfacial t<strong>en</strong>sion. They are used <strong>in</strong><br />

the determ<strong>in</strong>ation of the dim<strong>en</strong>sionless parameters characteris<strong>in</strong>g the dispersion such as the Reynolds<br />

and the Capillary number. The parameters which can be easily measured <strong>in</strong> the study of a fluid flow<br />

are the pressure and the flow rate. From the latter the section velocity with v superficial = Q/S can be<br />

expressed and the Reynolds number Re is calculated with the equation II-1:<br />

ρ v sup erficial h<br />

Re = D<br />

(II- 1)<br />

µ<br />

where ρ is the d<strong>en</strong>sity of compon<strong>en</strong>t, D h the hydraulic diameter of the pipe and µ is the dynamic<br />

viscosity.<br />

The pressure measurem<strong>en</strong>t allows to calculate the friction factor f (also known as the Fann<strong>in</strong>g<br />

coeffici<strong>en</strong>t) giv<strong>en</strong> by:<br />

f<br />

ρv<br />

2τ<br />

w<br />

2<br />

sup erficial<br />

2D<br />

= −<br />

ρv<br />

h<br />

2<br />

sup erficial<br />

dP<br />

dz<br />

= (II- 2)<br />

This expression of f repres<strong>en</strong>ts the adim<strong>en</strong>sion<strong>in</strong>g of the average shear stress at the wall τ w writt<strong>en</strong> as a<br />

dP<br />

function of the local pressure gradi<strong>en</strong>t from a mom<strong>en</strong>tum balance on a channel elem<strong>en</strong>t of width<br />

dz<br />

dz. It allows thus to determ<strong>in</strong>e that τ w P S dz = −SdP.<br />

The experim<strong>en</strong>tal Poiseuille number is therefore def<strong>in</strong>ed as the product of the Reynolds number and<br />

the friction factor. It may be directly deduced from the experim<strong>en</strong>tal data and from the channel<br />

dim<strong>en</strong>sions:<br />

Po<br />

2<br />

SD ∆P<br />

h<br />

exp<br />

= (II- 3)<br />

2µ QL<br />

72


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

dP ∆P<br />

We note that for an <strong>in</strong>compressible flow: − = − . (II- 4)<br />

dz L<br />

For a lam<strong>in</strong>ary giv<strong>en</strong> flow of an <strong>in</strong>compressible Newtonian fluid, the theoretical Poiseuille number<br />

Po th , as a product betwe<strong>en</strong> the Reynolds number and the friction factor, is constant. However, it<br />

dep<strong>en</strong>ds on the channel geometry.<br />

The fluid flow theory <strong>in</strong> microchannels is g<strong>en</strong>erally based on the models giv<strong>en</strong> by macroscopic flows.<br />

Nonetheless, once the scale is dim<strong>in</strong>ished, the surface effects become much more important than the<br />

volume effects. Thereby, some of the hypothesis neglected <strong>in</strong> the study of macroflows may be tak<strong>en</strong><br />

<strong>in</strong>to consideration <strong>in</strong> the case of microscale flows. For <strong>in</strong>stance, differ<strong>en</strong>t authors such as Merkle et al.<br />

(1974) or Mala et al. (1999), suggest tak<strong>in</strong>g <strong>in</strong>to account the impact of the channel’s surface roughness<br />

or the viscous dissipation as they may g<strong>en</strong>erate differ<strong>en</strong>ces from the conv<strong>en</strong>tional theory (Cubaud et<br />

al., 2008).<br />

Pressure drop of two immiscible liquids <strong>in</strong> microchannels is still not well understood accord<strong>in</strong>g to the<br />

literature (Zhao et al., 2006). In this section we <strong>in</strong>terpret some of the experim<strong>en</strong>tal results assum<strong>in</strong>g<br />

the Hag<strong>en</strong>-Poiseuille equation as valid and us<strong>in</strong>g a homog<strong>en</strong>eous model. The latter is g<strong>en</strong>erally<br />

employed to describe two-phase flows <strong>in</strong> pipes and has be<strong>en</strong> used by several authors and wi cite the<br />

work of Kawahara et al. (2002), English and Kandlikar, (2005) <strong>in</strong> the case of gas-liquid flow <strong>in</strong><br />

microchannels.<br />

This homog<strong>en</strong>eous model basically considers the flow of the two phases as one s<strong>in</strong>gle-phase flow,<br />

tak<strong>in</strong>g <strong>in</strong>to account the equival<strong>en</strong>t physical properties. Thus we will def<strong>in</strong>e below a Darcy two-phase<br />

friction factor which dep<strong>en</strong>ds on the channel diameter D h , the two-phase pressure drop ∆P over the<br />

l<strong>en</strong>gth L, the two-phase d<strong>en</strong>sity ρ TP and the bulk velocity v TP :<br />

f<br />

2D<br />

( ∆P<br />

/ L)<br />

h<br />

TP<br />

= (II- 5)<br />

2<br />

ρTPvTP<br />

We therefore def<strong>in</strong>e the superficial velocity with respect to the flow rates of the two phases v TP<br />

assum<strong>in</strong>g that the slip flow is zero:<br />

v<br />

TP<br />

Qc<br />

+ Qd<br />

S<br />

= (II- 6)<br />

The subscripts c and d stand for cont<strong>in</strong>uous and dispersed phase, respectively. The models were<br />

adapted to the liquid-liquid flow by replac<strong>in</strong>g the gaseous phase by the less-viscous phase (the<br />

73


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

dispersed phase <strong>in</strong> our case). The two-phase mean d<strong>en</strong>sity is def<strong>in</strong>ed as function of the volume fraction<br />

ε of the cont<strong>in</strong>uous phase:<br />

ρ ε ρ + ( 1−<br />

ε ) ρ<br />

m<br />

= (II- 7)<br />

c<br />

c<br />

c<br />

d<br />

We approximated the water volume fraction as the volume of water divided by the total volume of<br />

liquid:<br />

Q<br />

c<br />

ε<br />

c<br />

=<br />

(II- 8)<br />

Qc<br />

+ Qd<br />

where Q c and Q d are the volumetric flow rates of the differ<strong>en</strong>t phases of the system: the cont<strong>in</strong>uous<br />

and the discont<strong>in</strong>uous, respectively.<br />

Similar to the homog<strong>en</strong>eous s<strong>in</strong>gle-phase flow, the relationship betwe<strong>en</strong> the friction factor and the Re<br />

number may be writt<strong>en</strong> as follows:<br />

f<br />

64<br />

Re<br />

= (II- 9)<br />

TP<br />

where the Reynolds number of the two-phase flow is:<br />

ρ v<br />

D<br />

TP TP<br />

Re<br />

TP<br />

=<br />

(II- 10)<br />

µ<br />

TP<br />

In order to evaluate the dynamic viscosity of the two-phase mixture, several models are proposed <strong>in</strong><br />

the literature, which take <strong>in</strong>to consideration the viscosity of each phase, their volume or mass<br />

fractions. The equations above are mostly used <strong>in</strong> gas-liquid two-phase flows but were ext<strong>en</strong>ded to<br />

liquid flow (Salim et al., 2008) by replac<strong>in</strong>g the gas phase by the lower viscous phase:<br />

McAdams (1954):<br />

TP<br />

⎛ x<br />

=<br />

⎜<br />

⎝ µ<br />

d<br />

1−<br />

x ⎞<br />

+<br />

⎟<br />

µ<br />

c ⎠<br />

−1<br />

µ (II- 11)<br />

where<br />

ρ<br />

dQd<br />

x = is the appar<strong>en</strong>t mass fraction. (II- 12)<br />

ρ Q + ρ Q )<br />

(<br />

d d c c<br />

74


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

Cicchitti et al. (1960):<br />

µ x µ + ( 1−<br />

x)<br />

µ<br />

TP<br />

= (II- 13)<br />

d<br />

c<br />

Duckler et al. (1964):<br />

= (II- 14)<br />

µ +<br />

TP<br />

ε<br />

d<br />

µ<br />

d<br />

ε<br />

cµ<br />

c<br />

Beattie and Whalley (1982):<br />

µ µ ε + µ 1−<br />

ε )(1 + 2,5ε<br />

)<br />

TP<br />

d<br />

d<br />

c<br />

(<br />

d<br />

d<br />

= (II- 15)<br />

L<strong>in</strong> et al. (1991):<br />

µ<br />

TP<br />

= d c<br />

(II- 16)<br />

1,4<br />

µ + x ( µ − µ )<br />

d<br />

µ<br />

µ<br />

c<br />

d<br />

The various models pres<strong>en</strong>ted here were evaluated by comparison with the theoretical friction factor.<br />

In order to differ<strong>en</strong>tiate these differ<strong>en</strong>t models, we evaluated them by calculat<strong>in</strong>g the mean relative<br />

error e f,TP :<br />

e<br />

f , TP<br />

=<br />

1<br />

N<br />

f<br />

−<br />

N i<br />

i<br />

TP,exp<br />

TP,<br />

cal<br />

∑ i<br />

i=<br />

1 fTP,<br />

exp<br />

f<br />

(II- 17)<br />

and the standard deviation σ f,TP :<br />

f , TP<br />

=<br />

N ⎛<br />

i<br />

i<br />

1<br />

∑<br />

⎟ ⎟ ⎞<br />

⎜<br />

fTP,exp<br />

− fTP,<br />

cal<br />

− e<br />

fTP<br />

− ⎜<br />

i<br />

N 1 i= 1<br />

⎝<br />

fTP,exp<br />

⎠<br />

2<br />

σ (II- 18)<br />

IV.B. Results and discussion<br />

In order to evaluate the pressure drop <strong>in</strong> the microchannel the tests were performed with the two phase<br />

water/VCM system at differ<strong>en</strong>t flow rates and <strong>in</strong>her<strong>en</strong>t applied velocities. The pressure is measured<br />

us<strong>in</strong>g the differ<strong>en</strong>t pressure s<strong>en</strong>sors on the test b<strong>en</strong>ch (already discussed earlier <strong>in</strong> this chapter). For the<br />

75


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

calculations we therefore d<strong>en</strong>ote as the pressure drop the differ<strong>en</strong>ce betwe<strong>en</strong> the value registered by<br />

VCM pressure s<strong>en</strong>sor and the pressure on the outlet <strong>reactor</strong>.<br />

The g<strong>en</strong>eration system used <strong>in</strong> these experim<strong>en</strong>ts consists of an axi-symmetrical micro device as<br />

schematically repres<strong>en</strong>ted <strong>in</strong> Figure II- 16. The needle tip of a 50 µm ID capillary was <strong>in</strong>troduced <strong>in</strong>to<br />

a larger diameter capillary through the T-junction. The dispersed phase is <strong>in</strong>jected <strong>in</strong>to the 50 µm ID<br />

capillary and the cont<strong>in</strong>uous phase flows <strong>in</strong>to the larger diameter channel. The two phases flow <strong>in</strong>to<br />

the same direction and they <strong>en</strong>counter at the nozzle tip of the 50 µm ID capillary, where droplets are<br />

formed by shear force. The outlet tube is 8 m long and its <strong>in</strong>ner diameter is of 180 or 250 µm.<br />

Dispersed<br />

phase<br />

Monomer droplets<br />

Cont<strong>in</strong>uous phase<br />

Figure II- 16: Schematic diagram of the g<strong>en</strong>eration system used for the VCM/water flow.<br />

<strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> pres<strong>en</strong>ts a slight solubility <strong>in</strong> water (around 1.1 g/kg) but we assumed that the transfer<br />

of this species is negligible with respect to the flow rates employed; therefore this parameter does not<br />

affect the hydrodynamics. A way to by-pass this issue would have be<strong>en</strong> the saturation of water <strong>in</strong> v<strong>in</strong>yl<br />

<strong>chloride</strong> but due to the carc<strong>in</strong>og<strong>en</strong>icity of the monomer the practical solution seemed difficult to<br />

realize.<br />

An example of the evolution of the pressure drop with the cont<strong>in</strong>uous phase flow rate at constant<br />

VCM flow rates is repres<strong>en</strong>ted <strong>in</strong> Figure II- 17 for the 250µm ID capillary tube employed <strong>in</strong> our tests<br />

and at two VCM flow rates: of 120 and 200 µL/h.<br />

76


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

DP/L (bar/m)<br />

0,6<br />

0,4<br />

0,2<br />

T = 20°C Qd = 120 µL/h<br />

T = 20°C Qd = 200 µL/h<br />

T = 70°C Qd = 120 µL/h<br />

T = 70°C Qd = 200µL/h<br />

0<br />

0 1000 2000 3000 4000 5000 6000<br />

Q water (µL/h)<br />

Figure II- 17: The evolution of the pressure drop per meter of capillary tube 250 µm ID at constant VCM<br />

flow rate.<br />

The pressure drop (∆P/L) <strong>in</strong>creases wh<strong>en</strong> the water flow rate <strong>in</strong>creases and at constant VCM flow rate.<br />

Its value is superior to the pressure drop <strong>en</strong>countered wh<strong>en</strong> only water was flow<strong>in</strong>g <strong>in</strong>to the channel.<br />

The pressure drop <strong>in</strong>creases also with the <strong>in</strong>crease of the VCM flow rate but this aspect was not <strong>in</strong> our<br />

area of <strong>in</strong>terest as an <strong>in</strong>crease of the VCM flow rate would g<strong>en</strong>erate changes <strong>in</strong> the flow structure.<br />

We note that <strong>in</strong> the follow<strong>in</strong>g sections, the further hypotheses were stated:<br />

• The microchannel section is constant at all times<br />

• The fluids are <strong>in</strong>compressible, their mass d<strong>en</strong>sity rema<strong>in</strong>s constant all along the experim<strong>en</strong>t<br />

The differ<strong>en</strong>t phases viscosities dep<strong>en</strong>d<strong>en</strong>ce with the temperature were calculated from expressions<br />

proposed <strong>in</strong> the literature and detailed <strong>in</strong> the formulas below described by Wieme et al. (2007) <strong>in</strong> the<br />

case of VCM (equation II-19) and by Daupert and Dauner (1985) for the water phase (equation II-20):<br />

µ<br />

−3<br />

−2<br />

−5<br />

2<br />

MVC<br />

[ Pa.<br />

s]<br />

= 10 exp(9.373−<br />

648.32 / T − 4.294⋅10<br />

T + 4.316⋅10<br />

T<br />

µ [ kg / m.m<strong>in</strong>]<br />

= 4.8exp( −1.5366⋅10<br />

eau<br />

− 2 T<br />

)<br />

(II- 19)<br />

(II- 20)<br />

The differ<strong>en</strong>t viscosity models for the two-phase flows were applied to the VCM/water system at<br />

ambi<strong>en</strong>t temperature and at 60 °C.<br />

77


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

We tested flow rates of 500 up to 5000 µL/h for the cont<strong>in</strong>uous phase and constant flow rates of VCM<br />

(120 and 200 µL/h). For each flow rate the experim<strong>en</strong>tal friction factor f and the two-phase Reynolds<br />

number were calculated.<br />

IV.B.1) Pressure drop <strong>in</strong> the 180 µm ID capillary tube<br />

For the pressure drop calculations the Tees and the whole l<strong>en</strong>gth of steel circuit preced<strong>in</strong>g the capillary<br />

tubes were tak<strong>en</strong> <strong>in</strong>to consideration. We also took <strong>in</strong>to account the 30 cm of l<strong>en</strong>gth where both<br />

capillaries coexist and the flow is restricted at 30 µm of ID capillary. Table II- 2 pres<strong>en</strong>ts the values of<br />

the accuracy of the various viscosity correlations applied to the 180 µm ID capillary circuit:<br />

Dynamic viscosity model e f,tp (%) 180µm σ f,tp (%) 180 µm<br />

Mc Adams (1954) 33 29<br />

Cicchitti et al. (1960) 42 40<br />

Duckler et al.(1964) 14 9<br />

Beattie and Whalley (1982) 33 23<br />

L<strong>in</strong> et al. (1991) 26 13<br />

Table II- 2: Mean relative error and standard deviation for the differ<strong>en</strong>t viscosity models <strong>in</strong> 180 µm ID<br />

microchannels.<br />

Based on the mean relative errors and standard deviations values, it appears that the model proposed<br />

by Duckler allows a better prediction of the pressure drop <strong>in</strong> microchannels. This conclusion is <strong>in</strong><br />

good agreem<strong>en</strong>t with the work of Salim et al. (2008) or Kawahara et al. (2002) both of them us<strong>in</strong>g the<br />

Duckler model to predict the viscosity <strong>in</strong> the estimations of pressure drop <strong>in</strong> microchannels. Therefore<br />

<strong>in</strong> the follow<strong>in</strong>g calculations only the results obta<strong>in</strong>ed by apply<strong>in</strong>g the Duckler model were tak<strong>en</strong> <strong>in</strong>to<br />

consideration. In the Figure II- 18 the experim<strong>en</strong>tal pressure drop is compared with the pressure drop<br />

calculated us<strong>in</strong>g the Duckler model of viscosity. The distribution of the po<strong>in</strong>ts with respect to the first<br />

bisector stands for their agreem<strong>en</strong>t with the theoretical model applied.<br />

78


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

1,6<br />

1,4<br />

Qd = 120µL/h<br />

Qd = 200µL/h<br />

1,2<br />

DP model (bar)<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6<br />

DP experim<strong>en</strong>tal (bar)<br />

Figure II- 18: Experim<strong>en</strong>tal versus modelled pressure drop <strong>in</strong> 180 µm ID microchannel.<br />

The determ<strong>in</strong>ed dynamic viscosity of the VCM/water system allows therefore a satisfactory prediction<br />

of the pressure drop by means of the homog<strong>en</strong>eous model proposed by Duckler. The friction factor<br />

versus the Reynolds number determ<strong>in</strong>ed with the same viscosity model is pres<strong>en</strong>ted <strong>in</strong> Figure II- 19<br />

for two differ<strong>en</strong>t VCM flow rates.<br />

0,01<br />

1 10<br />

Qd = 120µL/h<br />

-1<br />

Qd = 200µL/h<br />

f = 64.Re TP<br />

Friction factor<br />

0,001<br />

0,0001<br />

0,00001<br />

Reynolds number Re<br />

Figure II- 19: Friction factor versus Reynolds number<br />

One may note that the friction factor decreases with the <strong>in</strong>crease <strong>in</strong> Re number. The experim<strong>en</strong>tal<br />

po<strong>in</strong>ts are situated nearby the l<strong>in</strong>e repres<strong>en</strong>t<strong>in</strong>g the s<strong>in</strong>gle phase flow <strong>in</strong> lam<strong>in</strong>ar regime (f = 64.Re TP -1 ).<br />

79


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

IV.B.2) Pressure drop <strong>in</strong> the 250 µm ID capillary tube<br />

The same reason<strong>in</strong>g was applied for the 250 µm <strong>in</strong>ternal diameter capillary <strong>in</strong> order to evaluate the<br />

two-phase pressure drop. In this case the models are very farther from correctly describ<strong>in</strong>g the flow<br />

behaviour <strong>in</strong> this type of microchannels. Surpris<strong>in</strong>gly, we noted severe deviations for all the theoretical<br />

models employed. Therefore corrections were applied <strong>in</strong> order to obta<strong>in</strong> a better agreem<strong>en</strong>t with the<br />

experim<strong>en</strong>tal data. We observed an improvem<strong>en</strong>t of the model predictions by assum<strong>in</strong>g a friction<br />

factor of 192/ Re 1.2 TP at ambi<strong>en</strong>t temperature and of 512/ Re 1.1 TP at high temperature. The values<br />

obta<strong>in</strong>ed for the mean relative error and the standard deviation were recalculated <strong>in</strong> Table II- 3.<br />

Dynamic viscosity model e ftp(%) 250 µm σ fTP (%) 250 µm<br />

Mc Adams (1954) 22 5,5<br />

Cicchitti et al. (1960) 19 2,8<br />

Duckler et al. (1964) 16 2,5<br />

Beattie and Whalley (1982) 21 2,9<br />

L<strong>in</strong> et al. (1991) 19 3,7<br />

Table II- 3: Mean relative error and standard deviation for the differ<strong>en</strong>t viscosity models recalculated <strong>in</strong><br />

250 µm ID microchannels.<br />

The Duckler model seems also to best fit the experim<strong>en</strong>tal and the theoretical values. However, ev<strong>en</strong><br />

with the corrections applied, differ<strong>en</strong>ces were still obta<strong>in</strong>ed. Figure II- 20 repres<strong>en</strong>ts the differ<strong>en</strong>t<br />

corrected models versus the obta<strong>in</strong>ed pressure drop data <strong>in</strong> microchannel.<br />

5<br />

4<br />

T = 20°C Qd = 120µL/h<br />

T = 20°C Qd = 200µL/h<br />

T = 70°C Qd = 120µL/h<br />

T = 70°C Qd = 200µL/h<br />

DP model (bar)<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5<br />

DP experim<strong>en</strong>tal (bar)<br />

Figure II- 20: Experim<strong>en</strong>tal versus modelled pressure drop <strong>in</strong> the 250 µm ID microchannel.<br />

80


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

G<strong>en</strong>erally speak<strong>in</strong>g, the experim<strong>en</strong>tal values are higher than the predicted ones. The theoretical models<br />

seem to underestimate the two-phase viscosity. All the pressure drop data are summarized <strong>in</strong> Figure II-<br />

21.<br />

1 10 100<br />

0,01<br />

T = 20°C Qd = 120µL/h<br />

T = 20°C Qd = 200µL/h<br />

T = 70°C Qd = 120µL/h<br />

T = 70°C Qd = 200µL/h<br />

Friction factor<br />

0,001<br />

512.Re -1.1<br />

0,0001<br />

64.Re -1 192.Re -1.2<br />

Reynolds number Re<br />

Figure II- 21: The experim<strong>en</strong>tal friction factor versus Reynolds number <strong>in</strong> the 180 and 250 ID<br />

microchannels<br />

Some discrepancies are observed betwe<strong>en</strong> the f predicted and the one calculated from the experim<strong>en</strong>tal<br />

data. The models seem to underestimate the pressure drop correspond<strong>in</strong>g to the VCM/water system<br />

especially at high two-phase velocities. The higher values of the experim<strong>en</strong>tal data might be expla<strong>in</strong>ed<br />

by the fact that the channels are not completely straight. This is the reason why it seemed <strong>in</strong>terest<strong>in</strong>g to<br />

evaluate the impact of the exist<strong>in</strong>g b<strong>en</strong>ds on the pressure drop. It was found that this parameter is not<br />

very affected by the exist<strong>en</strong>ce of b<strong>en</strong>ds as the ratio of curvature radius and channel diameter exceeds<br />

400. The b<strong>en</strong>ds’ <strong>in</strong>flu<strong>en</strong>ce was evaluated us<strong>in</strong>g the follow<strong>in</strong>g equation for fluid flows <strong>in</strong> curved<br />

channels:<br />

2<br />

v<br />

p = k ⋅<br />

2g<br />

∆ (II- 21)<br />

Where v is the fluid velocity <strong>in</strong> the channel, g is the acceleration due to gravity and k is a constant<br />

dep<strong>en</strong>d<strong>in</strong>g on the nature of the b<strong>en</strong>d, calculated us<strong>in</strong>g the Weisbach equation:<br />

k<br />

θ ⎡<br />

⎛ d ⎞<br />

= ⎢0,131+<br />

1,847<br />

⎜<br />

⎟<br />

180 ⎢⎣<br />

⎝ 2Rc<br />

⎠<br />

3,5<br />

⎤<br />

⎥<br />

⎥⎦<br />

(II- 22)<br />

81


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

Where θ is the b<strong>en</strong>d<strong>in</strong>g angle, d the channel diameter and R c repres<strong>en</strong>ts the curvature radius, as shown<br />

<strong>in</strong> Figure II- 22.<br />

R c<br />

Figure II- 22: Repres<strong>en</strong>tation of a curved channel and its characteristic dim<strong>en</strong>sions<br />

For the operated experim<strong>en</strong>tal conditions <strong>in</strong> microchannels the pressure drop due to the b<strong>en</strong>ds is <strong>in</strong> the<br />

order of 10 -3 bar. Therefore the <strong>in</strong>flu<strong>en</strong>ce of this parameter was neglected all along the calculations of<br />

pressure drop.<br />

V. Flow cartography <strong>in</strong> microchannel<br />

This study was firstly aimed to def<strong>in</strong>e a flow cartography of the VCM/water system <strong>in</strong> microchannel.<br />

This is traduced by an id<strong>en</strong>tification of the differ<strong>en</strong>t configurations observed at the correspond<strong>in</strong>g<br />

velocities of phases. These configurations consider therefore both the geometrical structure of the<br />

<strong>in</strong>terface (droplet, jet etc.) as well as the characteristic dim<strong>en</strong>sions of the dispersed phase (droplet<br />

l<strong>en</strong>gth). Also this step is compulsory <strong>in</strong> def<strong>in</strong><strong>in</strong>g the operat<strong>in</strong>g conditions favourable to a stable<br />

dispersed flow. The results pres<strong>en</strong>ted <strong>in</strong> this section are the base po<strong>in</strong>t of the <strong>polymerization</strong> tests that<br />

followed.<br />

At this stage the purpose of our work was to g<strong>en</strong>erate droplets of about 50 µm <strong>in</strong> diameter (accord<strong>in</strong>g<br />

to the <strong>in</strong>dustrial constra<strong>in</strong>s – see section I of the chapter) that circulate with a velocity that would<br />

assure at least 1h of resid<strong>en</strong>ce time <strong>in</strong> the channel. The droplets were g<strong>en</strong>erated <strong>in</strong> an axisymetrical<br />

device and fused silica capillaries of several <strong>in</strong>ternal diameters were employed. The analysis of the<br />

three types of capillaries (180 µm ID, 250 µm ID, 520 µm ID) is pres<strong>en</strong>ted below as well as the<br />

differ<strong>en</strong>t ph<strong>en</strong>om<strong>en</strong>a <strong>en</strong>countered <strong>in</strong> microchannel.<br />

V.A. The 180 µm capillary circuit<br />

The tests were performed at a pressure superior to the vapour pressure of the VCM <strong>in</strong> order to <strong>en</strong>sure a<br />

liquid-liquid flow at all times. The diagram show<strong>in</strong>g the evolution of the vapour pressure with the<br />

82


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

temperature is pres<strong>en</strong>ted <strong>in</strong> Figure II- 23 and it was estimated us<strong>in</strong>g the relation of Daupert and Danner<br />

(Daupert and Danner, 1985):<br />

P sat<br />

( Pa)<br />

exp(126.85 − 5760.1/ T −17.914ln(<br />

T ) + 2.4917 ⋅10<br />

= (II- 23)<br />

−2<br />

T<br />

)<br />

Psat (bar)<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Temperature (°C)<br />

Figure II- 23: The evolution of the saturation vapour pressure of VCM with the temperature.<br />

At pressures <strong>in</strong>ferior to the VCM saturation vapour pressure the two phases (VCM gas-liquid) coexist.<br />

This may be clearly noticed <strong>in</strong> Figure II- 24 repres<strong>en</strong>t<strong>in</strong>g two capillary loops: at the g<strong>en</strong>eration<br />

area we observe that each VCM liquid droplet (light grey <strong>in</strong>terface) conta<strong>in</strong>s a VCM gas bubble (deep<br />

black <strong>in</strong>terface). As they circulate downstream the VCM gas bubble expands because it approaches an<br />

area of <strong>in</strong>ferior pressure.<br />

180 µm<br />

Flow direction<br />

G<strong>en</strong>eration area<br />

Loop 1<br />

Loop 2<br />

After 1.35 m<br />

Figure II- 24: The pres<strong>en</strong>ce of gaseous and liquid VCM <strong>in</strong> microchannel at a temperature of 60°C and<br />

pressure of 7 bar.<br />

83


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

The <strong>in</strong>flu<strong>en</strong>ce of the experim<strong>en</strong>tal pressure drop on the droplet diameter was <strong>in</strong>vestigated. At first,<br />

tests were carried out with no flow rate control of the VCM phase. The movem<strong>en</strong>t of fluid took place<br />

by the pressure drop betwe<strong>en</strong> the <strong>in</strong>let and the outlet. The impact of the pressure drop is observed <strong>in</strong><br />

Figure II- 25, as it controls the flow and therefore the droplet diameter.<br />

1000<br />

900<br />

800<br />

Drop l<strong>en</strong>gth (µm)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

T = 60°C<br />

T = 70°C<br />

0<br />

0 1 2 3 4<br />

Pressure drop (bar)<br />

Figure II- 25: The droplet l<strong>en</strong>gth measured at differ<strong>en</strong>t experim<strong>en</strong>tal pressure drops <strong>in</strong> microchannels.<br />

At a giv<strong>en</strong> water flow rate we controlled the frequ<strong>en</strong>cy g<strong>en</strong>eration and the velocity <strong>in</strong> the channel only<br />

by means of pressure drop. In terms of droplet l<strong>en</strong>gth, we only obta<strong>in</strong>ed slugs with a shape parameter<br />

α (def<strong>in</strong>ed as the ratio of droplet l<strong>en</strong>gth to droplet diameter) superior to 1.3. A decrease <strong>in</strong> pressure<br />

drop under 0.5 bar lead to the stop of VCM circulation <strong>in</strong> the channel. So with this type of system (180<br />

µm ID capillary) only slugs were obta<strong>in</strong>ed. We note that <strong>in</strong> the range of flow rates studied only a<br />

dispersed flow regime were observed with some t<strong>en</strong>d<strong>en</strong>cies to stratified flow.<br />

It is also obvious that the pressure drop is the parameter <strong>in</strong>flu<strong>en</strong>c<strong>in</strong>g the resid<strong>en</strong>ce time <strong>in</strong> the<br />

microchannel, act<strong>in</strong>g directly onto the droplets’ velocities (Figure II- 26). The latter were measured by<br />

track<strong>in</strong>g the <strong>in</strong>terface of the droplet front cap at the <strong>en</strong>trance and the exit of the observation area. The<br />

image process<strong>in</strong>g software furnished the correspond<strong>in</strong>g time values and <strong>in</strong>terface positions<br />

subsequ<strong>en</strong>tly. The latter were transformed from pixel units <strong>in</strong>to micrometers by us<strong>in</strong>g the channel<br />

width as refer<strong>en</strong>ce scale.<br />

84


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

25<br />

T=60°C<br />

T=70°C<br />

20<br />

Resid<strong>en</strong>ce time (m<strong>in</strong>)<br />

15<br />

10<br />

5<br />

0<br />

0 1 2 3 4<br />

Pressure drop (bar)<br />

Figure II- 26: The evolution of the resid<strong>en</strong>ce time at differ<strong>en</strong>t pressure drops <strong>in</strong> microchannel.<br />

A f<strong>in</strong>e control of the VCM flow rate became crucial <strong>in</strong> order to better assess the hydrodynamics. This<br />

is why the test b<strong>en</strong>ch was equipped with high-pressure syr<strong>in</strong>ge pumps. In the light of these new<br />

changes a more <strong>in</strong> depth characterization of the VCM/water system was possible. Therefore the<br />

droplet diameter as a function of the two-phase flow rate was measured and repres<strong>en</strong>ted <strong>in</strong> Figure II-<br />

27.<br />

350<br />

330<br />

T=60°C Qd = 120 µL/h<br />

Ambi<strong>en</strong>t T Qd=120 µL/h<br />

310<br />

Droplet l<strong>en</strong>ngth (µm)<br />

290<br />

270<br />

250<br />

230<br />

210<br />

190<br />

170<br />

150<br />

100 600 1100 1600 2100<br />

Q water (µL/h)<br />

Figure II- 27: Droplet l<strong>en</strong>gth evolution at differ<strong>en</strong>t temperatures and constant VCM flow rate (120 µL/h).<br />

85


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

For each water flow rate and at constant VCM flow rate we observed the VCM droplets dispersed <strong>in</strong><br />

the cont<strong>in</strong>uous phase. These droplets are characterized by a pseudo-spherical shape with a l<strong>en</strong>gth<br />

usually exceed<strong>in</strong>g the channel diameter. The ratio Q c /Q d varies betwe<strong>en</strong> 2.5 to 16. So an <strong>in</strong>crease <strong>in</strong><br />

the water flow rate from 300 µL/h to 1700 µL/h is traduced <strong>in</strong>to a decrease of the droplet diameter<br />

from 300 µm to 180 µm. Spherical droplets (shape factor α = 1) were obta<strong>in</strong>ed at important water flow<br />

rates.<br />

Figure II- 28 pres<strong>en</strong>ts photos of droplets flow<strong>in</strong>g <strong>in</strong> the microchannel. It may be observed that they<br />

ma<strong>in</strong>ta<strong>in</strong> their orig<strong>in</strong>al shape all along the channel and do not coalesce. The droplet diameter decreases<br />

with the <strong>in</strong>crease of the water flow rate (Figure II- 28a).<br />

180 µm<br />

G<strong>en</strong>eration area<br />

Flow direction<br />

a)<br />

Loop 1<br />

Loop 2<br />

After 1.35 m<br />

b)<br />

180 µm<br />

G<strong>en</strong>eration area<br />

Loop 1<br />

Loop 2<br />

Loop 3<br />

Loop 4<br />

After 5.4 m<br />

Loop 5<br />

Figure II- 28: Photos of droplets’ flow <strong>in</strong> microchannel at ambi<strong>en</strong>t temperature: a) g<strong>en</strong>eration area and<br />

one turn at water flow rate of 1600 µL/h and VCM flow rate of 120 µL/h; b) g<strong>en</strong>eration area and 5 turns<br />

at water flow rate of 600 µL/h and VCM flow rate of 120 µL/h.<br />

86


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

In terms of VCM droplet velocity we can state that the experim<strong>en</strong>tal values are close to the bulk<br />

velocity obta<strong>in</strong>ed from the flow rates employed. This may be observed <strong>in</strong> Figure II- 29. Nevertheless,<br />

at higher flow rates a non-concordance of the two series of values can be observed.<br />

25<br />

20<br />

Calculated velocity (mm/s)<br />

15<br />

10<br />

5<br />

Ambi<strong>en</strong>t T<br />

T =60°C<br />

0<br />

0 5 10 15 20 25<br />

Applied velocity (mm/s)<br />

Figure II- 29: Calculated velocity versus applied velocity at ambi<strong>en</strong>t temperature and at 60°C<br />

The results may <strong>in</strong>dicate that the no-slip condition is not necessarily valid with the VCM/water<br />

system. As the temperature <strong>in</strong>creases, the physical properties of the two liquids change, that may<br />

<strong>in</strong>crease the slip velocity of the VCM <strong>in</strong>to the aqueous phase. Some authors already <strong>in</strong>vestigated this<br />

issue, conclud<strong>in</strong>g that the boundary conditions for the fluid velocities strongly dep<strong>en</strong>d on the surface<br />

roughness or the <strong>in</strong>terfacial <strong>en</strong>ergy (Pit et al., 2000) which varies with temperature. The <strong>in</strong>teractions<br />

betwe<strong>en</strong> the fluids and the capillary wall play a key role <strong>in</strong>to the fluid flow compreh<strong>en</strong>sion and, as we<br />

observed experim<strong>en</strong>tally, VCM has a particular aff<strong>in</strong>ity towards the capillary wall especially at high<br />

temperatures.<br />

It is important to note that at high temperature the refractive <strong>in</strong>dex of the water and VCM are very<br />

similar which makes it difficult to dist<strong>in</strong>guish the <strong>in</strong>terfaces (Figure II- 30) this way <strong>in</strong>creas<strong>in</strong>g the<br />

error on droplet velocity measurem<strong>en</strong>t.<br />

87


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

360 µm<br />

Loop 1<br />

Loop 2<br />

Loop 3<br />

Figure II- 30: Photo of droplets <strong>in</strong> microchannel at 60 °C<br />

Furthermore, for a work<strong>in</strong>g temperature of 60°C severe <strong>in</strong>stabilities were noticed at the droplet<br />

g<strong>en</strong>eration area. The break-up of droplets takes place downstream <strong>in</strong> the channel and not at the po<strong>in</strong>t<br />

were the two fluids <strong>en</strong>counter. The shear force of the water phase on the <strong>in</strong>terface is not suffici<strong>en</strong>t to<br />

disperse the VCM <strong>in</strong> water. Tak<strong>in</strong>g <strong>in</strong>to account the fact that the water phase is saturated <strong>in</strong> surfactant,<br />

the <strong>in</strong>terfacial t<strong>en</strong>sion is considerably low. Also, VCM is neither a viscous fluid nor a d<strong>en</strong>se one (both<br />

values are <strong>in</strong>ferior to those of water) so this difficulty of droplets break-up and their g<strong>en</strong>eration<br />

downstream might be expla<strong>in</strong>ed by a wettability issue: the VCM t<strong>en</strong>ds to lock on to the channel walls<br />

(Figure II- 31).<br />

180 µm 360 µm<br />

a) b)<br />

Figure II- 31: Instabilities <strong>in</strong> microchannel: a) perturbations at the g<strong>en</strong>eration area; b) VCM g<strong>en</strong>eration<br />

farther from the nozzle tip and the flow perturbations on the first 2 turns.<br />

However, the problem was avoided by <strong>in</strong>creas<strong>in</strong>g the water flow rate, this be<strong>in</strong>g <strong>in</strong> conflict with the<br />

constra<strong>in</strong>t imposed by the resid<strong>en</strong>ce time <strong>in</strong> the channel. Also <strong>in</strong>creas<strong>in</strong>g the droplet velocity the<br />

observation becomes difficult because <strong>in</strong>terfaces are hardly dist<strong>in</strong>guished and measurem<strong>en</strong>ts on<br />

droplets may not always be accurate.<br />

Another observation consists <strong>in</strong> the fact that at the work<strong>in</strong>g temperature of 60°C and due to the friction<br />

of the small capillary <strong>in</strong>to the large one, the coat<strong>in</strong>g of the <strong>in</strong>terior capillary beg<strong>in</strong>s to expand <strong>in</strong> l<strong>en</strong>gth<br />

<strong>in</strong> a non-homog<strong>en</strong>eous way so that it produced irregularities at the g<strong>en</strong>eration zone (Figure II- 32). The<br />

88


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

issue was resolved by remov<strong>in</strong>g the polyimide coat<strong>in</strong>g of the capillary tube but it did not solve all the<br />

<strong>in</strong>stability problems m<strong>en</strong>tioned above.<br />

a) 180 µm b) 180 µm<br />

Figure II- 32: a) G<strong>en</strong>eration area at ambi<strong>en</strong>t temperature; b) Dilatation of the g<strong>en</strong>eration capillary at<br />

60°C<br />

V.B. The 250 µm capillary circuit<br />

In order to by-pass the limits evoked for the 180 µm ID tube, we considered chang<strong>in</strong>g the exterior<br />

capillary. The previous set-up was kept id<strong>en</strong>tical except for the outer capillary that was replaced with a<br />

larger one, of 250 µm ID. Similar to the previous case studied, the <strong>in</strong>flu<strong>en</strong>ce of the two phases flow<br />

rates on the droplet diameter was <strong>in</strong>vestigated. We obta<strong>in</strong>ed a flow cartography of the VCM/water<br />

system pres<strong>en</strong>ted <strong>in</strong><br />

Figure II- 33.<br />

400<br />

350<br />

T = 60°C Qd = 120 µL/h<br />

Ambi<strong>en</strong>t T Qd = 120 µL/h<br />

T = 60°C Qd = 200 µL/h<br />

Ambi<strong>en</strong>t T Qd = 200 µL/h<br />

Droplet l<strong>en</strong>gth(µm)<br />

300<br />

250<br />

200<br />

150<br />

0 1000 2000 3000 4000 5000 6000<br />

Qc (µL/h)<br />

Figure II- 33: Droplet l<strong>en</strong>gth evolution with water flow rate at differ<strong>en</strong>t constant VCM flow rates<br />

89


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

From this figure it may be observed that, for fixed values of the dispersed phase the droplets’ l<strong>en</strong>gths<br />

have the t<strong>en</strong>d<strong>en</strong>cy to decrease with an <strong>in</strong>crease of the water flow rate. Ev<strong>en</strong> wh<strong>en</strong> the droplets’<br />

measured l<strong>en</strong>gths are <strong>in</strong>ferior to the channel diameter, it can be observed that the drops are not<br />

spherical (Figure II- 34).<br />

180 µm<br />

Increase of flow rate<br />

Figure II- 34: Differ<strong>en</strong>t images of droplets obta<strong>in</strong>ed <strong>in</strong> microchannel<br />

Droplet velocity <strong>in</strong> the channel is evaluated and compared with the applied velocity at the giv<strong>en</strong> total<br />

flow rates. The droplets’ measured velocities are <strong>in</strong> good agreem<strong>en</strong>t with the values estimated from the<br />

flow rates. The results are observed <strong>in</strong> Figure II- 35, where the dashed l<strong>in</strong>es stand for an error of 10%.<br />

The non-slip condition is not perfectly valid <strong>in</strong> this case, as already expla<strong>in</strong>ed for the 180 µm ID<br />

circuit.<br />

40<br />

35<br />

Experim<strong>en</strong>tal velocity (mm/s)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

T = 60 °C Qd = 120 µL/h<br />

Ambi<strong>en</strong>t T Qd = 120 µL/h<br />

T = 60 °C Qd = 200 µL/h<br />

Ambi<strong>en</strong>t T Qd = 200 µL/h<br />

0 5 10 15 20 25 30 35 40<br />

Applied velocity (mm/s)<br />

Figure II- 35: The experim<strong>en</strong>tal versus the applied velocity at for two temperatures and two fixed VCM<br />

flow rates<br />

In Figure II- 36, it may be observed that at elevated flow rates the production of droplets <strong>in</strong>creases up<br />

to 8-10 drops per second. This g<strong>en</strong>eration frequ<strong>en</strong>cy can be controlled by a comb<strong>in</strong>ation of channel<br />

dim<strong>en</strong>sions and flow ratio of VCM/water phases. The <strong>in</strong>crease <strong>in</strong> VCM and water flow rates results <strong>in</strong><br />

higher droplet g<strong>en</strong>eration frequ<strong>en</strong>cy rang<strong>in</strong>g from 2 to 14 drops/s. We note that at higher flow rates the<br />

droplet size rema<strong>in</strong>s almost constant while the g<strong>en</strong>eration frequ<strong>en</strong>cy <strong>in</strong>creases.<br />

90


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

16<br />

14<br />

12<br />

Frequ<strong>en</strong>cy( drops/s)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

T = 60 °C Qd = 120 µL/h<br />

Ambi<strong>en</strong>t TC Qd = 120 µL/h<br />

T = 60 °C Qd = 200 µL/h<br />

Ambi<strong>en</strong>t T Qd = 200 µL/h<br />

0 1000 2000 3000 4000 5000 6000<br />

Qc (µL/h)<br />

Figure II- 36: Droplet g<strong>en</strong>eration frequ<strong>en</strong>cy for differ<strong>en</strong>t water flow rates. The measurem<strong>en</strong>ts were<br />

performed for two foxed VCM flow rates and two temperatures<br />

So ev<strong>en</strong> if this 250 µm configuration seemed more stable than the 180 µm, we <strong>en</strong>countered the same<br />

limits due to wettability issues because droplets still touch the walls of the capillary. The flow patterns<br />

observed <strong>in</strong> these cyl<strong>in</strong>drical conf<strong>in</strong>ed geometry vary with operational (flow rates), geometrical<br />

(channel diameter) or system parameters (viscosities, surface t<strong>en</strong>sion). A droplet regime is found for<br />

low Q d and Qc/Qd > 10 with either droplets emitted at the nozzle or non spherical drops. The figure<br />

below resumes the operational conditions for which spherical/ non-spherical droplets regimes were<br />

reached.<br />

450<br />

400<br />

350<br />

300<br />

Non-spherical<br />

droplets<br />

Spherical droplets<br />

Qd (µL/h)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 2000 4000 6000 8000 10000<br />

Qc (µL/h)<br />

Figure II- 37: Droplet regimes <strong>in</strong> microchannel at differ<strong>en</strong>t phases flow rates.<br />

91


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

The axisymmetrical g<strong>en</strong>eration system revealed itself to be a good choice with respect to the classical<br />

T as far as it allowed conserv<strong>in</strong>g the same droplet l<strong>en</strong>gth at smaller flow rates and correspond<strong>in</strong>g<br />

decreased velocities. However it did not permit to obta<strong>in</strong> spherical droplets that do not touch the walls<br />

of the capillary. Therefore ph<strong>en</strong>om<strong>en</strong>a of irregularities were still noticed and described <strong>in</strong> section V of<br />

this chapter.<br />

VI. Droplet l<strong>en</strong>gth modell<strong>in</strong>g<br />

VI.A. Short literature review<br />

Several authors id<strong>en</strong>tified differ<strong>en</strong>t droplet formation mechanisms and proposed correspond<strong>in</strong>g<br />

correlations. The most frequ<strong>en</strong>t and therefore more studied microfluidic geometry is the T-junction.<br />

For <strong>in</strong>stance, Thorst<strong>en</strong> et al. (2001) was the first to consider droplet formation <strong>in</strong> T junction <strong>in</strong> 2001.<br />

They found that droplet size decreases with the <strong>in</strong>crease of the cont<strong>in</strong>uous phase flow rate and with the<br />

cont<strong>in</strong>uous phase viscosity. They proposed a model that predicts droplet sizes by approximat<strong>in</strong>g the<br />

Laplace pressure with the shear force:<br />

σ<br />

r = (II- 24)<br />

µ & γ<br />

c<br />

where r is the droplet radius, σ is the <strong>in</strong>terfacial t<strong>en</strong>sion, µ c is the cont<strong>in</strong>uous phase viscosity and γ& is<br />

the shear rate.<br />

A number of authors like Tice et al. (2003), Garsteki et al. (2006) focused on the scal<strong>in</strong>g laws of<br />

droplet formation. They id<strong>en</strong>tified the capillary number of the cont<strong>in</strong>uous phase Ca c as an important<br />

parameter <strong>in</strong> T-junction devices. It is def<strong>in</strong>ed as described <strong>in</strong> equation II-25 as the ratio of viscosity<br />

and velocity of the cont<strong>in</strong>uous phase to the <strong>in</strong>terfacial t<strong>en</strong>sion:<br />

µ c<br />

v<br />

Ca v<br />

c<br />

= (II- 25)<br />

σ<br />

They found both experim<strong>en</strong>tally as well as numerically that there is a critical value of Ca c ~ 10 -2 which<br />

describes the differ<strong>en</strong>t mechanisms of droplet break-up and the correspond<strong>in</strong>g flow regimes. At low<br />

Ca c number, Garsteki et al. (2006) estimates that the droplet l<strong>en</strong>gth is a function of the two phases<br />

flow rate ratio:<br />

92


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

L<br />

Q<br />

+ α<br />

Q<br />

g<br />

d<br />

= 1 (II- 26)<br />

w<br />

c<br />

The model is adim<strong>en</strong>sionalized by divid<strong>in</strong>g the droplet l<strong>en</strong>gth L g to the characteristic channel<br />

dim<strong>en</strong>sion w (the channel width). α is a channel geometry-dep<strong>en</strong>d<strong>en</strong>t constant. This model does not<br />

take <strong>in</strong>to account any physicochemical properties of the two phases.<br />

Other studies are pres<strong>en</strong>t <strong>in</strong> the literature that evaluate the <strong>in</strong>flu<strong>en</strong>ce of some physicochemical<br />

parameters. For <strong>in</strong>stance, Xu et al. (2008), reunited the majority of droplet correlations <strong>in</strong> T-junction<br />

and def<strong>in</strong>ed the follow<strong>in</strong>g relation for Ca c


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

d<br />

d<br />

d<br />

i<br />

1<br />

Ca<br />

c<br />

π<br />

wh − d<br />

4<br />

wh<br />

2<br />

d<br />

= (II- 30)<br />

Marcati et al. (2009) gathered the ma<strong>in</strong> parameters <strong>in</strong>flu<strong>en</strong>c<strong>in</strong>g the droplet l<strong>en</strong>gth. Therefore he<br />

<strong>in</strong>troduced the Capillary and the Reynolds numbers relatives to the dispersed and the cont<strong>in</strong>uous phase<br />

respectively. The dispersed phase was g<strong>en</strong>erated <strong>in</strong> a channel of <strong>in</strong>ferior dim<strong>en</strong>sions to the ma<strong>in</strong><br />

channel, so the ratio of these diameters also appears <strong>in</strong> the equation:<br />

L<br />

D<br />

h<br />

⎛ d<br />

A<br />

⎜<br />

⎝ d<br />

α<br />

1<br />

d α 2 α3<br />

α 4 α5<br />

= ⎜ ⎟<br />

(II- 31)<br />

c<br />

⎞<br />

⎟<br />

⎠<br />

Ca<br />

c<br />

Ca<br />

d<br />

Re<br />

c<br />

Re<br />

d<br />

where subscripts d and c correspond to the dispersed respectively to the cont<strong>in</strong>uous phase, L is the<br />

droplet l<strong>en</strong>gth, D h is the hydraulic diameter of the channel. The α 1 – α 5 parameters were obta<strong>in</strong>ed by<br />

fitt<strong>in</strong>g experim<strong>en</strong>tal values for a wide set of data (differ<strong>en</strong>t fluids, flow rates, channel material or<br />

geometrical configurations such as T or cross junctions for square or round channel sections). The<br />

authors found a unique set of α constants allow<strong>in</strong>g to well repres<strong>en</strong>t the experim<strong>en</strong>tal data. A is the<br />

only adjustable parameter which is supposed to take <strong>in</strong>to account the solid-liquid-liquid <strong>in</strong>teractions at<br />

the g<strong>en</strong>eration area. We m<strong>en</strong>tion that the equation is giv<strong>en</strong> for flows with 0.001


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

2<br />

1,8<br />

1,6<br />

L/dh model<br />

1,4<br />

1,2<br />

1<br />

180 µm ambi<strong>en</strong>t T<br />

0,8<br />

180 µm 60°C<br />

250 µm ambi<strong>en</strong>t T<br />

250 µm 60°C<br />

0,6<br />

0,6 0,8 1 1,2 1,4 1,6 1,8 2<br />

L/dh experim<strong>en</strong>tal<br />

Figure II- 38: Droplet l<strong>en</strong>gth modelled accord<strong>in</strong>g to Xu et al. (2006) versus the experim<strong>en</strong>tal droplet l<strong>en</strong>gth<br />

It may be observed that a certa<strong>in</strong> amount of data is <strong>in</strong> the 10% of error with respect to the experim<strong>en</strong>tal<br />

values. However disagreem<strong>en</strong>ts appear at a shape parameter α > 1.2 and only a small number of po<strong>in</strong>ts<br />

fit the experim<strong>en</strong>t.<br />

The model proposed by Marcati et al. (2009) was compared to the experim<strong>en</strong>tal data <strong>in</strong> Figure II- 39:<br />

2<br />

1,8<br />

1,6<br />

L/dh model<br />

1,4<br />

1,2<br />

1<br />

180 µm ambi<strong>en</strong>t T A = 0,058<br />

180 µm T = 60°C A = 0,054<br />

0,8<br />

250 µm ambi<strong>en</strong>t T A = 0,040<br />

250 µm T = 60°C A = 0,040<br />

0,6<br />

0,6 0,8 1 1,2 1,4 1,6 1,8 2<br />

L/dh exp<br />

Figure II- 39: Droplet l<strong>en</strong>gth modelled accord<strong>in</strong>g to Marcati et al. (2009) versus the experim<strong>en</strong>tal droplet<br />

l<strong>en</strong>gth<br />

95


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

The solid l<strong>in</strong>e repres<strong>en</strong>ts a perfect fit betwe<strong>en</strong> experim<strong>en</strong>tal values and the theoretical model and the<br />

dotted l<strong>in</strong>e shows a 10% error from the theory. In most cases the experim<strong>en</strong>tal values stay <strong>in</strong>to the<br />

10% of deviation from the model predictions. The 250 µm capillaries show a good fit with the model<br />

proposed at ambi<strong>en</strong>t temperature as well as at high temperature but the 180 µm seem farther from the<br />

theoretical l<strong>in</strong>e for shape factors α = 1 – 1.2 and α > 1.8. As the A constant corresponds to specifically<br />

ph<strong>en</strong>om<strong>en</strong>a of the g<strong>en</strong>eration area (such as wettability), we assumed that it changes with temperature.<br />

Therefore data were evaluated with differ<strong>en</strong>t values of A and the fixed values of α obta<strong>in</strong>ed by Marcati<br />

et al. (2009).<br />

Microdevice A α 1 α 2 α 3 α 4 α 5 Stop<br />

criterion<br />

180 µm ambi<strong>en</strong>t T 0.058 0.25 0.11 0.23 0.07 0.29 0.02<br />

180 µm T=60°C 0.054 0.25 0.11 0.23 0.07 0.29 0.04<br />

250 µm ambi<strong>en</strong>t T 0.040 0.25 0.11 0.23 0.07 0.29 0.002<br />

250 µm T=60°C 0.040 0.25 0.11 0.23 0.07 0.29 0.01<br />

Marcati et al. (2009) 0.55 0.25 0.11 0.23 0.07 0.29 0.03<br />

Table II- 4: The A constant found for the two types of microchannels employed at ambi<strong>en</strong>t temperature<br />

and at 60°C.<br />

The stop criterion of the Excel Solver is the squared sum of the error perc<strong>en</strong>tage betwe<strong>en</strong> the<br />

experim<strong>en</strong>tal values and the theoretical model. The A parameter is 10 times smaller than the values<br />

obta<strong>in</strong>ed by Marcati et al. (2009). It also differs from a configuration to another, which can be<br />

expla<strong>in</strong>ed by the <strong>in</strong>flu<strong>en</strong>ce of the temperature. We may suppose that <strong>in</strong> the case of an axisymmetrical<br />

g<strong>en</strong>eration system the ph<strong>en</strong>om<strong>en</strong>a related to the wall are much less pres<strong>en</strong>t that <strong>in</strong> the T junction.<br />

VII. Droplet shape repres<strong>en</strong>tation<br />

A parameter of <strong>in</strong>terest <strong>in</strong> our study is the droplet volume, as it steps <strong>in</strong> dur<strong>in</strong>g the <strong>polymerization</strong><br />

process wh<strong>en</strong> the f<strong>in</strong>al polymer bead substantially shr<strong>in</strong>ks. Therefore the need to accurately predict the<br />

<strong>in</strong>itial droplet volume seemed <strong>in</strong>her<strong>en</strong>t. For this purpose, the droplet shape estimation had to be<br />

properly <strong>in</strong>vestigated.<br />

Experim<strong>en</strong>tally we can def<strong>in</strong>e the droplet volume (V g ) as the ratio of the dispersed phase flow rate (Q d )<br />

and the droplet g<strong>en</strong>eration frequ<strong>en</strong>cy (f g ):<br />

Q<br />

d<br />

V<br />

d<br />

= (II- 33)<br />

f<br />

g<br />

96


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

Because the visualization system employed only allows two-dim<strong>en</strong>sion visualization, a mass balance<br />

will estimate the droplet shape based on its characteristic dim<strong>en</strong>sions L (droplet l<strong>en</strong>gth) and d d (droplet<br />

diameter).<br />

Table II- 5 pres<strong>en</strong>ts the differ<strong>en</strong>t situations tak<strong>en</strong> <strong>in</strong>to consideration for the droplet shape modell<strong>in</strong>g:<br />

case A assumed that the droplet is shaped as a spherocyl<strong>in</strong>der of l<strong>en</strong>gth L and diameter d d . Therefore<br />

its volume will be the one of a cyl<strong>in</strong>der plus the one of a sphere. In case B the droplet was supposed to<br />

be shaped as a sphere of diameter d d . In some experim<strong>en</strong>ts ev<strong>en</strong> though we measured the droplet<br />

l<strong>en</strong>gth <strong>in</strong>ferior to the channel diameter, the droplet still touched the channel wall. That is why <strong>in</strong> case<br />

C we supposed the droplet shape as an ellipsoid (where the polar axis is greater than the equatorial<br />

diameter).<br />

Case A:<br />

Case B:<br />

Case C:<br />

L<br />

d d<br />

d d<br />

d d<br />

d d<br />

/2<br />

d d<br />

/2<br />

L<br />

V = π d<br />

d<br />

⎛ L − d<br />

⎜<br />

⎝ 4<br />

d<br />

+<br />

6<br />

2 d d<br />

d<br />

⎞<br />

⎟<br />

⎠<br />

V<br />

d<br />

πd<br />

=<br />

6<br />

3<br />

d<br />

V<br />

4<br />

=<br />

3<br />

d<br />

π<br />

d<br />

d<br />

2<br />

2<br />

⎛ L ⎞<br />

⎜ ⎟<br />

⎝ 2 ⎠<br />

Table II- 5: Differ<strong>en</strong>t geometrical shapes applied for the micro<strong>reactor</strong> droplet shape modell<strong>in</strong>g and their<br />

associate volumes<br />

The Figure II- 40 compares those three volumetric calculations with the experim<strong>en</strong>tal values of the<br />

volume. As shown earlier <strong>in</strong> this chapter the droplets <strong>in</strong> microchannel pass from a pluglike shape to a<br />

spherical and ellipsoidal shape. That is why we considered that there is no model that accurately<br />

predicts the droplet volume through the whole range of experim<strong>en</strong>ts. The pluglike shaped droplets<br />

(L>d) were evaluated us<strong>in</strong>g only the spherocyl<strong>in</strong>der model and the droplets with L


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

12<br />

10<br />

V calculated (nL)<br />

8<br />

6<br />

4<br />

Spherocyl<strong>in</strong>dre<br />

Sphere<br />

Ellipsoid<br />

2<br />

2 4 6 8 10 12<br />

V experim<strong>en</strong>tal (nL)<br />

Figure II- 40: Theoretical versus the experim<strong>en</strong>tal volume for the differ<strong>en</strong>t shape approximations<br />

VIII. Ph<strong>en</strong>om<strong>en</strong>a <strong>en</strong>countered <strong>in</strong> microchannel<br />

A wide variety of <strong>in</strong>stabilities aris<strong>en</strong> wh<strong>en</strong> the streams of immiscible VCM/water <strong>in</strong>teracted. Certa<strong>in</strong><br />

<strong>in</strong>stabilities <strong>in</strong>volved disturbances propagated upstream or downstream, lead<strong>in</strong>g after a transi<strong>en</strong>t<br />

regime to drops released at or close to the tip nozzle. A suffici<strong>en</strong>t decrease of the velocity can make<br />

the perturbation to propagate downstream allow<strong>in</strong>g for a cont<strong>in</strong>uous fluid thread to persist. On the<br />

contrary, an <strong>in</strong>crease <strong>in</strong> velocity reduces the perturbation and the droplet g<strong>en</strong>eration takes place at the<br />

nozzle tip. These perturbations may also cause block<strong>in</strong>gs <strong>in</strong> the capillary as the VCM may stick to the<br />

walls.<br />

Some of the ph<strong>en</strong>om<strong>en</strong>a <strong>en</strong>countered <strong>in</strong> microchannel are repres<strong>en</strong>ted <strong>in</strong> Figure II- 41. The upper left<br />

photo repres<strong>en</strong>ts the g<strong>en</strong>eration area at ambi<strong>en</strong>t temperature, where no <strong>in</strong>stabilities were noticed. The<br />

upper right photo repres<strong>en</strong>ts an impurity released from the capillary tube com<strong>in</strong>g from the VCM l<strong>in</strong>e<br />

(red circle). It will f<strong>in</strong>ally stick to the capillary wall and disrupt the flow. It may be an impurity<br />

com<strong>in</strong>g from the VCM tank or some VCM already polymerized <strong>in</strong> the pres<strong>en</strong>ce of oxyg<strong>en</strong> somewhere<br />

<strong>in</strong> the circuit.<br />

98


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

Normal behaviour at ambi<strong>en</strong>t temperature Abnormal behaviour at 60°C<br />

a)<br />

180 µm 180 µm<br />

b)<br />

520 µm<br />

c) d)<br />

520 µm<br />

Figure II- 41: a) normal g<strong>en</strong>eration of VCM; b) perturbation at the g<strong>en</strong>eration area; c) normal stable flow<br />

at ambi<strong>en</strong>t temperature; d) perturbation at 60°C<br />

The bottom left photo repres<strong>en</strong>ts a stable flow <strong>in</strong> the microchannel at ambi<strong>en</strong>t temperature and the<br />

bottom right photo stands for a ph<strong>en</strong>om<strong>en</strong>on <strong>en</strong>countered at temperatures close to 60°C. The droplets<br />

undergo a breakage ph<strong>en</strong>om<strong>en</strong>a and the <strong>en</strong>tire flow is disturbed. We note that once the temperature<br />

decreases to less than 50 °C a stable flow is obta<strong>in</strong>ed aga<strong>in</strong>.<br />

IX. Conclusion on the hydrodynamic study<br />

This chapter pres<strong>en</strong>ts a novel micro<strong>reactor</strong> device used for the characterization of the VCM/water<br />

system <strong>in</strong> completely safe conditions. We were able to acquire <strong>in</strong>formation regard<strong>in</strong>g the behaviour of<br />

the VCM/water flow <strong>in</strong> micrometric devices. A first circuit was considered of 180 µm ID. Because of<br />

the <strong>in</strong>stabilities registered <strong>in</strong> the flow it was classified not suited for our work. A second capillary of<br />

250 µm ID was also studied.<br />

Through this study we were able to characterize the pressure drop for the two-phase VCM/water<br />

system. The results have shown that the theoretical models employed for the two-phase viscosity<br />

estimations were not very accurate. Therefore adjustm<strong>en</strong>ts of the correlations were proposed.<br />

99


Chapter II: Developm<strong>en</strong>t of the micro<strong>reactor</strong> device and its hydrodynamic characterization<br />

The droplet l<strong>en</strong>gth was further modelled us<strong>in</strong>g differ<strong>en</strong>t literature correlations. The theoretical<br />

expressions take <strong>in</strong>to account both geometrical characteristics of the channel as well as the fluid<br />

properties. We were able to id<strong>en</strong>tify the equation predict<strong>in</strong>g most accurately the droplet size.<br />

F<strong>in</strong>ally the geometric shape of the droplet was modelled. We found that the drops may be assimilated<br />

to spherocyl<strong>in</strong>ders wh<strong>en</strong> their shape factor α is superior to 1. Their shape is more difficult to predict<br />

accurately <strong>in</strong> the case of smaller volumes.<br />

The 250 µm ID circuit showed a better control of the flow but some irregularities were still noticed.<br />

Differ<strong>en</strong>t ph<strong>en</strong>om<strong>en</strong>a related to these <strong>in</strong>stabilities were pres<strong>en</strong>ted at the <strong>en</strong>d of the chapter.<br />

The knowledge on the VCM/water flow <strong>in</strong> microchannel will be very useful <strong>in</strong> order to proceed to the<br />

next level of this study: the VCM <strong>polymerization</strong> reaction <strong>in</strong> microchannel.<br />

100


CHAPTER III: ON-LINE<br />

KINETIC MONITORING OF<br />

S-PVC<br />

101


102


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

In the previous chapter the VCM/water flow <strong>in</strong> microchannel was characterized. Hav<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d the<br />

ph<strong>en</strong>om<strong>en</strong>a <strong>en</strong>countered dur<strong>in</strong>g the experim<strong>en</strong>ts, a strategy had to be implem<strong>en</strong>ted <strong>in</strong> order to perform<br />

the S-PVC reaction. The objective of this chapter was to quantify the first characteristic<br />

<strong>polymerization</strong> times and to further acquire basic k<strong>in</strong>etic data at a VCM droplet scale.<br />

On-l<strong>in</strong>e k<strong>in</strong>etic <strong>in</strong>formation was obta<strong>in</strong>ed with a non-<strong>in</strong>trusive analytical technique which allows the<br />

acquisition of characteristic reaction times. The <strong>in</strong>flu<strong>en</strong>ce of some parameters such as temperature or<br />

<strong>in</strong>itiator conc<strong>en</strong>tration is studied. The results are compared with a k<strong>in</strong>etic model described <strong>in</strong> the<br />

literature. The model was afterwards modified for micro<strong>reactor</strong> conditions.<br />

I. Polymerization <strong>in</strong> microchannel<br />

The studies performed <strong>in</strong> the previous chapter allowed a good acknowledgem<strong>en</strong>t of the VCM/water<br />

system <strong>in</strong> terms of droplet l<strong>en</strong>gth and volume characterisation. This hydrodynamic data base acquired<br />

allowed us to pass to the next stage of the study: the <strong>polymerization</strong> reaction.<br />

The susp<strong>en</strong>sion <strong>polymerization</strong> of VCM was analysed <strong>in</strong> 250 µm ID capillary of 8m developed l<strong>en</strong>gth.<br />

The system was already described <strong>in</strong> Chapter II - section IV.B. The reaction was carried out under<br />

similar conditions as <strong>in</strong> the large-scale <strong>in</strong>dustrial plants <strong>in</strong> order to obta<strong>in</strong> a product with comparable<br />

properties to those of commercially available PVC. For this reason <strong>in</strong> the pres<strong>en</strong>t study the<br />

<strong>polymerization</strong> of VCM was carried out at 60 °C and pressures superior to 12 bar.<br />

As m<strong>en</strong>tioned <strong>in</strong> Chapter I - section I. D. 2, the pres<strong>en</strong>ce of oxyg<strong>en</strong> <strong>in</strong> the <strong>reactor</strong> causes an <strong>in</strong>duction<br />

period dur<strong>in</strong>g the <strong>polymerization</strong> process of VCM. Subsequ<strong>en</strong>tly the formation of structural defects <strong>in</strong><br />

the polymer cha<strong>in</strong> may occur, which affects the thermal stability of PVC. Therefore, it is necessary to<br />

remove as much oxyg<strong>en</strong> as possible from the reaction medium before the <strong>polymerization</strong> is started.<br />

Several cycles of nitrog<strong>en</strong> purg<strong>in</strong>g/evacuation were considered suffici<strong>en</strong>t.<br />

It was observed, as m<strong>en</strong>tioned <strong>in</strong> Chapter II – section V, that VCM has a particular t<strong>en</strong>d<strong>en</strong>cy to wet the<br />

walls especially at high temperature. Besides, at normal conditions, the S-PVC reaction exhibits a socalled<br />

‘sticky stage’ betwe<strong>en</strong> 5-30% conversion ranges. At that po<strong>in</strong>t the agglomeration of particles<br />

takes place thus <strong>in</strong>creas<strong>in</strong>g the possibility of flow <strong>in</strong>stabilities. This reasons lead to the decision that<br />

the reaction should be performed <strong>in</strong> still conditions <strong>in</strong>stead of cont<strong>in</strong>uous flow. Also from a practical<br />

po<strong>in</strong>t of view, giv<strong>en</strong> the long reaction time, the micro<strong>reactor</strong> should be several t<strong>en</strong>s of meters long,<br />

103


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

pressure drop would thus <strong>in</strong>crease and the possibility of particles stuck on the channel wall would<br />

<strong>en</strong>hance. Further on this study the reaction was only performed by stopp<strong>in</strong>g the flow.<br />

Some choices had to be made on the type of <strong>in</strong>itiator to be used. First, <strong>in</strong> order to keep the same<br />

<strong>in</strong>dustrial reaction parameters, a peroxide-type <strong>in</strong>itiator was kept <strong>in</strong> m<strong>in</strong>d for the micro<strong>reactor</strong><br />

experim<strong>en</strong>ts. Based on the commercial availability, two <strong>in</strong>itiators were tested: lauroyle peroxide and<br />

di(4-tert-butylcyclohexyl) peroxydicarbonate. The characteristics of these two compounds and the<br />

results obta<strong>in</strong>ed <strong>in</strong> <strong>polymerization</strong> tests are described <strong>in</strong> the follow<strong>in</strong>g sections.<br />

I.A. Polymerization with Lauroyle Peroxide as <strong>in</strong>itiator <strong>in</strong> the<br />

aqueous phase<br />

First <strong>polymerization</strong> tests were carried out with Lauroyl Peroxide (LP) as <strong>in</strong>itiator. It was purchased<br />

from Sigma Aldrich and its physical state is a white powder. Precautions were tak<strong>en</strong> consider<strong>in</strong>g the<br />

manipulation and store of this chemical compound. Its chemical reactivity and the explosive character<br />

imposed its storage <strong>in</strong> refrigerator conditions. The half-life data of this peroxide, which are the mark of<br />

its reactivity, are pres<strong>en</strong>ted <strong>in</strong> Table III- 1.<br />

Time<br />

Temperature (°C)<br />

100 H 47.7<br />

10 H 63.6<br />

1 H 81.1<br />

6 m<strong>in</strong> 100.6<br />

1 m<strong>in</strong> 117.3<br />

1 sec 161.7<br />

Table III- 1: Half-life data of Lauroyle Peroxide<br />

The half-life data <strong>in</strong>dicate that at 60°C the time tak<strong>en</strong> for half of the peroxide quantity to decompose is<br />

of approximate 10 hours, which repres<strong>en</strong>ts a very long time of reaction. In addition, LP pres<strong>en</strong>ts a<br />

water-<strong>in</strong>soluble powder. We note that <strong>in</strong> <strong>in</strong>dustry, the <strong>in</strong>itiator as susp<strong>en</strong>sion <strong>in</strong> water is added to the<br />

batch mixture and its distribution is <strong>en</strong>sured by vigorous stirr<strong>in</strong>g.<br />

104


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

In the experim<strong>en</strong>ts conducted LP was added to the water phase and <strong>in</strong>troduced <strong>in</strong> the system by means<br />

of the Nemesys syr<strong>in</strong>ge pumps. Due to the lack of agitation <strong>in</strong> the syr<strong>in</strong>ge the solid peroxide<br />

precipitated and therefore it was never uniformly distributed <strong>in</strong>to the water phase. Consequ<strong>en</strong>tly, we<br />

had no control over the <strong>in</strong>itiator conc<strong>en</strong>tration <strong>in</strong> the microchannel. Instead of a uniform susp<strong>en</strong>sion of<br />

<strong>in</strong>itiator <strong>in</strong> the water phase, aggregates of various shapes were formed and <strong>in</strong>troduced <strong>in</strong> the<br />

microchannel. In the pictures below blocks of peroxide are observed (red circles):<br />

a) b)<br />

Figure III- 1: Blocks of peroxide <strong>in</strong> the aqueous phase<br />

Therefore <strong>polymerization</strong> either did not take place or it happ<strong>en</strong>ed randomly. In Figure III- 1a) the<br />

<strong>in</strong>itiator is squeezed <strong>in</strong>to a series of droplets and <strong>in</strong> Figure III- 1b) it circulates <strong>in</strong> the microchannel<br />

with the water phase. Ev<strong>en</strong> though it did not polymerize, the blocks of solid <strong>in</strong>itiator blocked the<br />

channel several times. These results show that the diffusion of <strong>in</strong>itiator from the cont<strong>in</strong>uous phase <strong>in</strong>to<br />

the VCM droplets is not <strong>in</strong>stantaneous.<br />

I.B. Polymerization with Di(4-tert-butylcyclohexyl)<br />

peroxydicarbonate as <strong>in</strong>itiator <strong>in</strong> the aqueous phase<br />

The improvem<strong>en</strong>t of this system came <strong>in</strong>to question and the change of <strong>in</strong>itiator with a faster one<br />

seemed an obvious option. Another peroxide available on the market is the Di(4-tert-butylcyclohexyl)<br />

peroxydicarbonate (DCHPC) which has the half-life data pres<strong>en</strong>ted <strong>in</strong> the table below:<br />

Time<br />

Temperature (°C)<br />

100 H 33<br />

10 H 48<br />

1 H 64<br />

6 m<strong>in</strong> 82<br />

1 m<strong>in</strong> 100<br />

1 sec 120<br />

Table III- 2: Half-life data of DCHPC<br />

105


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

The work<strong>in</strong>g temperature is visibly decreased compared to Lauroyl Peroxide for the same range of<br />

half-life time. However, it is employed <strong>in</strong> the same solid form <strong>in</strong>soluble <strong>in</strong> the water phase. Therefore<br />

the same <strong>in</strong>homog<strong>en</strong>eities were observed <strong>in</strong> the system. The picture below, tak<strong>en</strong> after 60 m<strong>in</strong>utes of<br />

reaction, shows droplets of VCM which came <strong>in</strong> contact with the <strong>in</strong>itiator and began to polymerize.<br />

Nevertheless, reaction did not seem to occur uniformly <strong>in</strong>side the droplets. The photo <strong>in</strong> Figure III- 2<br />

repres<strong>en</strong>ts an isolated group of droplets which randomly <strong>en</strong>countered the <strong>in</strong>itiator.<br />

Figure III- 2: Groups of droplets polymerized with DCHPC <strong>in</strong> the aqueous phase<br />

With this type of <strong>in</strong>itiator addition, one may suppose that some droplets did not get <strong>en</strong>ough <strong>in</strong>itiator to<br />

polymerise uniformly and developed at differ<strong>en</strong>t degrees of conversion. In some cases drops had to<br />

wait for a relatively long time to get some <strong>in</strong>itiator, either from the cont<strong>in</strong>uous phase (latex particles,<br />

diffusion of free radicals) or by coalesc<strong>in</strong>g with other polymeriz<strong>in</strong>g VCM droplets at later stages of the<br />

reaction.<br />

The solution to overcome these issues was either the pre-dispersion of the <strong>in</strong>itiator <strong>in</strong> the VCM or the<br />

use of a solv<strong>en</strong>t for the <strong>in</strong>itiator. The latter option would imply the pres<strong>en</strong>ce of a supplem<strong>en</strong>tary phase<br />

<strong>in</strong>to the system and therefore we preferred the pre-dissolution of DCHPC <strong>in</strong>to the VCM.<br />

I.C. Polymerization with Di(4-tert-butylcyclohexyl)<br />

peroxydicarbonate pre-dispersed <strong>in</strong> the VCM phase<br />

Studies performed by Zerfa et al. (1997) show that the method of addition of the <strong>in</strong>itiator plays an<br />

important role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the degree of uniformity of the f<strong>in</strong>al PVC particles (i. e. size, size<br />

distribution, porosity and degree of conversion). It was observed for the micro<strong>reactor</strong> reaction, wh<strong>en</strong><br />

the <strong>in</strong>itiator is pre-dissolved <strong>in</strong>to the VCM, the <strong>polymerization</strong> occurred uniformly <strong>in</strong> all the droplets<br />

(Figure III- 3), while if the <strong>in</strong>itiator is just dispersed <strong>in</strong> the cont<strong>in</strong>uous phase, the polymerisation does<br />

not take place uniformly <strong>in</strong>side droplets.<br />

106


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Figure III- 3: Uniform polymerized droplets with DCHPC pre-dispersed <strong>in</strong> the VCM phase<br />

Indeed this uniformity <strong>in</strong> the reaction developm<strong>en</strong>t was captured <strong>in</strong> Figure III- 4 at the first <strong>in</strong>stants of<br />

reaction. In the pictures one may observe a change of colour at the droplet <strong>in</strong>terface. After 2 m<strong>in</strong>utes<br />

of heat<strong>in</strong>g the <strong>in</strong>terface starts to become cloudy, at 5 m<strong>in</strong>utes a certa<strong>in</strong> change <strong>in</strong> colour was noticed<br />

from white to grey and at about 7 m<strong>in</strong>utes the droplet is almost black. After 10 m<strong>in</strong>utes, the <strong>en</strong>tire<br />

<strong>in</strong>terface became completely black. This change of colour was assigned to the formation of a sk<strong>in</strong><br />

around the droplet.<br />

t = 2m<strong>in</strong> t = 5m<strong>in</strong> t = 7m<strong>in</strong> t = 9m<strong>in</strong> t = 10m<strong>in</strong><br />

Figure III- 4: Droplets dur<strong>in</strong>g the first 10 m<strong>in</strong>utes of the <strong>polymerization</strong> reaction<br />

This th<strong>in</strong> "sk<strong>in</strong>" at the droplets <strong>in</strong>terface is believed to be formed at the very early stages of the<br />

<strong>polymerization</strong> (around 2% conversion). Various authors concluded that it is formed of a graft<br />

copolymer (PVA-PVC) transform<strong>in</strong>g the adsorbed stabiliser (PVA) <strong>in</strong>to a rigid layer of about 10 nm<br />

thickness (Allsopp, 1982 and Eliassaf, J., 1974). The primary particles formed <strong>in</strong>side VCM droplets<br />

aggregate at this ‘sk<strong>in</strong>’ lead<strong>in</strong>g to the formation of a pericellular membrane <strong>in</strong> approximately 200 –<br />

500 nm <strong>in</strong> thickness (Smallwood 1986; Davidson and Whit<strong>en</strong>hafer, 1980).<br />

Some PVC particles obta<strong>in</strong>ed <strong>in</strong> microchannel were recovered and the surround<strong>in</strong>g perricellular<br />

membrane was observed us<strong>in</strong>g SEM (scann<strong>in</strong>g electron microscope) technique. Figure III- 5 shows<br />

some of the pictures obta<strong>in</strong>ed.<br />

107


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

a) b)<br />

418.3 nm<br />

Figure III- 5: SEM images of the membrane surround<strong>in</strong>g the PVC particles obta<strong>in</strong>ed <strong>in</strong> microchannel<br />

The images SEM above correspond to a cross section of a PVC particle obta<strong>in</strong>ed at the <strong>en</strong>d of the<br />

reaction. The pericellular membrane is <strong>in</strong>deed pres<strong>en</strong>t on the PVC particles obta<strong>in</strong>ed <strong>in</strong> microchannel<br />

at the <strong>en</strong>d of the reaction The membrane’s surface is pres<strong>en</strong>ted <strong>in</strong> Figure III- 5a and its thickness was<br />

measured at about 400 nm (Figure III- 5b). Dur<strong>in</strong>g <strong>polymerization</strong> <strong>in</strong> batch <strong>reactor</strong>s, primary particles<br />

move to the <strong>in</strong>ner surface of the droplets by <strong>in</strong>ertial forces caused by the agitation. These primary<br />

particles adhere and as they grow further they will f<strong>in</strong>ally coagulate with <strong>in</strong>creas<strong>in</strong>g monomer<br />

conversion. Consequ<strong>en</strong>tly, a rigid layer is formed at the <strong>in</strong>ner surface of the droplet covered by a<br />

PVA-PVC crossl<strong>in</strong>ked sk<strong>in</strong> at the outer surface of the droplet. The thickness of this layer probably<br />

dep<strong>en</strong>ds on the agitation speed. If a higher agitation speed is used the sk<strong>in</strong> will become thicker s<strong>in</strong>ce<br />

more primary particles will move towards the <strong>in</strong>ner surface of the particles. Follow<strong>in</strong>g this approach,<br />

<strong>in</strong> quiesc<strong>en</strong>t conditions as those <strong>in</strong> microchannel the perricellular membrane should have be<strong>en</strong> th<strong>in</strong>ner.<br />

However, its dim<strong>en</strong>sions are strongly dep<strong>en</strong>d<strong>en</strong>t on the PVA’s conc<strong>en</strong>trations employed. In our<br />

experim<strong>en</strong>ts the PVAs conc<strong>en</strong>trations were beyond the critical micelle conc<strong>en</strong>tration, therefore one<br />

may suspect their <strong>in</strong>flu<strong>en</strong>ce on the membrane’s thickness.<br />

The outside surface of the particles (PVA-PVC graft copolymer membrane) is relatively smooth as it<br />

may be noticed <strong>in</strong> both photos <strong>in</strong> Figure III- 6. The folds and hollows <strong>in</strong> the membrane are a<br />

consequ<strong>en</strong>ce of the shr<strong>in</strong>kage of the monomer droplet dur<strong>in</strong>g the reaction s<strong>in</strong>ce the d<strong>en</strong>sity of the PVC<br />

is greater than the one of VCM (ρ PVC = 1400 kg.m -3 and ρ VCM = 840 kg.m -3 ). Some latex particles (with<br />

a diameter < 10 µm) that polymerized <strong>in</strong> the water phase (although <strong>in</strong> small quantity) adhered to the<br />

gra<strong>in</strong>’s surface obta<strong>in</strong>ed from the VCM.<br />

108


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Figure III- 6: Aspect of the surface of the perricellular membrane<br />

The droplet’s evolution <strong>in</strong> micro channel dur<strong>in</strong>g <strong>polymerization</strong> was monitored for 5 hours at 60 °C.<br />

Figure III- 7 shows the behaviour of the same droplet at differ<strong>en</strong>t <strong>in</strong>stants. They will be further<br />

employed <strong>in</strong> the calculation of droplet volume dur<strong>in</strong>g <strong>polymerization</strong>.<br />

0 1 2 3 4 5 hours<br />

Figure III- 7: Droplet evolution dur<strong>in</strong>g 5 hours of reaction<br />

Concern<strong>in</strong>g the <strong>in</strong>terior of the v<strong>in</strong>yl <strong>chloride</strong> polymerized drop, SEM pictures were tak<strong>en</strong> at the <strong>en</strong>d of<br />

the reaction. A cross-section of a droplet obta<strong>in</strong>ed <strong>in</strong> the capillary device is pres<strong>en</strong>ted <strong>in</strong> the SEM<br />

photo <strong>in</strong> Figure III- 8.<br />

109


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Figure III- 8: SEM picture of a cross-section of a PVC particle obta<strong>in</strong>ed <strong>in</strong> microchannel<br />

It is observed that the <strong>in</strong>terior of the particle exhibits a porous character. Wh<strong>en</strong> conversion <strong>in</strong>creases,<br />

the volume of free VCM <strong>in</strong>side the droplets decreases. Thus, the primary particles <strong>in</strong>side the droplets<br />

<strong>in</strong>crease <strong>in</strong> size and fuse together. The strong capillary forces that appear <strong>en</strong>able the primary particles<br />

<strong>in</strong>sight the droplets to agglomerate. This fusion of the primary particles along with the shr<strong>in</strong>k<strong>in</strong>g due<br />

to d<strong>en</strong>sity change are the ma<strong>in</strong> causes for the decrease of PVC <strong>in</strong> porosity. In Figure III- 9 the primary<br />

particles <strong>in</strong>side the gra<strong>in</strong> can be clearly noticed. Their size is <strong>in</strong>ferior to 1 µm, value <strong>in</strong> agreem<strong>en</strong>t with<br />

the average size m<strong>en</strong>tioned <strong>in</strong> the literature (Xie et al., 1991). The result is the formation of a<br />

cont<strong>in</strong>uous op<strong>en</strong> network of agglomerates of about 3µm <strong>in</strong> diameter.<br />

110


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

718.5 nm<br />

2.729 µm<br />

Figure III- 9: SEM picture of the fused primary particles and their measurem<strong>en</strong>t<br />

I.D. Volume measurem<strong>en</strong>t<br />

The PVC is d<strong>en</strong>ser than its monomer and thus, as <strong>polymerization</strong> proceeds, the VCM droplets will<br />

contract. If this ph<strong>en</strong>om<strong>en</strong>on cont<strong>in</strong>ues through the whole <strong>polymerization</strong> process the f<strong>in</strong>al gra<strong>in</strong> will<br />

be approximately 60% of its orig<strong>in</strong>al size and will have no porosity. However if the perricellular<br />

membrane around the droplet is rigid <strong>en</strong>ough and does not contract up to this po<strong>in</strong>t, the f<strong>in</strong>al gra<strong>in</strong> will<br />

result porous and will shr<strong>in</strong>k.<br />

Various authors such as Kiparissides et al. (1997) or Maggioris et al. (2000) evaluated some of the<br />

physical properties of the two-phase dispersion water/VCM. They took <strong>in</strong>to consideration an<br />

expression for the volume contraction of the polymeriz<strong>in</strong>g droplet due to d<strong>en</strong>sity changes. Both before<br />

m<strong>en</strong>tioned authors suggest a droplet volume model that evolves with conversion X as follows:<br />

V<br />

V<br />

0<br />

= 1− εX<br />

ρ<br />

p<br />

− ρm<br />

ε =<br />

ρ<br />

p<br />

(III- 1)<br />

with V, V 0 the volumes respectively at conversion X and X=0, ε the shr<strong>in</strong>kage factor, ρ m and ρ p the<br />

monomer d<strong>en</strong>sity and polymer d<strong>en</strong>sity respectively.<br />

111


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Based on the films recorded dur<strong>in</strong>g the 5h <strong>polymerization</strong> at 60°C, the droplet’s dim<strong>en</strong>sions were<br />

measured. For a clearer view of the volume change, the droplets’ contour was outl<strong>in</strong>ed (white circle at<br />

<strong>in</strong>stant 0 and at 5 hours). It is clearly noticed that the drop shr<strong>in</strong>ks from a sphere-like shape which<br />

touches the <strong>reactor</strong> walls to a sphere with a diameter much smaller than the channel one’s (Figure III-<br />

10). The image process<strong>in</strong>g software furnished the correspond<strong>in</strong>g positions which were subsequ<strong>en</strong>tly<br />

transformed from pixel units <strong>in</strong>to micrometers by us<strong>in</strong>g the channel width as refer<strong>en</strong>ce scale. For the<br />

volume calculations, droplets were considered as spheres.<br />

Figure III- 10: Polymerized droplet at a) beg<strong>in</strong>n<strong>in</strong>g of the reaction b) after 5 hours<br />

As expected, the droplet volume contracts due to the d<strong>en</strong>sity differ<strong>en</strong>ce betwe<strong>en</strong> monomer and<br />

polymer. The droplet volume evolution all along the 5 hours time scale is repres<strong>en</strong>ted <strong>in</strong> Figure III- 11<br />

for the same isolated droplet monitorised:<br />

10<br />

9<br />

60°C<br />

70°C<br />

Drop volume (nL)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

0 50 100 150 200 250 300<br />

Time (m<strong>in</strong>)<br />

Figure III- 11: Droplet volume evolution dur<strong>in</strong>g the reaction<br />

We note an important decrease of the droplet volume of about 30 % dur<strong>in</strong>g the time that the droplet<br />

was monitored. Apply<strong>in</strong>g the equation described by Kiparissides, we were able to estimate monomer<br />

conversion by means of the volume change (Figure III- 12).<br />

112


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

X (%)<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

60°C<br />

70°C<br />

0 50 100 150 200 250 300<br />

Time (m<strong>in</strong>)<br />

Figure III- 12: Monomer conversion estimated with Kiparisside’s equation<br />

This type of calculation allows to predict droplet conversion only by the means of measures performed<br />

on the pictures recorded with the CCD camera. Nevertheless, it is important to underl<strong>in</strong>e the degree of<br />

uncerta<strong>in</strong>ty associated to this method and therefore the results are only used to estimate a<br />

<strong>polymerization</strong> characteristic time.<br />

The 250 µm capillary circuit proved to be a good prelim<strong>in</strong>ary approach for the study of the<br />

<strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong> <strong>in</strong> microchannel. However, because VCM shows a certa<strong>in</strong> aff<strong>in</strong>ity<br />

towards the channel wall, it locks onto the latter and disrupts the flow. In many cases, due to the fact<br />

that the observation w<strong>in</strong>dow was only 4 cm <strong>in</strong> l<strong>en</strong>gth, we wer<strong>en</strong>’t able to visualize the precise place<br />

where the VCM stuck, but we have detected irregularities <strong>in</strong> the flow. At that mom<strong>en</strong>t, the only<br />

solution was to <strong>in</strong>crease the capillary diameter. Besides, shadowgraphy tests were very useful for a<br />

first visual characterization but they are hardly applied for a quantitative k<strong>in</strong>etic analysis. Therefore a<br />

spectroscopy method for on-l<strong>in</strong>e analysis of a VCM droplet was chos<strong>en</strong> among the multitude of such<br />

techniques.<br />

For that purpose, a second g<strong>en</strong>eration experim<strong>en</strong>tal set-up was build allow<strong>in</strong>g the coupl<strong>in</strong>g of the<br />

microchannel <strong>reactor</strong> to a suitable analytical technique for on-l<strong>in</strong>e monitor<strong>in</strong>g of VCM <strong>polymerization</strong>.<br />

The stages that lead to the outcome of this novel experim<strong>en</strong>tal test b<strong>en</strong>ch will be discussed and<br />

detailed further <strong>in</strong> the follow<strong>in</strong>g sections.<br />

113


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

II. Choice of the appropriate analytical technique<br />

for the monitor<strong>in</strong>g of v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong><br />

reaction<br />

II.A. The context<br />

The measurem<strong>en</strong>t and control of <strong>polymerization</strong> reactions is of highly importance for the <strong>en</strong>d-use<br />

properties of the f<strong>in</strong>al product. Accord<strong>in</strong>g to Mart<strong>in</strong> et al. (1996), many of the problems found <strong>in</strong> the<br />

control of <strong>polymerization</strong> <strong>reactor</strong>s may be attributed to a lack of analytical <strong>in</strong>strum<strong>en</strong>ts able to produce<br />

on-l<strong>in</strong>e measurem<strong>en</strong>ts. However <strong>in</strong> <strong>in</strong>dustry the monitor<strong>in</strong>g techniques implem<strong>en</strong>ted for these<br />

reactions are relatively scarce. Conv<strong>en</strong>tional process analysis techniques are physical measurem<strong>en</strong>ts<br />

such as temperature, flow or pressure. The data obta<strong>in</strong>ed give <strong>in</strong>formation about the physical<br />

conditions dur<strong>in</strong>g the production process and they are constantly compared with set parameters. But<br />

these physical data do not provide all the <strong>in</strong>formation to control the process.<br />

Rec<strong>en</strong>tly a particular <strong>in</strong>terest has be<strong>en</strong> directed towards the non-destructive or non-<strong>in</strong>trusive<br />

measurem<strong>en</strong>ts because of the necessity of <strong>in</strong>creas<strong>in</strong>g quality and reduc<strong>in</strong>g costs. Besides, these<br />

techniques do not require use of solv<strong>en</strong>ts or sample preparation. It is true that apply<strong>in</strong>g an analytical<br />

technique for the determ<strong>in</strong>ation of conversion dur<strong>in</strong>g susp<strong>en</strong>sion <strong>polymerization</strong> reactions is not an<br />

easy task due to the medium heterog<strong>en</strong>eity and to the t<strong>en</strong>d<strong>en</strong>cy of the particles to rapidly agglomerate<br />

wh<strong>en</strong> stirr<strong>in</strong>g is stopped. However some authors overcame these drawbacks and were able to perform<br />

k<strong>in</strong>etic track<strong>in</strong>g <strong>in</strong> hostile <strong>en</strong>vironm<strong>en</strong>ts such as susp<strong>en</strong>sion <strong>polymerization</strong>s.<br />

Chemical measurem<strong>en</strong>ts such as spectroscopic techniques are used to qualitative analysis, e. g. the<br />

id<strong>en</strong>tification of raw materials, <strong>in</strong>termediate products and <strong>en</strong>d products, and to quantitative analysis,<br />

like monitor<strong>in</strong>g of polymerisation reactions. The ma<strong>in</strong> application of these methods is a real-time<br />

monitor<strong>in</strong>g of polymerisation reactions <strong>in</strong> order to stop the <strong>reactor</strong> as soon as the desired conversion<br />

has be<strong>en</strong> reached or <strong>in</strong> case of reaction failure. By this way a ga<strong>in</strong> <strong>in</strong> time or costs may be obta<strong>in</strong>ed.<br />

Among the afore-m<strong>en</strong>tioned techniques an <strong>in</strong>-l<strong>in</strong>e sample analysis is preferred to the classical off-l<strong>in</strong>e<br />

measurem<strong>en</strong>t. The off-l<strong>in</strong>e technique supposes sample collection from the reaction mixture and its<br />

analysis <strong>in</strong> terms of composition and conc<strong>en</strong>tration. The time before sampl<strong>in</strong>g and analysis of the<br />

results may take up to a couple of hours. So as to reduce this time the spectrometer could be placed at<br />

the production l<strong>in</strong>e and perform analysis at-l<strong>in</strong>e immediately after the sampl<strong>in</strong>g.<br />

114


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

The on-l<strong>in</strong>e technique pres<strong>en</strong>ts the advantage that the analysis is carried out <strong>in</strong> the process stream <strong>in</strong> a<br />

cont<strong>in</strong>uous manner. However it requires the adaptation of a by-pass of the production l<strong>in</strong>e which is<br />

sometimes difficult or ev<strong>en</strong> impossible to be realized. Furthermore, there is still a time differ<strong>en</strong>ce,<br />

although reduced, betwe<strong>en</strong> sampl<strong>in</strong>g and analysis.<br />

In-l<strong>in</strong>e measurem<strong>en</strong>ts pres<strong>en</strong>t the ideal form of process analysis. A probe is located <strong>in</strong> the process l<strong>in</strong>e<br />

itself and connected to an automated spectrometer. The measured spectra give immediate <strong>in</strong>formation<br />

about the reaction or the actual composition of a product stream.<br />

In this context the developm<strong>en</strong>t of analytical techniques able to monitor the monomer/polymer<br />

conc<strong>en</strong>tration has become a chall<strong>en</strong>g<strong>in</strong>g task. The literature describes several approaches on<br />

monitor<strong>in</strong>g v<strong>in</strong>yl <strong>chloride</strong> susp<strong>en</strong>sion <strong>polymerization</strong> such as ultrasonic, near-<strong>in</strong>frared spectroscopy or,<br />

more rec<strong>en</strong>tly, Raman spectroscopy. These techniques will be described further on <strong>in</strong> a non-exhaustive<br />

manner.<br />

II.B. The classical techniques for on-l<strong>in</strong>e/<strong>in</strong>-l<strong>in</strong>e analysis<br />

II.B.1) Ultrasound monitor<strong>in</strong>g<br />

As already m<strong>en</strong>tioned, this control method is not damag<strong>in</strong>g for the sample analysis, it allows its<br />

characterization and may be employed at several steps of the <strong>polymerization</strong> process. Ultrasound can<br />

be successfully used with opaque fluids, emulsions, and slurries conta<strong>in</strong><strong>in</strong>g up to 70% solids. The<br />

technique consists of launch<strong>in</strong>g through a sample volume ultrasound waves of differ<strong>en</strong>t frequ<strong>en</strong>cies,<br />

typically from 1 to 200 MHz, with their att<strong>en</strong>uation be<strong>in</strong>g accurately measured. Some authors<br />

successfully succeeded <strong>in</strong> the measurem<strong>en</strong>t of the ultrasonic att<strong>en</strong>uation of 1MHz longitud<strong>in</strong>al waves<br />

<strong>in</strong> the v<strong>in</strong>yl <strong>chloride</strong> susp<strong>en</strong>sion <strong>polymerization</strong> (Sladky et al., 1982; Sladky et al., 1979) or styr<strong>en</strong>e<br />

bulk <strong>polymerization</strong> (Cav<strong>in</strong> et al., 2000) and correlate it with the reaction conversion. However the<br />

technique requires precise calibration and operat<strong>in</strong>g procedures which are not yet fully quantified.<br />

II.B.2) Near Infrared (NIR) Spectroscopy<br />

Near-<strong>in</strong>frared spectroscopy (NIR) is a non-destructive technique provid<strong>in</strong>g real-time structural and<br />

k<strong>in</strong>etic data without complicated hardware or sampl<strong>in</strong>g techniques. NIR spectroscopy covers the range<br />

from 4000 to 12000 cm-1 (2500 - 830 nm). NIR <strong>in</strong>-l<strong>in</strong>e probes are available for measurem<strong>en</strong>ts <strong>in</strong><br />

115


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

transmission mode and <strong>in</strong> diffuse reflectance mode. These probes can withstand harsh conditions up to<br />

300°C <strong>in</strong> temperature and 350 bar of pressure. The response of the measure is very rapid and it may be<br />

applied to toxic or hazardous reactions. The technique may be applied to aqueous solutions because<br />

water has a low absorbance.<br />

The <strong>in</strong>t<strong>en</strong>sities of the bands <strong>in</strong> pure compon<strong>en</strong>ts and <strong>in</strong> mixtures are proportional to the conc<strong>en</strong>trations<br />

of the compon<strong>en</strong>ts. The relation betwe<strong>en</strong> measured <strong>in</strong>t<strong>en</strong>sities and conc<strong>en</strong>trations is expressed by<br />

means of the Beer-Lambert law:<br />

Absorbance = absorption coeffici<strong>en</strong>t x conc<strong>en</strong>tration x sample thickness<br />

Thus it is possible to carry out quantitative analysis by methods based on band maxima, methods<br />

based on <strong>in</strong>tegrated <strong>in</strong>t<strong>en</strong>sities, s<strong>in</strong>gle compon<strong>en</strong>t analysis and multicompon<strong>en</strong>t analysis by<br />

multivariate method.<br />

Over the past years, some applications <strong>in</strong> <strong>in</strong>-l<strong>in</strong>e NIR analysis of polymers have be<strong>en</strong> published. For<br />

<strong>in</strong>stance, Lousberg et al. (2002) used NIR spectroscopy to determ<strong>in</strong>e the monomer conversion <strong>in</strong><br />

styr<strong>en</strong>e bulk <strong>polymerization</strong> by perform<strong>in</strong>g multivariate calibration. They concluded that the reaction<br />

temperature or the polymer molecular weight distribution had no <strong>in</strong>flu<strong>en</strong>ce on measures performed.<br />

Sasic et al. (2002) used both onl<strong>in</strong>e FT-NIR transmission and FT-MIR spectroscopy to monitor the<br />

methyl methacrylate solution <strong>polymerization</strong>. Multivariate calibration gave the best results for the NIR<br />

data. Fontoura et al. (2003) used NIR spectroscopy to monitor and control both monomer conversion<br />

and polymer molecular weight <strong>in</strong> the solution <strong>polymerization</strong> of styr<strong>en</strong>e. More rec<strong>en</strong>tly, De Faria Jr.<br />

and co-workers (2010) monitored <strong>in</strong>-l<strong>in</strong>e the v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong> reaction. They focused on<br />

some morphological characteristics of the PVC res<strong>in</strong> such as: bulk d<strong>en</strong>sity, cold plasticizer absorption<br />

and average particle diameter which were obta<strong>in</strong>ed <strong>in</strong> real-time. The authors showed that spectra are<br />

s<strong>en</strong>sitive to changes <strong>in</strong> PVC properties and they established mathematical correlations betwe<strong>en</strong> the<br />

two of them. By this way an important relation betwe<strong>en</strong> the <strong>en</strong>d-use properties and some molecular<br />

properties was created.<br />

However there are some drawbacks related to this analysis method. The major <strong>in</strong>conv<strong>en</strong>i<strong>en</strong>t is that<br />

absorption peaks are very broad, overlapp<strong>in</strong>g, and nonspecific which sometimes make the spectra<br />

analysis a difficult task to perform. A previous calibration must be carried out and it may be<br />

particularly long and s<strong>en</strong>sitive. Furthermore, NIR (<strong>in</strong> reflectance mode) is not suited for solid particles<br />

116


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

with a liquid core because the laser beam is not able to p<strong>en</strong>etrate the sample. Also spectra are easily<br />

<strong>in</strong>flu<strong>en</strong>ced by the dim<strong>en</strong>sions of the sample particles.<br />

II.B.3) Raman spectroscopy<br />

The Raman Effect is a light-scatter<strong>in</strong>g effect. The Raman scatter<strong>in</strong>g repres<strong>en</strong>ts the change <strong>in</strong> frequ<strong>en</strong>cy<br />

for a very small perc<strong>en</strong>tage of the <strong>in</strong>t<strong>en</strong>sity <strong>in</strong> a monochromatic beam as the result of <strong>in</strong>teract<strong>in</strong>g with a<br />

compound. The frequ<strong>en</strong>cy changes occur as the result of coupl<strong>in</strong>g betwe<strong>en</strong> the radiation and<br />

vibrational <strong>en</strong>ergy levels of molecules. The region <strong>in</strong> which the Raman Effect is observed dep<strong>en</strong>ds on<br />

the <strong>en</strong>ergy of the <strong>in</strong>cid<strong>en</strong>t radiation. This can be <strong>in</strong> the visible region, the UV region and <strong>in</strong> the NIR<br />

region. The condition for a molecule to be Raman active is a change <strong>in</strong> the deformation (polarisation)<br />

of the electron cloud dur<strong>in</strong>g the <strong>in</strong>teraction with the <strong>in</strong>cid<strong>en</strong>t radiation.<br />

The disadvantage or Raman scatter<strong>in</strong>g is that it is a very weak effect. Typically fluoresc<strong>en</strong>ce may<br />

occur up to 10 7 times stronger than Raman scatter<strong>in</strong>g. Trace impurities may fluoresce so strongly that<br />

it is oft<strong>en</strong> impossible to observe the Raman spectrum.<br />

Several configurations are available for this k<strong>in</strong>d of technique. An immersion probe can be used to<br />

contact a sample directly <strong>in</strong> a stream, a batch <strong>reactor</strong> or extruder. Such probes must be designed to<br />

withstand the very harsh conditions <strong>in</strong> such <strong>en</strong>vironm<strong>en</strong>ts. Alternatively a non-contact optic can be<br />

used for measur<strong>in</strong>g samples <strong>in</strong> bottles, vials, or through a site glass w<strong>in</strong>dow.<br />

Successful results were obta<strong>in</strong>ed for emulsion <strong>polymerization</strong> monitor<strong>in</strong>g us<strong>in</strong>g Raman spectroscopy.<br />

For <strong>in</strong>stance, Bauer et al. (2000) performed monitor<strong>in</strong>g of styr<strong>en</strong>e/butadi<strong>en</strong>e latex emulsion<br />

<strong>polymerization</strong>. The authors measured with satisfactory results the dry extract perc<strong>en</strong>tage of styr<strong>en</strong>e<br />

monomer <strong>in</strong> the <strong>reactor</strong>. Other examples <strong>in</strong>clude the work of Elizalde et al. (2004) or Reis et al.<br />

(2003).<br />

Nevertheless, susp<strong>en</strong>sion <strong>polymerization</strong> pres<strong>en</strong>ts several significant differ<strong>en</strong>ces from emulsion<br />

<strong>polymerization</strong>. They are particularly related to the medium heterog<strong>en</strong>eity which is significantly<br />

<strong>in</strong>creased compared to emulsion reactions. Santos et al. (2004) realized on-l<strong>in</strong>e monitor<strong>in</strong>g of batch<br />

styr<strong>en</strong>e susp<strong>en</strong>sion <strong>polymerization</strong> reaction us<strong>in</strong>g Raman spectroscopy. They accurately estimated the<br />

conversion from Raman spectra collected. Also, it was observed that spectra are affected by the<br />

polymer particle size distribution.<br />

117


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Rec<strong>en</strong>t studies pres<strong>en</strong>t the successful coupl<strong>in</strong>g to microfluidic devices for various applications. Barnes<br />

et al. (2006) studied the application of Raman spectroscopy for analysis of monomer composition and<br />

degree of conversion of methacrylate droplets <strong>in</strong> a microfluidic device. Measurem<strong>en</strong>ts were performed<br />

on a stationary array of droplets and a least square calibration method was further applied and<br />

validated.<br />

Lorber et al. (2010) monitored the fast and exothermic <strong>polymerization</strong> reaction of acrylic acid with<br />

sodium persulfate at low pH. The non<strong>in</strong>trusive Raman analysis allowed the acquisition of k<strong>in</strong>etic data<br />

<strong>in</strong> especially severe reaction conditions.<br />

It is important to note that Raman spectroscopy has not be<strong>en</strong> used for analysis of PVC susp<strong>en</strong>sion<br />

<strong>polymerization</strong> process, despite the economical importance of the PVC market.<br />

II.B.4) Choice of the on-l<strong>in</strong>e technique<br />

The differ<strong>en</strong>t analysis techniques offer <strong>in</strong>terest<strong>in</strong>g perspectives for the <strong>in</strong>-l<strong>in</strong>e monitor<strong>in</strong>g of the S-PVC<br />

reaction. Table III- 3 reunites <strong>in</strong> a concise manner the drawbacks of the three techniques pres<strong>en</strong>ted <strong>in</strong><br />

the previous section.<br />

Method Drawbacks Advantages<br />

Ultrasounds<br />

NIR<br />

Wide overlapp<strong>in</strong>g peaks, poor structural<br />

<strong>in</strong>formation, difficult implem<strong>en</strong>tation.<br />

Suited for liquid systems with high<br />

solid cont<strong>en</strong>t, good reaction control<br />

and monitor<strong>in</strong>g<br />

Good reaction control and<br />

monitor<strong>in</strong>g<br />

Raman scatter<strong>in</strong>g Low s<strong>en</strong>sitivity Easy to implem<strong>en</strong>t, rapid peak<br />

assignm<strong>en</strong>t, good reaction control<br />

and monitor<strong>in</strong>g<br />

Table III- 3 : Comparison betwe<strong>en</strong> the three <strong>in</strong>-l<strong>in</strong>e analysis methods<br />

F<strong>in</strong>ally, we f<strong>in</strong>d that the Raman spectroscopy exhibits some particular features with respect to the<br />

other techniques described: it is more specific and easier to <strong>in</strong>terpret. The Raman spectra are easily<br />

related to specific bond <strong>in</strong> a compound, without further chemometric analysis. Also from a technical<br />

po<strong>in</strong>t of view it is easier to apply.<br />

118


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

III. Second g<strong>en</strong>eration micro<strong>reactor</strong> for the k<strong>in</strong>etic<br />

study of the v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong> reaction<br />

III.A. Requirem<strong>en</strong>ts to comply<br />

Once an appropriate <strong>in</strong>-l<strong>in</strong>e monitor<strong>in</strong>g technique for the S-PVC reaction was chos<strong>en</strong> we are fac<strong>in</strong>g<br />

now some technical constra<strong>in</strong>ts related to its applicability to micro<strong>reactor</strong>s. The safety issues<br />

associated with the VCM use are still valid (already pres<strong>en</strong>ted <strong>in</strong> Chapter II – section I). The first<br />

g<strong>en</strong>eration <strong>reactor</strong>, although adapted to shadowgraphy experim<strong>en</strong>ts, is very restrictive regard<strong>in</strong>g other<br />

applications – such as Raman spectroscopy. Therefore a re-design of the experim<strong>en</strong>tal set-up had to be<br />

performed tak<strong>in</strong>g <strong>in</strong>to account the safety issues but also the <strong>in</strong>formation gathered from the first<br />

experim<strong>en</strong>tal rig. Ma<strong>in</strong>ly they <strong>in</strong>volve difficulties due to the pres<strong>en</strong>ce of solid: the <strong>in</strong>itiator on one<br />

hand and the PVC on the other. They block differ<strong>en</strong>t elem<strong>en</strong>ts from the circuit such as valves, filters or<br />

ev<strong>en</strong> the sta<strong>in</strong>less steel stream channel. The clean<strong>in</strong>g of these elem<strong>en</strong>ts is time-consum<strong>in</strong>g or ev<strong>en</strong><br />

impossible. The second g<strong>en</strong>eration micro-<strong>reactor</strong> has to be designed as simple as possible, m<strong>in</strong>imis<strong>in</strong>g<br />

any dead volume <strong>in</strong> order to avoid any ev<strong>en</strong>tual product accumulation.<br />

The Raman beam has to travel fewer surfaces as possible, to avoid any undesired impurity emissions<br />

or att<strong>en</strong>uation and consequ<strong>en</strong>t distortion of the signal. It was already <strong>en</strong>ough that the measurem<strong>en</strong>t had<br />

to be performed through the fused silica capillary wall; therefore the use of the glass w<strong>in</strong>dow or the<br />

heat<strong>in</strong>g water circuit was out of the question. The capillary tubes had to be removed from the hous<strong>in</strong>g.<br />

In this case, a particular care was giv<strong>en</strong> to the choice of micro connection adapted to high pressures<br />

without requir<strong>in</strong>g counter-pressure.<br />

All these constra<strong>in</strong>ts were converted <strong>in</strong>to technological choices that lead to the experim<strong>en</strong>tal rig<br />

pres<strong>en</strong>ted <strong>in</strong> the follow<strong>in</strong>g section.<br />

III.B. Diagram of the experim<strong>en</strong>tal set-up<br />

This section pres<strong>en</strong>ts a novel experim<strong>en</strong>tal set-up designed to allow quantitative analysis performed on<br />

monomer/polymer droplets with Raman spectroscopy technique. The construction of this test b<strong>en</strong>ch<br />

was also <strong>en</strong>tirely accomplished <strong>in</strong> our laboratory. The schematic diagram is pres<strong>en</strong>ted <strong>in</strong> Figure III-<br />

13.<br />

119


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Figure III- 13: Test b<strong>en</strong>ch for on-l<strong>in</strong>e monitor<strong>in</strong>g of VCM <strong>polymerization</strong> reaction<br />

Water phase and VCM flows are <strong>en</strong>sured by neMESYS high pressure pump syr<strong>in</strong>ge equipped with<br />

high pressure sta<strong>in</strong>less steel syr<strong>in</strong>ges. The <strong>reactor</strong> consists of fused silica capillary tube. The latter was<br />

rolled up on a sta<strong>in</strong>less steel support (Figure III- 14) which allows guid<strong>in</strong>g the capillaries <strong>in</strong> a precise<br />

order. This support was completely immersed <strong>in</strong> a water bath of controlled temperature by a<br />

thermostat. At the <strong>en</strong>d of the microchannel a waste <strong>reactor</strong> was connected <strong>in</strong> order to recover any<br />

traces of unreacted VCM. Pressure is measured on VCM circuit and <strong>in</strong> the collect<strong>in</strong>g vessel by<br />

pressure s<strong>en</strong>sors with an accuracy of +/- 0.15% (Serv Instrum<strong>en</strong>tation). The micro<strong>reactor</strong> test b<strong>en</strong>ch<br />

was designed to allow a maximum work<strong>in</strong>g pressure of 30 bar and a 90°C work<strong>in</strong>g temperature.<br />

a)<br />

b)<br />

Figure III- 14: Sta<strong>in</strong>less steel capillary support: a) lateral view; b) top view<br />

120


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

The water and VCM phase contact <strong>in</strong> a co-flow g<strong>en</strong>eration device as shown <strong>in</strong> the zoom <strong>in</strong> Figure III-<br />

15. It consists of a differ<strong>en</strong>t droplet g<strong>en</strong>eration system implem<strong>en</strong>ted <strong>in</strong> order to by-pass the issue of<br />

wettability evoked <strong>in</strong> the case of the 250 µm ID capillary.<br />

VCM<br />

VCM droplet g<strong>en</strong>eration<br />

Expansion of<br />

the <strong>in</strong>ner diameter<br />

Water phase<br />

20 cm<br />

Water phase<br />

Figure III- 15: VCM droplet g<strong>en</strong>eration device used <strong>in</strong> k<strong>in</strong>etic studies<br />

This system consists of an axi-symmetric VCM droplet g<strong>en</strong>eration similar to the previous employed <strong>in</strong><br />

section I.E from Chapter II. The droplets are g<strong>en</strong>erated at the nozzle tip of the 50 µm ID capillary by<br />

shear force and transported by the water phase <strong>in</strong> a 250 µm capillary. They flow for a l<strong>en</strong>gth of 20 cm.<br />

This distance is kept <strong>in</strong> order to <strong>en</strong>sure a stabilization of the flow regime. Th<strong>en</strong> the droplets are carried<br />

<strong>in</strong>to a larger capillary of 530 µm ID (670 µm OD) via another axi-symmetrical system. A second<br />

water flow is <strong>in</strong>jected to <strong>en</strong>sure the droplet transport <strong>in</strong> the larger tube. The capillary l<strong>en</strong>gth varied<br />

from 140 – 200 cm. This g<strong>en</strong>eration system was chos<strong>en</strong> for two reasons. First of all, <strong>in</strong> order to <strong>en</strong>sure<br />

that droplets do not touch the microtube’s walls. A second reason <strong>in</strong>volves safety issues: the larger<br />

diameter makes the channel more adapted to sta<strong>in</strong>less steel connections. Note that the wall thickness is<br />

<strong>in</strong> the order of 140 µm, which makes the 530 µm ID tube rather s<strong>en</strong>sitive to shocks because of the<br />

th<strong>in</strong>ness of its walls.<br />

All the capillary connections (Tees and fitt<strong>in</strong>gs) used were <strong>in</strong> sta<strong>in</strong>less steel and were purchased from<br />

Swagelok (Figure III- 16). They provided g<strong>en</strong>erally leak free flows ev<strong>en</strong> at the high pressures atta<strong>in</strong>ed<br />

dur<strong>in</strong>g the experim<strong>en</strong>ts.<br />

121


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Figure III- 16: The differ<strong>en</strong>t sta<strong>in</strong>less steel connections used for the VCM droplets g<strong>en</strong>eration system<br />

The polyimide coat<strong>in</strong>g of the capillaries was removed on a l<strong>en</strong>gth of approximatively 3 cm where the<br />

Raman beam was placed. Therefore no parasite signal com<strong>in</strong>g from the capillary coat<strong>in</strong>g was<br />

registered (Figure III- 17).<br />

Figure III- 17: The Raman probe head fixed above the capillaries removed of their coat<strong>in</strong>g<br />

III.B.1) Experim<strong>en</strong>tal protocol<br />

The <strong>en</strong>tire circuit was first purged with nitrog<strong>en</strong> to avoid <strong>in</strong>hibition by oxyg<strong>en</strong>. The <strong>in</strong>itiator was predispersed<br />

<strong>in</strong>to the VCM and th<strong>en</strong> pushed <strong>in</strong>to the microchannel <strong>in</strong> order to <strong>en</strong>counter the water phase<br />

and to disperse <strong>in</strong>to droplets. The flow rates varied for the VCM phase betwe<strong>en</strong> 0.1 – 0.5 mL/h and for<br />

the water phase: 2 – 5 mL/h. Once the hydrodynamic regime established, a first Raman spectrum was<br />

acquired at ambi<strong>en</strong>t temperature serv<strong>in</strong>g as a refer<strong>en</strong>ce measure. Afterwards the <strong>reactor</strong> was heated. As<br />

soon as the desired temperature reached, the <strong>en</strong>tire flow was stopped, the <strong>in</strong>lets and outlets were<br />

subsequ<strong>en</strong>tly sealed and spectra were recorded at constant time <strong>in</strong>tervals. The <strong>polymerization</strong><br />

122


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

temperature was fixed at differ<strong>en</strong>t values <strong>in</strong> a range betwe<strong>en</strong> 58 to 70 °C. The pressure <strong>in</strong> the<br />

micro<strong>reactor</strong> was betwe<strong>en</strong> 10 to 16 bar. At the <strong>en</strong>d of the experim<strong>en</strong>t the circuit was cleaned with a<br />

PVC solv<strong>en</strong>t and with the carrier fluid.<br />

III.B.2) The Raman experim<strong>en</strong>tal device<br />

Common spectroscopic Raman equipm<strong>en</strong>t consists of several dist<strong>in</strong>ct elem<strong>en</strong>ts (Figure III- 18):<br />

• Laser source emitt<strong>in</strong>g radiations through optical fibers to the analys<strong>in</strong>g sample<br />

• Collection optics for the light diffused by sample<br />

• Spectral analysis system (Separator)<br />

• Highly s<strong>en</strong>sitive radiation detector produc<strong>in</strong>g data on the sample analyzed<br />

• Acquisition and spectral data treatm<strong>en</strong>t electronic<br />

Figure III- 18: Basic diagram of a Raman spectrometer<br />

Spectra were obta<strong>in</strong>ed with a Raman spectrometer (RXN-1, Kaiser Optical System Inc., U.S.)<br />

characterized by a near-<strong>in</strong>frared laser diode (400 mW, 785 nm) as excitation source. The microfluidic<br />

device was placed under the probe head with non-contact sampl<strong>in</strong>g optics (10x) of the<br />

spectrophotometer. The data acquisition was carried out through a 5 mm w<strong>in</strong>dow on the capillary<br />

channels. The probe head was focused above the microchannel by mov<strong>in</strong>g a y-z barrel micrometer.<br />

The acquisition time of each spectrum was of 120 seconds over 1 accumulation. This <strong>in</strong>terval was<br />

chos<strong>en</strong> to give an acceptable signal-to-noise ratio for the acquired spectra.<br />

123


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

III.C. Raman spectroscopy – work<strong>in</strong>g pr<strong>in</strong>ciple<br />

The analysis <strong>in</strong> Raman spectrometry is performed via an excitation of the sample. The latter is brought<br />

to a virtual <strong>en</strong>ergetic level by a powerful monochromatic light source (laser). It produces a radiation<br />

collected th<strong>en</strong> analysed by a proper detector. This radiation conta<strong>in</strong>s <strong>in</strong> two types of signals as shown<br />

<strong>in</strong> Figure III- 19: a ma<strong>in</strong> one correspond<strong>in</strong>g to the Rayleigh diffusion where the <strong>in</strong>cid<strong>en</strong>t radiation is<br />

elastically diffused without <strong>en</strong>ergy or wavel<strong>en</strong>gth changes. A small amount of photons <strong>in</strong>teract with<br />

matter which may absorb (or give away) <strong>en</strong>ergy to the <strong>in</strong>cid<strong>en</strong>t photons produc<strong>in</strong>g therefore the Stokes<br />

(or anti-Stokes) radiations. The <strong>en</strong>ergy variation of the photons gives <strong>in</strong>formation on the rotation or<br />

vibration <strong>en</strong>ergetic levels of the concerned molecule.<br />

These vibration and rotation <strong>en</strong>ergies are the object of Raman spectroscopy. However they are very<br />

weak compared to the ones of the <strong>in</strong>cid<strong>en</strong>t photons. These <strong>en</strong>ergies are characteristic of the nature of<br />

the chemical bond, the molecular or crystall<strong>in</strong>e structure etc.<br />

a) b) c)<br />

Figure III- 19: Energy level diagram for Rayleigh scatter<strong>in</strong>g (a) and Raman scatter<strong>in</strong>g: Stokes (b) and<br />

anti-Stokes (c)<br />

III.D. Visualization of the first results obta<strong>in</strong>ed with the<br />

second g<strong>en</strong>eration micro<strong>reactor</strong> set-up<br />

The 530 µm ID circuit proved to be a good alternative to its predecessors. It allowed to ma<strong>in</strong>ta<strong>in</strong> the<br />

droplets dim<strong>en</strong>sions and any contact with the channel wall was avoided. However from a technical<br />

po<strong>in</strong>t of view this repres<strong>en</strong>ts a more complicated device because it demands supplem<strong>en</strong>tary<br />

connexions and manipulation of more capillary tubes <strong>in</strong>her<strong>en</strong>tly fragile. But it repres<strong>en</strong>ts a simplified<br />

system allow<strong>in</strong>g to obta<strong>in</strong> such coaxial geometry.<br />

124


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

G<strong>en</strong>eration area<br />

670 µm<br />

Droplet flow<strong>in</strong>g <strong>in</strong><br />

the channel<br />

Figure III- 20: Eliberation of the VCM <strong>in</strong>to the 520 µm ID capillary.<br />

In Figure III- 20 the VCM droplet g<strong>en</strong>eration has be<strong>en</strong> observed. Droplets are formed with a regular<br />

frequ<strong>en</strong>cy ev<strong>en</strong> tough some of them still stick on to the walls. At the <strong>en</strong>d of the 250 µm capillary the<br />

droplets are transported by the water phase. They undergo an ejection <strong>in</strong>to the 520 µm capillary<br />

circuit. Droplets conserve their orig<strong>in</strong>al dim<strong>en</strong>sions all along the channel as shown <strong>in</strong> Figure III- 21.<br />

Due to the fact that the capillary walls were very thick the droplets are not visualized properly and<br />

measures are difficult to perform. However the images obta<strong>in</strong>ed prove that there is no change <strong>in</strong><br />

droplet dim<strong>en</strong>sions wh<strong>en</strong> pass<strong>in</strong>g through the expanded capillary. Therefore they do not touch the 530<br />

µm ID capillary walls.<br />

Droplets <strong>in</strong> microchannel<br />

670 µm<br />

Figure III- 21: Droplet flow <strong>in</strong> microchannel – first turns are observed<br />

IV. Developm<strong>en</strong>t of the monitor<strong>in</strong>g method<br />

IV.A. Global approach<br />

Raman spectroscopy has several advantages <strong>in</strong>clud<strong>in</strong>g the ability to use glass as sample cells and large<br />

frequ<strong>en</strong>cy ranges for spectral observation. The sample volume required is m<strong>in</strong>imal and it does not<br />

125


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

<strong>in</strong>volve prelim<strong>in</strong>ary preparation. S<strong>in</strong>ce the Raman Effect is a scatter<strong>in</strong>g process, samples of any size or<br />

shape may be exam<strong>in</strong>ed. These particular aspects make Raman spectroscopy a useful tool for <strong>in</strong>-situ<br />

monitor<strong>in</strong>g of <strong>polymerization</strong> reactions where the removal of samples for off-l<strong>in</strong>e analysis is not<br />

always possible. S<strong>in</strong>ce no <strong>in</strong>-l<strong>in</strong>e analyses are performed on S-PVC process due to hostile<br />

<strong>en</strong>vironm<strong>en</strong>t, a versatile characterization technique such as Raman spectroscopy may offer good<br />

responses. This spectroscopic method was used <strong>in</strong> this study for the acquisition of conversion versus<br />

time data from the VCM <strong>polymerization</strong> with DCHPC as <strong>in</strong>itiator and at differ<strong>en</strong>t <strong>polymerization</strong><br />

temperatures. K<strong>in</strong>etic parameters were extracted and compared to the values already described <strong>in</strong> the<br />

literature.<br />

The multiple advantages of Raman spectroscopy analysis closely dep<strong>en</strong>d on several technical<br />

precautions applied especially for the on-l<strong>in</strong>e non<strong>in</strong>trusive monitor<strong>in</strong>g of a stationary monomer<br />

droplet. These measures are detailed below:<br />

• It is ess<strong>en</strong>tial wh<strong>en</strong> do<strong>in</strong>g quantitative analyses to ma<strong>in</strong>ta<strong>in</strong> the <strong>in</strong>strum<strong>en</strong>t as stable as possible<br />

and to <strong>en</strong>sure consist<strong>en</strong>cy <strong>in</strong> measurem<strong>en</strong>t parameters (such as laser power, laser focus on sample,<br />

scan sequ<strong>en</strong>ce, spectral resolution, sample ori<strong>en</strong>tation) and <strong>in</strong> post-run process<strong>in</strong>g (such as basel<strong>in</strong>e<br />

correction, noise reduction). These are g<strong>en</strong>eral pr<strong>in</strong>ciples applied <strong>in</strong> a similar matter to any quantitative<br />

analysis where sources of unwanted variation must be kept to a m<strong>in</strong>imum.<br />

• The collection effici<strong>en</strong>cy and fluoresc<strong>en</strong>t background strongly dep<strong>en</strong>d on the collection<br />

conditions. Figure III- 22 exemplifies the position<strong>in</strong>g of the Raman probe head on the capillary tubes<br />

(a) and some frequ<strong>en</strong>t sampl<strong>in</strong>g errors due to defici<strong>en</strong>tly focus<strong>in</strong>g (b). If the probe head is not situated<br />

absolutely perp<strong>en</strong>dicular with respect to the microchannel the collection fibre collects more<br />

fluoresc<strong>en</strong>t background and droplet scattered photons. Consequ<strong>en</strong>tly these forward scattered photons,<br />

once <strong>en</strong>ter<strong>in</strong>g the collection fibre may g<strong>en</strong>erate further fluoresc<strong>en</strong>ce background. This expla<strong>in</strong>s a<br />

decrease <strong>in</strong> the ratio of Raman signal to the fluoresc<strong>en</strong>t background and ev<strong>en</strong> the saturation of the<br />

detector. It is also possible to perform measures at the periphery of the beam profile this lead<strong>in</strong>g to a<br />

reduced number of Raman excitation photons with<strong>in</strong> the collection volume. The total <strong>in</strong>t<strong>en</strong>sity of the<br />

signal therefore decreases, ev<strong>en</strong> though the variation <strong>in</strong> the ratio of Raman signal to fluoresc<strong>en</strong>t<br />

background might be m<strong>in</strong>imal. This is why the probe head must always collect samples <strong>in</strong> a well<br />

c<strong>en</strong>tered position <strong>en</strong>sur<strong>in</strong>g total signal str<strong>en</strong>gth and the ratio of Raman signal to the fluoresc<strong>en</strong>t<br />

background at maximum values.<br />

126


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

a)<br />

b)<br />

Good focus –<br />

max of <strong>in</strong>t<strong>en</strong>sity<br />

Sampl<strong>in</strong>g error –<br />

loss <strong>in</strong> <strong>in</strong>t<strong>en</strong>sity<br />

Figure III- 22: a) Raman beam on capillary channel; b) Sampl<strong>in</strong>g of acquisition on capillary tube<br />

• Raman spectroscopy is characterized by its s<strong>en</strong>sitive detectors therefore measurem<strong>en</strong>ts <strong>in</strong><br />

broad daylight are difficult to conduct due to the ambi<strong>en</strong>t light background. The actual configuration<br />

makes it difficult to keep <strong>in</strong> the dark exclusively the Raman probe head and the microchannel.<br />

Therefore the fume cupboard hous<strong>in</strong>g the experim<strong>en</strong>tal set-up was covered with a black curta<strong>in</strong><br />

prev<strong>en</strong>t<strong>in</strong>g daylight to <strong>en</strong>ter but ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g an ease access at any times.<br />

• The fact that the Raman probe head is situated outside the microchannel might dim<strong>in</strong>ish<br />

analyse s<strong>en</strong>sibility and <strong>in</strong>crease acquisition time. In order to partially reduce this effect, the capillaries<br />

were striped of their polyimide coat<strong>in</strong>g and no residual signal com<strong>in</strong>g from this substrate was therefore<br />

registered.<br />

• Wh<strong>en</strong> analysis is performed on droplets <strong>in</strong> movem<strong>en</strong>t, the collected response is an average of<br />

the signal from several <strong>microdroplet</strong>s thereby the spatial resolution is reduced. Contrary to this, the<br />

Raman monitor<strong>in</strong>g <strong>in</strong> our study is performed on a s<strong>in</strong>gle isolated drop, therefore <strong>in</strong>creas<strong>in</strong>g the spatial<br />

resolution of the detection scheme.<br />

IV.B. Spectra of pure compon<strong>en</strong>ts<br />

Quantitative k<strong>in</strong>etic analysis of a react<strong>in</strong>g system with Raman spectroscopy consists <strong>in</strong> measur<strong>in</strong>g the<br />

changes <strong>in</strong> peak <strong>in</strong>t<strong>en</strong>sity correspond<strong>in</strong>g to characteristic functional groups of the reactant or product<br />

<strong>in</strong> a giv<strong>en</strong> reaction time. Normally <strong>polymerization</strong> proceeds by break<strong>in</strong>g the carbon double bond of the<br />

monomer. Because this bond g<strong>en</strong>erates strong Raman bands, one can follow their disappearance as the<br />

<strong>polymerization</strong> cont<strong>in</strong>ues. So the evolution of the reaction can be monitored by track<strong>in</strong>g the <strong>in</strong>t<strong>en</strong>sity<br />

of the bands associated to the C=C vibrations. Prelim<strong>in</strong>ary measurem<strong>en</strong>ts of pure monomer spectra<br />

127


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

were necessary <strong>in</strong> order to id<strong>en</strong>tify their characteristic Raman features. Figure III- 23 shows pure<br />

VCM Raman spectra at ambi<strong>en</strong>t temperature.<br />

140000<br />

120000<br />

100000<br />

80000<br />

60000<br />

40000<br />

20000<br />

Refer<strong>en</strong>ce spectra<br />

0<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Raman shift (cm-1)<br />

Figure III- 23 : Spectra of pure v<strong>in</strong>yl <strong>chloride</strong> monomer.<br />

Bands assignm<strong>en</strong>ts are made from earlier Raman measurem<strong>en</strong>ts performed on VCM (Thompson and<br />

Tork<strong>in</strong>gton, 1944). The Raman band specific of the v<strong>in</strong>ylic group exhibits a strong signal at 1606 cm -1 .<br />

The low frequ<strong>en</strong>cy at 395 cm -1 is attributed to the planar deformation mode of the C=C-Cl skeleton,<br />

the 707 cm -1 corresponds to the stretch<strong>in</strong>g of the C-Cl band, the responses <strong>in</strong> the 1200-1400 cm -1 area<br />

the CH 2 planar deformation or rock<strong>in</strong>g modes and the magnitudes <strong>in</strong> the 3000-3100 area are assigned<br />

to stretch<strong>in</strong>g modes of the C-H bonds.<br />

The 1600 cm -1 v<strong>in</strong>ylic characteristic band was used as f<strong>in</strong>gerpr<strong>in</strong>t for the monitor<strong>in</strong>g of the S-PVC<br />

reaction <strong>in</strong> microchannel. Figure III- 24 pres<strong>en</strong>ts the PVC spectra obta<strong>in</strong>ed from polymer gra<strong>in</strong>s at the<br />

<strong>en</strong>d of the reaction. We observe some of the dist<strong>in</strong>ct peaks already discussed for the VCM spectra (395<br />

cm -1 , 707 cm -1 , some responses <strong>in</strong> the area 1200-1400 cm -1 or betwe<strong>en</strong> 3000-3100 cm -1 ). The v<strong>in</strong>ylic<br />

characteristic band is still pres<strong>en</strong>t but <strong>in</strong> a very small ext<strong>en</strong>t, mean<strong>in</strong>g that not all the monomer is<br />

transformed and 100% conversion is not really achieved. New peaks correspond<strong>in</strong>g to PVC are<br />

situated at 1400 cm -1 or <strong>in</strong> the region of 3000 cm -1 .<br />

128


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

36500<br />

31500<br />

26500<br />

21500<br />

16500<br />

11500<br />

Int<strong>en</strong>sity (a.u.)<br />

6500<br />

1500<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

-3500<br />

Raman Shift (cm-1)<br />

Figure III- 24: Spectra of PVC obta<strong>in</strong>ed at the <strong>en</strong>d of reaction <strong>in</strong> micro<strong>reactor</strong>.<br />

IV.C. Reaction spectra dur<strong>in</strong>g monitor<strong>in</strong>g<br />

Dur<strong>in</strong>g reaction, spectra were cont<strong>in</strong>uously collected on a stationary droplet with an acquisition time<br />

of 120 s. The I.C.Raman software (Kaiser Optical Systems Inc.) automatically recorded the time of<br />

each acquisition. Therefore the characteristic spectra correspond<strong>in</strong>g to the <strong>in</strong>ternal composition of the<br />

droplet may be obta<strong>in</strong>ed accord<strong>in</strong>g to time. Such an example of monitor<strong>in</strong>g is pres<strong>en</strong>ted <strong>in</strong> Figure III-<br />

25 at a giv<strong>en</strong> temperature. We may observe that the spectra pres<strong>en</strong>t a relatively good quality with a<br />

high signal-to-noise ratio and less fluoresc<strong>en</strong>ce <strong>in</strong> the analyzed range. It is observed that the Raman<br />

spectra changes dur<strong>in</strong>g the chemical transformation.<br />

129


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

30000<br />

t0<br />

15 m<strong>in</strong>utes<br />

30 m<strong>in</strong>utes<br />

90 m<strong>in</strong>utes<br />

150 m<strong>in</strong>utes<br />

25000<br />

20000<br />

15000<br />

10000<br />

Int<strong>en</strong>sity (a.u.)<br />

5000<br />

0<br />

3300 2800 2300 1800 1300 800 300<br />

Raman shift (cm-1)<br />

Figure III- 25: Raw Raman spectra recorded at temperature of 64°C.<br />

In order to achieve S-PVC reaction monitor<strong>in</strong>g the characteristic peaks were analyzed. A 3-D plot of<br />

the Raman <strong>in</strong>t<strong>en</strong>sity for the C=C bond as function of time is pres<strong>en</strong>ted <strong>in</strong> Figure III- 26. It may be<br />

observed that the transformation takes place quite rapidly. The monomer t<strong>en</strong>ds to disappear quickly as<br />

the polymer appears.<br />

Figure III- 26: Decrease of the v<strong>in</strong>ylic peak as a function of time.<br />

130


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

IV.D. Data treatm<strong>en</strong>t method<br />

It is obviously more straightforward to do quantitative analyses on liquids and solutions than on solids<br />

s<strong>in</strong>ce they are homog<strong>en</strong>eous and have no problems associated to variable particle sizes or shapes. In<br />

our experim<strong>en</strong>ts we <strong>en</strong>counter liquid-liquid system as well as liquid-liquid-solid, dep<strong>en</strong>d<strong>in</strong>g on<br />

conversion degree. The <strong>in</strong>t<strong>en</strong>sity measurem<strong>en</strong>ts performed <strong>in</strong> this study used peak area calculation.<br />

This method was possible to apply because the signal-to noise ratio is high and the basel<strong>in</strong>e is well<br />

def<strong>in</strong>ed. Also this approach takes <strong>in</strong>to consideration the pot<strong>en</strong>tial changes <strong>in</strong> peak shape that might<br />

occur.<br />

Severe signal distortions which might be due to the medium heterog<strong>en</strong>eity made the monitor<strong>in</strong>g of S-<br />

PVC a chall<strong>en</strong>g<strong>in</strong>g task. Moreover, due to the heat<strong>in</strong>g, the capillary tube is subjected to dilatation,<br />

therefore mov<strong>in</strong>g out of focus. In both afore-m<strong>en</strong>tioned cases, the area of <strong>in</strong>cid<strong>en</strong>ce of the Raman laser<br />

is modified from a whole polymer particle, to a set of particles, a region conta<strong>in</strong><strong>in</strong>g both water and<br />

polymer or to a complete de-focus<strong>in</strong>g. All these constra<strong>in</strong>ts make repres<strong>en</strong>tative sampl<strong>in</strong>g ev<strong>en</strong> more<br />

difficult.<br />

Moreover, the relative <strong>in</strong>t<strong>en</strong>sities <strong>in</strong> a Raman spectrum are normally directly proportional to<br />

conc<strong>en</strong>trations of the species pres<strong>en</strong>t, to the laser power and the Raman scatter<strong>in</strong>g cross-section.<br />

Because the scatter<strong>in</strong>g cross-section is very difficult to evaluate, absolute band str<strong>en</strong>gths are rarely<br />

determ<strong>in</strong>ed. A common approach is to determ<strong>in</strong>ate the relative str<strong>en</strong>gths by us<strong>in</strong>g band ratios.<br />

Raman is a s<strong>in</strong>gle beam method and the number of scatter<strong>in</strong>g sites cannot be determ<strong>in</strong>ed for solids<br />

analysis. This is the reason why the acquired spectra need to be normalized with respect to an <strong>in</strong>ternal<br />

standard or a calibration method <strong>in</strong>volv<strong>in</strong>g known conc<strong>en</strong>trations of constitu<strong>en</strong>ts may also be applied.<br />

S<strong>in</strong>ce the latter seemed technically difficult to perform due to the monomer-related constra<strong>in</strong>ts, an<br />

<strong>in</strong>ternal standard was chos<strong>en</strong> for normalization. This method consequ<strong>en</strong>tly allowed remov<strong>in</strong>g spectra<br />

out of focus. The peak <strong>in</strong>t<strong>en</strong>sity of 700 cm -1 band was used (Dorobantu Bodoc et al., 2012). This band<br />

repres<strong>en</strong>ts the C-Cl breath<strong>in</strong>g/stretch<strong>in</strong>g vibration modes.<br />

For <strong>in</strong>stance, Figure III- 27a shows an example of signal recovered from the Raman data after reaction<br />

monitor<strong>in</strong>g. It repres<strong>en</strong>ts the evolution of the C=C area dur<strong>in</strong>g the reaction. The po<strong>in</strong>ts are very<br />

scattered <strong>in</strong> time mak<strong>in</strong>g their <strong>in</strong>terpretation rather chall<strong>en</strong>g<strong>in</strong>g.<br />

131


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

a)<br />

250000<br />

b)<br />

9<br />

8<br />

200000<br />

7<br />

P eak are a<br />

150000<br />

100000<br />

50000<br />

P eak area ratio<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 100 200 300 400<br />

Time (m<strong>in</strong>)<br />

0<br />

0 100 200 300 400<br />

Time (m<strong>in</strong>)<br />

Figure III- 27: a) Raw v<strong>in</strong>ylic stretch<strong>in</strong>g area evolution; b) <strong>V<strong>in</strong>yl</strong>ic group stretch<strong>in</strong>g area normalized to<br />

the C-Cl stretch<strong>in</strong>g band.<br />

The result of the normalization with respect to this specific peak is repres<strong>en</strong>ted <strong>in</strong> Figure III- 27b. The<br />

po<strong>in</strong>ts significantly improved data compared to the <strong>in</strong>itial values (Figure III- 27a). This method<br />

therefore <strong>en</strong>hances spectra quality allow<strong>in</strong>g subsequ<strong>en</strong>tly the experim<strong>en</strong>tal results exploitation. Further<br />

on <strong>in</strong> this study discussions will only be applied to normalized spectra.<br />

V. Polymerization k<strong>in</strong>etics results<br />

As already described <strong>in</strong> Chapter I, the VCM susp<strong>en</strong>sion <strong>polymerization</strong> can be divided <strong>in</strong>to several<br />

differ<strong>en</strong>t successive steps. The first stage is registered at small values of conversion (X < 0.1%) where<br />

the reaction takes place <strong>in</strong> a homog<strong>en</strong>eous manner <strong>in</strong>side droplets. The second step appears wh<strong>en</strong> the<br />

monomer cha<strong>in</strong>s start to precipitate. This is the g<strong>en</strong>erally called ‘two-phase’ step, wh<strong>en</strong> the reaction<br />

occurs both <strong>in</strong> the pure liquid monomer phase as well as <strong>in</strong> the so-called polymer-rich phase. This<br />

latter conta<strong>in</strong>s PVC swoll<strong>en</strong> with about 30% of VCM. The two-phases co-exist up to conversions of<br />

about 60 – 70 %. At this po<strong>in</strong>t the critical conversion is atta<strong>in</strong>ed (X f ) and the liquid monomer is<br />

consumed. The third stage develops only <strong>in</strong> the polymer-rich phase until depletion of monomer. The<br />

value of X f strongly dep<strong>en</strong>ds of operat<strong>in</strong>g parameters such as temperature, <strong>reactor</strong> fill<strong>in</strong>g or ratio<br />

VCM/water phase. These three reaction stages are dist<strong>in</strong>guished by changes <strong>in</strong> <strong>reactor</strong> pressure.<br />

Initially this consists <strong>in</strong> the vapour pressure of VCM and it rema<strong>in</strong>s constant up to X f where it starts to<br />

drop. Firstly it dim<strong>in</strong>ishes because of the large d<strong>en</strong>sity differ<strong>en</strong>ces betwe<strong>en</strong> VCM and PVC (ρ VCM =<br />

840 kg·m -3 , ρ PVC = 1400 kg·m -3 ) which <strong>in</strong>duce an <strong>in</strong>crease <strong>in</strong> the gaseous phase volume. In order to reestablish<br />

the vapour pressure, liquid VCM diffuses <strong>in</strong>to the gaseous phase. It appears that this mass<br />

transport is restricted by the d<strong>en</strong>se <strong>in</strong>ternal structure of the polymeriz<strong>in</strong>g particles and by the stiffness<br />

132


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

of the surround<strong>in</strong>g sk<strong>in</strong> (Xie et al., 1991). Wh<strong>en</strong> the liquid VCM is consumed, the pressure <strong>in</strong> the<br />

<strong>reactor</strong> starts to drop with <strong>in</strong>creas<strong>in</strong>g conversion. This is due to the fact that the equilibrium pressure of<br />

VCM <strong>in</strong> the polymer-rich phase is lower than the vapour pressure of pure VCM (Meeks, 1969; Ravey<br />

et al., 1974; Sanderson et al., 1980). The VCM <strong>in</strong> the polymer-rich phase dim<strong>in</strong>ishes and it is r<strong>en</strong>ewed<br />

by the monomer pres<strong>en</strong>t <strong>in</strong> gaseous or aqueous phase. The diffusion of these two phases<br />

<strong>in</strong>duces the pressure drop. Wh<strong>en</strong> the polymer rich-phase becomes acutely sparse <strong>in</strong> monomer the<br />

reaction still cont<strong>in</strong>ues albeit at a very low rate. The conversion at which this ph<strong>en</strong>om<strong>en</strong>on occurs is<br />

called the limit<strong>in</strong>g degree of conversion X l . In the <strong>in</strong>dustrial <strong>en</strong>vironm<strong>en</strong>t the reaction is g<strong>en</strong>erally<br />

term<strong>in</strong>ated long before this f<strong>in</strong>al stage, because further <strong>polymerization</strong> would be very time-consum<strong>in</strong>g.<br />

Pres<strong>en</strong>tly the only conversion track<strong>in</strong>g for the large-scale PVC manufactur<strong>in</strong>g is the pressure control.<br />

However this parameter does not reveal any <strong>in</strong>formation on to the advancem<strong>en</strong>t of the reaction. Thus it<br />

may take several hours to realize that the <strong>polymerization</strong> reaction did not proceed properly.<br />

This is why quantitative analysis of conversion as a function of droplet composition is an important<br />

stage <strong>in</strong> the control of S-PVC reaction. Understand<strong>in</strong>g the relationship betwe<strong>en</strong> these two parameters<br />

is also important for the later applications of PVC, such as food packag<strong>in</strong>g for <strong>in</strong>stance, where residual<br />

monomer is unacceptable.<br />

The curr<strong>en</strong>t section describes the conversion study of the susp<strong>en</strong>sion <strong>polymerization</strong> of VCM. Similar<br />

studies have be<strong>en</strong> done by other research groups, for <strong>in</strong>stance (already m<strong>en</strong>tioned <strong>in</strong> Chapter I): Xie et<br />

al. (1991), or Kiparissides et al. (1997). However, the volume of the <strong>reactor</strong>, stirr<strong>in</strong>g, <strong>polymerization</strong><br />

recipe or heat<strong>in</strong>g rate can significantly <strong>in</strong>flu<strong>en</strong>ce the course of the <strong>polymerization</strong> process or the<br />

product characteristics.<br />

V.A. K<strong>in</strong>etic model at constant volume<br />

<strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> <strong>polymerization</strong> was performed at differ<strong>en</strong>t values of temperature. Spatial and temporal<br />

mapp<strong>in</strong>g of the v<strong>in</strong>ylic correspond<strong>in</strong>g peak was achieved for temperatures of 60°C, 64°C and 70°C.<br />

The decrease of the C=C bond characteristic for the v<strong>in</strong>yl <strong>chloride</strong> over several hours of reaction is<br />

pres<strong>en</strong>ted <strong>in</strong> Figure III- 28.<br />

133


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

C=C band area normalized<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

T = 60°C<br />

T = 64°C<br />

T = 70°C<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure III- 28 : <strong>V<strong>in</strong>yl</strong> peak area evolution over time<br />

In the calculations of molar conversion we assumed that the monomer conc<strong>en</strong>tration is proportional to<br />

the correspond<strong>in</strong>g Raman peak. From the normalized peak areas, the molar conversion may be<br />

estimated with the follow<strong>in</strong>g relationship:<br />

PA<br />

M<br />

( t)<br />

[ M ]<br />

t<br />

PACCl<br />

( t)<br />

X ( t)<br />

= 1−<br />

= 1−<br />

(III- 2)<br />

[ M ] PA ( t0<br />

)<br />

0<br />

M<br />

PA ( t )<br />

CCl<br />

0<br />

where [M] t is the monomer conc<strong>en</strong>tration at the mom<strong>en</strong>t t calculated as the area of v<strong>in</strong>ylic peak<br />

normalized by the C-Cl peak and [M] 0 is the <strong>in</strong>itial monomer conc<strong>en</strong>tration, PA(t) is the peak area at<br />

time t correspond<strong>in</strong>g to monomer (M) or C-Cl bond (CCl) respectively. Note that we assumed an ideal<br />

mix<strong>in</strong>g and we neglect any volume variation due to the differ<strong>en</strong>ces <strong>in</strong> mass d<strong>en</strong>sities from monomer to<br />

polymer. The experim<strong>en</strong>tal conversion is pres<strong>en</strong>ted <strong>in</strong> Figure III- 29 for differ<strong>en</strong>t temperatures. As<br />

expected, higher <strong>polymerization</strong> temperatures result <strong>in</strong> higher reaction rates and f<strong>in</strong>al conversions after<br />

about 1 hour <strong>polymerization</strong> time. The scatter<strong>in</strong>g of data po<strong>in</strong>ts <strong>in</strong> Figure III- 29 is due to noise <strong>in</strong> the<br />

Raman spectra and to errors <strong>in</strong>troduced <strong>in</strong>to the data process<strong>in</strong>g method (normalization, peak area<br />

measurem<strong>en</strong>t) which are <strong>in</strong>evitable <strong>in</strong> the quantitative analysis of spectra or <strong>in</strong> k<strong>in</strong>etic studies.<br />

134


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Con versio n degree<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

60°C<br />

64°C<br />

70°C<br />

0<br />

0 50 100 150 200 250<br />

Time (m<strong>in</strong>)<br />

Figure III- 29 : Evolution of monomer conversion with time<br />

The elem<strong>en</strong>tal k<strong>in</strong>etics mechanisms describ<strong>in</strong>g the PVC formation have be<strong>en</strong> thoroughly discussed <strong>in</strong><br />

literature <strong>in</strong>vestigations and have a very complex nature. This is why <strong>in</strong> a first approach <strong>in</strong> our study a<br />

simple ph<strong>en</strong>om<strong>en</strong>ological rate law was proposed <strong>in</strong> order to repres<strong>en</strong>t the experim<strong>en</strong>tal values. The<br />

rate equation for irreversible reactions <strong>in</strong> a constant volume was expressed as described <strong>in</strong> the next<br />

equation:<br />

dM =<br />

dt<br />

−<br />

n<br />

kM<br />

(III- 3)<br />

and<br />

−Ea<br />

RT<br />

k = Ae<br />

(III- 4)<br />

where M is the monomer conc<strong>en</strong>tration, k is the effective rate constant and n the effective reaction<br />

order. In equation III-4 the rate constant k follows an Arrh<strong>en</strong>ius law with A the frequ<strong>en</strong>cy factor, E a<br />

the activation <strong>en</strong>ergy, R the universal gas constant and T corresponds to the temperature <strong>in</strong> Kelv<strong>in</strong>. It<br />

is important to note that equation III-3 does not repres<strong>en</strong>t a mechanistic model, it has only one rate<br />

constant with a s<strong>in</strong>gle activation <strong>en</strong>ergy to express a multitude of reaction mechanisms and rates of<br />

reaction. This simple k<strong>in</strong>etic model was chos<strong>en</strong> to fit the experim<strong>en</strong>tal data and to characterize the<br />

results. Integrat<strong>in</strong>g the equation betwe<strong>en</strong> the limits one can have access to the l<strong>in</strong>earized rate equation<br />

for n-order reactions:<br />

1<br />

1<br />

+ ( n −1)<br />

kt<br />

1 1<br />

=<br />

n−<br />

0<br />

n−<br />

[ M ] [ M ]<br />

t<br />

(III- 5)<br />

135


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

From the experim<strong>en</strong>tal data the parameters n and k (equation III-5) were determ<strong>in</strong>ed us<strong>in</strong>g a fitt<strong>in</strong>g<br />

method applied <strong>in</strong> the Excel Solver.<br />

1<br />

0,9<br />

0,8<br />

Conversion degree<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

T = 60°C<br />

T = 64°C<br />

T = 70°C<br />

Model 60<br />

Model 64<br />

Model 70<br />

Figure III- 30 : K<strong>in</strong>etic curves obta<strong>in</strong>ed at differ<strong>en</strong>t temperatures<br />

The experim<strong>en</strong>tal conversion and the calculated one versus time are compared <strong>in</strong> Figure III- 30 for the<br />

three temperatures employed. The solid l<strong>in</strong>e stands for the k<strong>in</strong>etic model issued from the equation III-<br />

3. The values of the reaction order n and the effective rate constant k are summarized <strong>in</strong> Table III- 4.<br />

Temperature (°C) Effective reaction order n Effective rate constant k (L 0.8 mol -0.8 s -1 )<br />

60 0.7 3·10 -2<br />

64 0.65 3.7·10 -2<br />

70 0.8 4·10 -2<br />

Table III- 4 : Reaction orders and rate constants at differ<strong>en</strong>t work<strong>in</strong>g temperatures<br />

The simplified k<strong>in</strong>etic model proposed does not seem very adapted to the experim<strong>en</strong>tal values up to<br />

conversions around 0.6. At lower values the reaction takes place slower than the predictions.<br />

V.A.1) K<strong>in</strong>etic model at variable volume<br />

Giv<strong>en</strong> the important volume variations of the polymeriz<strong>in</strong>g droplet with conversion, this parameter<br />

must also be tak<strong>en</strong> <strong>in</strong>to account <strong>in</strong> the k<strong>in</strong>etic expressions. The rate equation for irreversible reactions<br />

with variable volume is described <strong>in</strong> the expression below:<br />

d(<br />

VM )<br />

− = kM<br />

dt<br />

n<br />

V<br />

(III- 6)<br />

136


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Equation III-1 was used for the volume determ<strong>in</strong>ation. This simple k<strong>in</strong>etic model was chos<strong>en</strong> to fit the<br />

experim<strong>en</strong>tal data and to characterize the results. Equation III-6 was numerically <strong>in</strong>tegrated betwe<strong>en</strong><br />

the limits us<strong>in</strong>g Matlab comput<strong>in</strong>g code. This method allowed to id<strong>en</strong>tify from the experim<strong>en</strong>tal data<br />

the coeffici<strong>en</strong>ts n and k. The conversion evolution was estimated with equation III-2. The experim<strong>en</strong>tal<br />

conversion and the calculated one versus time are compared <strong>in</strong> Figure III- 31.<br />

1<br />

0,9<br />

0,8<br />

Conversion degree<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

T = 60°C<br />

T = 64°C<br />

T = 70°C<br />

Model 60<br />

Model 64<br />

Model 70<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure III- 31 : K<strong>in</strong>etic curves obta<strong>in</strong>ed experim<strong>en</strong>tally and predicted at differ<strong>en</strong>t temperatures.<br />

The model tak<strong>in</strong>g <strong>in</strong>to account the volume variation is also very far from the experim<strong>en</strong>tal po<strong>in</strong>ts,<br />

especially <strong>in</strong> the first part of the curves. However if the reaction order is not s<strong>en</strong>sitively differ<strong>en</strong>t, the<br />

effective rate constants are up to 7 times bigger than the one calculated based on equation III-3.<br />

This treatm<strong>en</strong>t method yielded an overall reaction order n of about 0.8 as pres<strong>en</strong>ted <strong>in</strong> Table III- 5.<br />

With <strong>in</strong>creas<strong>in</strong>g temperature all reaction rate constants <strong>in</strong>crease, albeit to a differ<strong>en</strong>t ext<strong>en</strong>t. A first<br />

order dep<strong>en</strong>d<strong>en</strong>ce of the <strong>polymerization</strong> rate on the monomer conc<strong>en</strong>tration is observed <strong>in</strong> many<br />

<strong>polymerization</strong>s reactions (Kamachi et al., 1978). One may assume that this less than one dep<strong>en</strong>d<strong>en</strong>ce<br />

is due to the fact that the <strong>polymerization</strong> takes place <strong>in</strong>side a solid under conditions where monomer<br />

diffusion <strong>in</strong>to the solid is slower that the normal propagation rate. This behaviour is registered at high<br />

conversion rate.<br />

137


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Temperature (°C) Effective reaction order n Effective rate constant k (L 0.8 mol -0.8 s -1 )<br />

60 0.8 1.8·10 -1<br />

64 0.8 2·10 -1<br />

70 0.9 2.7·10 -1<br />

Table III- 5 : Reaction orders and rate constants for the differ<strong>en</strong>t work<strong>in</strong>g temperatures<br />

Furthermore, the values of k may be used to determ<strong>in</strong>e the Arrh<strong>en</strong>ius k<strong>in</strong>etic parameters A and E a from<br />

the spectral data. Assum<strong>in</strong>g a constant value of n dur<strong>in</strong>g the reaction a semi-ln plot of k versus 1/T<br />

should lead to a straight l<strong>in</strong>e with a slope equal to –E a /R and y-<strong>in</strong>tercept of ln[A]. Indeed values of k<br />

obta<strong>in</strong>ed from the data form l<strong>in</strong>ear curves wh<strong>en</strong> repres<strong>en</strong>ted versus 1/T as pres<strong>en</strong>ted <strong>in</strong> Figure III- 32.<br />

-1<br />

-1,1<br />

-1,2<br />

ln k<br />

-1,3<br />

-1,4<br />

y = -4728,6x + 12,441<br />

R 2 = 0,9735<br />

-1,5<br />

-1,6<br />

-1,7<br />

-1,8<br />

0,00288 0,00292 0,00296 0,003 0,00304<br />

1/T<br />

Figure III- 32 : Evaluation of A and E a /R from k versus 1/T data<br />

The activation <strong>en</strong>ergy calculated was approximately 39.3 kJ/mol and the frequ<strong>en</strong>cy factor A obta<strong>in</strong>ed<br />

from Raman measurem<strong>en</strong>t is about 2·10 5 L 0.8 mol 0.8 s -1 . The E a acquired seems <strong>in</strong> agreem<strong>en</strong>t with some<br />

values reported <strong>in</strong> literature: activation <strong>en</strong>ergy of propagation <strong>in</strong> bulk styr<strong>en</strong>e <strong>polymerization</strong> (39<br />

kJ/mol), or <strong>in</strong> the synthesis of polyurethanes (around 65 kJ/mol for catalyzed <strong>polymerization</strong> and 150<br />

kJ/mol for non-catalyzed reaction). For the v<strong>in</strong>yl <strong>chloride</strong> susp<strong>en</strong>sion <strong>polymerization</strong>, T. De Roo<br />

furnished data on the activation <strong>en</strong>ergy of 24.9 kJ/mol for propagation and 54.3 kJ/mol for cha<strong>in</strong><br />

transfer respectively. This agreem<strong>en</strong>t betwe<strong>en</strong> the experim<strong>en</strong>tal data and literature values for classical<br />

<strong>polymerization</strong> reactions proves that Raman spectroscopy is a useful method for characteriz<strong>in</strong>g the<br />

k<strong>in</strong>etics of v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong>.<br />

138


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

VI. Two-phase literature model for S-PVC<br />

Chapter I – section I.D.3 pres<strong>en</strong>ted a brief description of the most important S-PVC k<strong>in</strong>etic models<br />

described <strong>in</strong> the literature. All the authors adopted the ‘two-phase’ model first described by Talam<strong>in</strong>i<br />

and co-workers <strong>in</strong> 1966. It was further developed until Xie et al. (1991a,b) who def<strong>in</strong>ed theoretical<br />

k<strong>in</strong>etic equations. This model characterized quite accurately the features of the v<strong>in</strong>yl <strong>chloride</strong><br />

<strong>polymerization</strong> reaction <strong>in</strong> the whole conversion range where the two-phases co-exist ( ≈ 70%) and up<br />

to the limit<strong>in</strong>g conversion ( ≈ 95% ). In this chapter, we have used the two-phase model of Xie et al.<br />

developed <strong>in</strong> 1991 <strong>in</strong> order to obta<strong>in</strong> a k<strong>in</strong>etic model able to characterize the experim<strong>en</strong>tal data.<br />

Like previous models, it assumes the <strong>polymerization</strong> takes place both <strong>in</strong> monomer and polymer-rich<br />

phase. The two phases are <strong>in</strong> <strong>in</strong>stantaneous equilibrium over the <strong>en</strong>tire conversion range. Once the<br />

polymer is produced, it precipitates because it is <strong>in</strong>soluble <strong>in</strong> the monomer. As the reaction proceeds,<br />

the mass of polymer-rich phase grows while the monomer-rich phase dim<strong>in</strong>ishes.<br />

Because the S-PVC reaction <strong>in</strong>volves only radical molecules which are highly reactive, there are a<br />

multitude of chemical reactions that might occur simultaneously. The macroradicals may experi<strong>en</strong>ce<br />

head-to-head addition or head-to tail propagation. These reactions result <strong>in</strong> the formation of long or<br />

short cha<strong>in</strong> branch<strong>in</strong>g. In addition, cha<strong>in</strong> transfer may occur, like cha<strong>in</strong> transfer to polymer, to <strong>in</strong>itiator,<br />

<strong>in</strong>tramolecular etc. However the impact of these side reactions <strong>in</strong> the S-PVC k<strong>in</strong>etics is not yet<br />

quantified. The most important reactions tak<strong>in</strong>g place dur<strong>in</strong>g v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong> are<br />

summarized <strong>in</strong> the follow<strong>in</strong>g.<br />

Initiation:<br />

K d<br />

(1) I R• 1 decomposition of <strong>in</strong>itiator<br />

K i<br />

(2) R• 1 + M R• 1 g<strong>en</strong>eration of polymer radical<br />

Propagation and cha<strong>in</strong> transfer:<br />

K p<br />

(3) R• r + M R• r+1 head-to-tail propagation<br />

K 1<br />

(4) R• r + M R * • r+1 head-to-head propagation<br />

139


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

(5) R * • r (R * •)’ r+1 chlor<strong>in</strong>e shift reaction<br />

K 2<br />

K 3<br />

(6) R * • r + M R• r+1 head-to-tail propagation<br />

K 4<br />

(7) (R * •)’ r R• r+1 formation of chloromethyl branches<br />

K 5<br />

(8) (R * •)’ r P r + Cl• splitt<strong>in</strong>g of Cl•<br />

K p’<br />

(9) Cl• + M R• 1 <strong>in</strong>itiation of polymer radicals by Cl•<br />

K fp’<br />

(10) Cl• + P r R•’ + HCl Cl• transfer to polymer<br />

(11) R•’ + M R• r+1 propagation and formation of a long-cha<strong>in</strong><br />

branch<br />

K p<br />

Other cha<strong>in</strong>-transfer reactions:<br />

K e<br />

(12) R•’ P r + Cl• formation of an <strong>in</strong>ternal double bond<br />

K fp<br />

(13) R• r + P s R s •’ + P r cha<strong>in</strong> transfer to polymer<br />

K fp<br />

(14) R s •’ + M R s+1 • formation of a long cha<strong>in</strong> branch<br />

Term<strong>in</strong>ation<br />

K tc<br />

(15) R• r + R• s P r+s comb<strong>in</strong>ation<br />

K td<br />

(16) R• r + R• s P r + P s disproportionation<br />

K t1<br />

(17) R• r + R 1 • P r primary radical term<strong>in</strong>ation<br />

K t1<br />

(18) R• r + Cl• P r term<strong>in</strong>ation with Cl•<br />

140


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Other reactions :<br />

K b<br />

(19) R• r R• r,b backbit<strong>in</strong>g reaction<br />

(20) R• r,b + M R• r+1,b propagation and formation of a short cha<strong>in</strong><br />

branch<br />

K p<br />

G<strong>en</strong>erally speak<strong>in</strong>g for a batch <strong>reactor</strong>, the <strong>polymerization</strong> rate <strong>in</strong> terms of conversion per unit time<br />

may be expressed as:<br />

dX<br />

dt<br />

N<br />

K<br />

p<br />

= (III- 7)<br />

0<br />

M<br />

m<br />

•<br />

•<br />

([ R ]<br />

1M1<br />

+ [ R ]<br />

2<br />

M<br />

2)<br />

where K p is the propagation rate constant, N 0 is the <strong>in</strong>itial number of VCM moles, M m is the monomer<br />

molecular weight, [R•] 1 and [R•] 2 are the radical conc<strong>en</strong>trations <strong>in</strong> monomer (1) and polymer phase<br />

(2), M 1 and M 2 are the mass of monomer <strong>in</strong> monomer (1) and polymer phase (2) respectively. By<br />

conv<strong>en</strong>tion, subscripts 1 design the monomer phase and 2 the polymer-rich phase. Accord<strong>in</strong>g to the<br />

microstructure of ord<strong>in</strong>ary PVC, reactions 2 and 9 have almost no impact on the polymer molecule.<br />

Similarly monomer consumption due to head-to-head and head-to-tail propagation is less than 0.02%.<br />

H<strong>en</strong>ce, monomer consumption due to these reactions was neglected.<br />

Xie and co-workers proposed equations <strong>in</strong> order to obta<strong>in</strong> the polymer radical conc<strong>en</strong>trations for both<br />

phases. The expressions obta<strong>in</strong>ed are the f<strong>in</strong>al result after tak<strong>in</strong>g <strong>in</strong>to consideration the contribution of<br />

all reaction mechanisms <strong>in</strong>volved <strong>in</strong> each phase and pres<strong>en</strong>ted above.<br />

[ R<br />

]<br />

=<br />

2<br />

( J + 4K<br />

J )<br />

• 1 t1<br />

2<br />

1<br />

2Kt1<br />

1<br />

2<br />

− J<br />

1<br />

(III- 8)<br />

' ∗<br />

2<br />

1/ 2<br />

1/ 2<br />

•<br />

⎧R<br />

2<br />

(1 )<br />

1 1<br />

/<br />

2 1(<br />

1<br />

/<br />

2<br />

)[(<br />

1<br />

4<br />

1 2<br />

)<br />

1]/<br />

2 ⎫<br />

I<br />

− K<br />

de<br />

+ K RI<br />

V V + J V V J + K<br />

t<br />

J − J K<br />

t1<br />

R<br />

2<br />

= ⎨<br />

⎬ (III- 9)<br />

K<br />

t 2<br />

[ ]<br />

⎩<br />

where J 1 = K * (K fm ) 1 [M] 1 (III- 10)<br />

J 2 = R I1 (1 – K * ) + K ’ de R I2 V 2 / V 1 (III- 11)<br />

⎭<br />

and K* is the precipitation parameter for polymer radicals, K fm repres<strong>en</strong>ts the cha<strong>in</strong> transfer to<br />

monomer constant, K’ de is a desorption rate constant and R I stands for the <strong>in</strong>itiation rate constant.<br />

141


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

These equations show that the k<strong>in</strong>etics of VCM heterog<strong>en</strong>eous <strong>polymerization</strong> is governed by <strong>in</strong>itiator<br />

partition, radical term<strong>in</strong>ation <strong>in</strong> each phase and differ<strong>en</strong>t properties of the two phases.<br />

For common batch susp<strong>en</strong>sion <strong>polymerization</strong> reaction, the distribution of VCM dep<strong>en</strong>ds on<br />

parameters such as <strong>reactor</strong> fill<strong>in</strong>g W 1 , the volume of <strong>in</strong>itial gaseous phase M g0 and the ratio of VCM<br />

and water. The pres<strong>en</strong>t model further developed a relationship betwe<strong>en</strong> temperature, pressure and<br />

<strong>reactor</strong> parameters.<br />

W<br />

i<br />

=<br />

⎡W<br />

⎢<br />

⎣ D<br />

w<br />

w<br />

+<br />

M<br />

(<br />

0<br />

V<br />

r<br />

− M<br />

D<br />

m<br />

g<br />

) ⎤<br />

⎥<br />

⎦<br />

(III- 12)<br />

where W w is the mass of water charged, D w the water d<strong>en</strong>sity, M 0 the <strong>in</strong>itial monomer mass, M g is the<br />

monomer <strong>in</strong> gas phase, D m the monomer d<strong>en</strong>sity and V r is the volume of <strong>reactor</strong>. It is of highly<br />

importance to consider the monomer distribution <strong>in</strong> monomer, polymer, water and vapour phases,<br />

respectively. In previous <strong>in</strong>vestigations, monomer partitions <strong>in</strong> water and vapour phase were ignored,<br />

but its amount is approximatively 4%. For this reason Xie et al. (1991) also took it under<br />

consideration. A mass balance performed allows predict<strong>in</strong>g the monomer distribution over the <strong>en</strong>tire<br />

conversion range. Subscripts g and w stand for the gas and water phase respectively.<br />

M<br />

1<br />

M<br />

0<br />

1−<br />

X )<br />

= ( − M − M − M<br />

(III- 13)<br />

g<br />

w<br />

2<br />

It was assumed that VCM <strong>in</strong> vapour phase obeys the ideal gas law, therefore M g is def<strong>in</strong>ed as:<br />

M<br />

g<br />

=<br />

M<br />

m<br />

RT<br />

P<br />

m<br />

⎡<br />

⎢(1<br />

−Wi<br />

) V<br />

⎢⎣<br />

r<br />

+<br />

XM<br />

0<br />

(1/ D<br />

1−<br />

D<br />

m<br />

g 0<br />

−1/<br />

D<br />

/ D<br />

m<br />

p<br />

) ⎤<br />

⎥<br />

⎥⎦<br />

(III- 14)<br />

Although to a very small ext<strong>en</strong>t, an amount of VCM is pres<strong>en</strong>t <strong>in</strong> the aqueous phase (about 0.8% at<br />

25°C) and its contribution was tak<strong>en</strong> <strong>in</strong>to account <strong>in</strong> the follow<strong>in</strong>g calculations:<br />

M w = KW w (III- 15)<br />

with K the dim<strong>en</strong>sionless solubility constant.<br />

M<br />

w<br />

= KW w<br />

(III- 16)<br />

M M ]/<br />

X<br />

f<br />

2<br />

X[ M<br />

0<br />

(1 − X<br />

f<br />

) − M<br />

gX<br />

−<br />

where:<br />

= (III- 17)<br />

w<br />

f<br />

142


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

0<br />

M ⎡<br />

0<br />

(1/ −1/<br />

) ⎤<br />

m<br />

P<br />

X<br />

f<br />

M Dm<br />

D<br />

p<br />

D<br />

m<br />

m<br />

M<br />

gX f<br />

= ⎢(1<br />

−Wi<br />

) Vr<br />

+<br />

⎥<br />

(III- 18)<br />

RT ⎢⎣<br />

Dm<br />

− Dg<br />

0 ⎥⎦<br />

As for the reactions <strong>in</strong>volv<strong>in</strong>g the <strong>in</strong>itiator, they occur both <strong>in</strong> monomer, as well as <strong>in</strong> polymer phase.<br />

Ev<strong>en</strong> though there are no data available on the solubility of <strong>in</strong>itiator <strong>in</strong> monomer and polymer phase,<br />

we can def<strong>in</strong>e the <strong>in</strong>itiator partition coeffici<strong>en</strong>t K I , as an adjustable parameter <strong>in</strong> the model:<br />

K<br />

R<br />

R<br />

I 2<br />

I<br />

=<br />

I1<br />

2 f K<br />

2 f<br />

[ I ]<br />

= (III- 19)<br />

2 d 2 2<br />

1<br />

K<br />

d 1<br />

[ I ] 1<br />

Further on it was assumed that the decomposition rate constant is the same both <strong>in</strong> monomer and<br />

polymer phase K d2 = K d1 and the <strong>in</strong>itiator effici<strong>en</strong>cy f is also the same <strong>in</strong> the two phases f 1 = f 2 . Also f<br />

was assumed to be equal to 1, for peroxide type <strong>in</strong>itiator. In App<strong>en</strong>dix 2 the impact of f on the<br />

<strong>polymerization</strong> k<strong>in</strong>etics is studied. After these approximations the <strong>in</strong>itiator partition coeffici<strong>en</strong>t<br />

becomes:<br />

K I<br />

= [ I]<br />

/[ I<br />

(III- 20)<br />

2<br />

] 1<br />

The total <strong>in</strong>itiator conc<strong>en</strong>trations <strong>in</strong> the two phases can be writt<strong>en</strong> as:<br />

[ I ]<br />

1<br />

= I<br />

0<br />

exp( −K<br />

d<br />

t)(<br />

V1<br />

+ K<br />

IV2<br />

)<br />

(III- 21)<br />

[ I ] K [ I<br />

= (III- 22)<br />

2 I<br />

] 1<br />

And f<strong>in</strong>ally, the <strong>polymerization</strong> rate <strong>in</strong> terms of conversion at X < X f per unit of time:<br />

dX<br />

dt<br />

K<br />

+<br />

K<br />

1<br />

=<br />

N M<br />

p2<br />

1/ 2<br />

t 2<br />

0<br />

⎡<br />

⎢R<br />

⎣<br />

m<br />

I 2<br />

{<br />

K<br />

p1<br />

(<br />

J<br />

2<br />

1<br />

+ 4K<br />

, ∗<br />

J1V1<br />

⎤<br />

( 1−<br />

K ) + K R V / V + ( J<br />

2<br />

1 + 4K<br />

J − J ) M }<br />

de<br />

I1<br />

t1<br />

1<br />

R<br />

I1<br />

J<br />

2<br />

2<br />

− J ) M<br />

1<br />

2K<br />

V<br />

t1<br />

2<br />

1<br />

/(2K<br />

t1<br />

) +<br />

t1<br />

2<br />

1<br />

⎥<br />

⎦<br />

1/ 2<br />

2<br />

(III- 23)<br />

At high conversion, the <strong>polymerization</strong> rate decreases rapidly with decreas<strong>in</strong>g pressure, glass state<br />

transitions can have a profound effect on the relative rate of free-radical reactions which control the<br />

molecular structure of the polymer cha<strong>in</strong>s. All the bimolecular reactions <strong>in</strong>volv<strong>in</strong>g macroradicals will<br />

be diffusion controlled. Polymerization rate can be expressed, for X > X f :<br />

dX<br />

dt<br />

N<br />

K<br />

0<br />

p2<br />

M<br />

m<br />

2<br />

( R ) 1/<br />

I 2<br />

/ K<br />

t 2<br />

M<br />

2<br />

= (III- 24)<br />

143


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

These equations can repres<strong>en</strong>t conversion histories and reaction rates of VCM <strong>polymerization</strong> over the<br />

<strong>en</strong>tire conversion range. The model of Xie and Hamielec was <strong>in</strong> good agreem<strong>en</strong>t with their<br />

experim<strong>en</strong>tal data.<br />

VII. The two-phase model validation for<br />

micro<strong>reactor</strong> S-PVC<br />

The k<strong>in</strong>etic model proposed by Xie and co-workers was applied to characterize S-PVC. However due<br />

to micro<strong>reactor</strong> conf<strong>in</strong>em<strong>en</strong>t conditions, some modifications have be<strong>en</strong> imposed. For <strong>in</strong>stance, there is<br />

expected that there is no monomer <strong>in</strong> the gas phase, VCM be<strong>in</strong>g pres<strong>en</strong>t only <strong>in</strong> liquid phase.<br />

Therefore <strong>in</strong> any further calculations the model was changed by neglect<strong>in</strong>g M g and any other <strong>in</strong>flu<strong>en</strong>ce<br />

of the gaseous phase.<br />

The physical properties of VCM and PVC used <strong>in</strong> the calculations of the theoretical conversion<br />

evolution versus time are pres<strong>en</strong>ted <strong>in</strong> Table III- 6.<br />

Property<br />

Method of calculation<br />

VCM d<strong>en</strong>sity (kg m -3 ) ρ m = 947.1 – 1.746 ּT(°C) – 3.24 ּ 10 -3 ּ t 2<br />

Water d<strong>en</strong>sity (kg m -3 )<br />

ρ w = 1011.1 – 0.4484 ּ T<br />

Polymer d<strong>en</strong>sity (kg m -3 ) ρ p = 10 3 exp (0.496 – 3.274 ּ 10 -4 ּ T)<br />

Solubility constant<br />

K = 0.00472 – 11.6/T<br />

Vapour pressure of monomer (atm)<br />

P m 0 = 12722 exp (-2411.7/T)<br />

Table III- 6 : Physical properties used <strong>in</strong> the model (Xie et al., 1991a,b)<br />

144


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

VII.A. Determ<strong>in</strong>ation of the monomer distribution over the<br />

<strong>en</strong>tire <strong>polymerization</strong> range for S-PVC <strong>in</strong> microchannel<br />

With the physical and k<strong>in</strong>etic parameters described to <strong>in</strong>terfere <strong>in</strong> the model, one can characterize<br />

quantitatively the features of the two-phase <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong>.<br />

The monomer distribution among phases dur<strong>in</strong>g susp<strong>en</strong>sion <strong>polymerization</strong> was calculated for a<br />

temperature of 60°C. The evolution of VCM weight fraction <strong>in</strong> the differ<strong>en</strong>t phases as a function of<br />

conversion is pres<strong>en</strong>ted <strong>in</strong> Figure III- 33. The monomer <strong>in</strong> water phase consisted less than 2% at 0<br />

conversion and was not repres<strong>en</strong>ted here. At the beg<strong>in</strong>n<strong>in</strong>g of the reaction the monomer <strong>in</strong> pure liquid<br />

phase is about 97%. It th<strong>en</strong> decreases gradually until complete depletion which is atta<strong>in</strong>ed at the<br />

critical conversion value X f . This value was determ<strong>in</strong>ed theoretically and it was found to be 65 % at<br />

this temperature. Up to this conversion, monomer exists both <strong>in</strong> liquid phase but also <strong>in</strong> the polymerrich<br />

phase swoll<strong>en</strong> with VCM. At X f monomer <strong>in</strong> polymer phase repres<strong>en</strong>ts about 0.35% and<br />

afterwards wh<strong>en</strong> conversion proceeds, its value slowly decreases until complete consumption.<br />

1<br />

0,9<br />

0,8<br />

Monomer <strong>in</strong> VCM phase<br />

Monomer <strong>in</strong> PVC phase (X


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

with the start of the pressure drop <strong>in</strong> the <strong>reactor</strong>. Dur<strong>in</strong>g micro<strong>reactor</strong> S-PVC experim<strong>en</strong>ts, this<br />

parameter was difficult or ev<strong>en</strong> impossible to obta<strong>in</strong>. This is due to the fact that pressure<br />

measurem<strong>en</strong>ts were only obta<strong>in</strong>ed on the monomer/water feed<strong>in</strong>g l<strong>in</strong>es. Wh<strong>en</strong> the reaction proceeds,<br />

the polymer particles start to form <strong>in</strong> the microdrops. But also some monomer and <strong>in</strong>itiator mixture<br />

still rema<strong>in</strong>s <strong>in</strong> the feed<strong>in</strong>g pipes preced<strong>in</strong>g the micro<strong>reactor</strong>. Ev<strong>en</strong> though these pipes are not directly<br />

heated, a conduction effect is produced and consequ<strong>en</strong>tly they are warmed up. As a result, the<br />

monomer pres<strong>en</strong>t polymerizes and blocks the <strong>en</strong>tire passage. Therefore any pressure measurem<strong>en</strong>t<br />

would be <strong>in</strong>accurate and would not repres<strong>en</strong>t the real behaviour of pressure <strong>in</strong> the micro<strong>reactor</strong>.<br />

VII.B. New k<strong>in</strong>etic constants determ<strong>in</strong>ation<br />

Individual rate constants such as K p or K t are available <strong>in</strong> the literature for susp<strong>en</strong>sion <strong>polymerization</strong><br />

of v<strong>in</strong>yl <strong>chloride</strong> (Xie et al., 1991; Sidiropoulou et al., 1990). These parameters can be estimated us<strong>in</strong>g<br />

the conversion-time data. For <strong>in</strong>stance, at low conversions values one may state that the polymer cha<strong>in</strong><br />

has not yet atta<strong>in</strong>ed its size and precipitate, therefore K * = 0, similarly K’ de = 0 and there is no<br />

monomer <strong>in</strong> polymer phase M 2 = 0. In this situation equation III-22 becomes:<br />

dX<br />

dt<br />

⎛ fK<br />

⎝ K<br />

⎞<br />

1<br />

2<br />

1<br />

d<br />

= K [ ] 2<br />

p<br />

⎜<br />

⎟ I<br />

0<br />

(1 − X )<br />

(III- 25)<br />

t<br />

⎠<br />

This repres<strong>en</strong>ts the simplified expression for homog<strong>en</strong>eous <strong>polymerization</strong>. After <strong>in</strong>tegration it is<br />

obta<strong>in</strong>ed:<br />

1<br />

2<br />

1<br />

⎛ fKd<br />

ln( 1 X ) K<br />

p<br />

[ I]<br />

2<br />

0<br />

t<br />

K ⎟ ⎞<br />

− − =<br />

⎜<br />

(III- 26)<br />

⎝ t ⎠<br />

It is clearly noticed that by graphically repres<strong>en</strong>t<strong>in</strong>g –ln(1-X) versus time, at the <strong>in</strong>itial mom<strong>en</strong>ts of the<br />

reaction (up to 30 m<strong>in</strong>utes) the slope obta<strong>in</strong>ed allows to f<strong>in</strong>d the ratio of the propagation and<br />

term<strong>in</strong>ation constants K p /K 1/2 t . Figure III- 34 shows an example obta<strong>in</strong>ed for the <strong>polymerization</strong> at<br />

60°C with <strong>in</strong>itial conc<strong>en</strong>tration <strong>in</strong> <strong>in</strong>itiator [I] 0 of 0.28 % wt. with respect to monomer.<br />

146


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

10<br />

9<br />

8<br />

-ln(1-X)*100<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y = 0,2537x<br />

R 2 = 0,9462<br />

0<br />

0 5 10 15 20 25 30<br />

Reaction time (m<strong>in</strong>)<br />

Figure III- 34: Graphical method for the determ<strong>in</strong>ation of K p /K 1/2 t from k<strong>in</strong>etic data at 60°C.<br />

Once determ<strong>in</strong>ed the differ<strong>en</strong>t values of the ratio K p /K t 1/2 it was possible to relate them with the<br />

temperature by us<strong>in</strong>g these <strong>in</strong>itial slopes. In Figure III- 35 the relationship obta<strong>in</strong>ed by least square<br />

method is plotted.<br />

-3,06<br />

-3,08<br />

-3,1<br />

ln (k p /k t^ 0 .5 )<br />

-3,12<br />

-3,14<br />

-3,16<br />

-3,18<br />

-3,2<br />

y = -1,7707x + 2,0814<br />

R 2 = 0,9162<br />

-3,22<br />

-3,24<br />

-3,26<br />

2,9 2,92 2,94 2,96 2,98 3 3,02<br />

(1/T)*1000<br />

Figure III- 35 : K p /K t 1/2 versus reaction temperature for <strong>polymerization</strong> at low conversions.<br />

The relationship describ<strong>in</strong>g the two k<strong>in</strong>etic constants is pres<strong>en</strong>ted <strong>in</strong> equation III-26.<br />

K<br />

K<br />

−3.54<br />

p1<br />

1/ 2<br />

RT<br />

= 8.0 ⋅ e (L mole -1 sec -1 ) 1/2 (III- 27)<br />

t1<br />

147


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

These results are <strong>in</strong> good agreem<strong>en</strong>t with the results pres<strong>en</strong>t <strong>in</strong> the literature. Abdel-Alim and<br />

Hamielec <strong>in</strong> 1972 estimated this ratio of rate constants with the follow<strong>in</strong>g formula:<br />

K<br />

K<br />

p1<br />

1/ 2<br />

t1<br />

⎡1718<br />

= 0.0725⋅<br />

exp⎢<br />

⎣ R<br />

⎛ 1<br />

⎜<br />

⎝ T<br />

−<br />

1 ⎞⎤<br />

⎟⎥<br />

323.16 ⎠⎦<br />

(L mole -1 sec -1 ) 1/2 (III- 28)<br />

Xie and Hamielec found a value very close to the one obta<strong>in</strong>ed experim<strong>en</strong>tally <strong>in</strong> this study:<br />

K<br />

K<br />

p1<br />

1/ 2<br />

t1<br />

−3.8<br />

RT<br />

= 10.3⋅<br />

e (L mole -1 sec -1 ) 1/2 (III- 29)<br />

Therefore <strong>in</strong> the modell<strong>in</strong>g of S-PVC <strong>in</strong> micro<strong>reactor</strong> the value of this ratio was used for X


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Cha<strong>in</strong> transfer to polymer rate constant k fp2 (Kiparissides et al., 1997)<br />

k fp2 =8.31 · 10 9 exp (-11100/T)<br />

(m 3 kmole -1 m<strong>in</strong> -1 )<br />

Term<strong>in</strong>ation rate constant <strong>in</strong> polymer phase k t2 (Kiparissides et al., 1997) k t2 = k t1 / 24 exp (1007 (1/T – 1/T 0 ))<br />

(m 3 kmole -1 m<strong>in</strong> -1 ) and T 0 = 333.15 K<br />

Parameter of precipitation (Xie et al., 1991) K * = [0.25·t(°C) – 7.89]10 -4<br />

Radical desorption rate constant modified (Xie et al., 1991) K’ de = K * 2<br />

de/d p<br />

Table III- 7 : K<strong>in</strong>etic rate constants<br />

A comparison betwe<strong>en</strong> experim<strong>en</strong>tal values and model predictions is pres<strong>en</strong>ted <strong>in</strong> Figure III- 36. The<br />

<strong>in</strong>flu<strong>en</strong>ce of the temperature on the k<strong>in</strong>etics is very pronounced. A 10°C betwe<strong>en</strong> the experim<strong>en</strong>ts<br />

might accelerate the reaction up to 40 %.<br />

1<br />

0,9<br />

0,8<br />

Conversion degree X<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

60°C<br />

64°C<br />

70°C<br />

60°C model<br />

64°C model<br />

70°C model<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure III- 36 : Susp<strong>en</strong>sion <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong> <strong>in</strong> micro<strong>reactor</strong> at differ<strong>en</strong>t temperatures and<br />

constant <strong>in</strong>itiator conc<strong>en</strong>tration [I 0 ] = 0.28 wt %.<br />

As it can be se<strong>en</strong>, the model predictions are <strong>in</strong> good agreem<strong>en</strong>t with experim<strong>en</strong>tal data especially up to<br />

conversions around the limit<strong>in</strong>g conversion of X f = 0.65. Once the monomer phase is consumed <strong>in</strong><br />

liquid phase and it exists only <strong>in</strong> the swoll<strong>en</strong> polymer, the predictions seem to overestimate the<br />

reaction conversion.<br />

Actually from Figure III- 36 it may be observed that the reaction takes place slower <strong>in</strong> micro<strong>reactor</strong><br />

than the model predictions, especially after X > X f . At the beg<strong>in</strong>n<strong>in</strong>g of the reaction, the monomer<br />

droplets appear <strong>in</strong> a highly mobile liquid state. As <strong>polymerization</strong> proceeds, they are slowly converted<br />

149


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

to solid polymer particles via a sticky stage (X ≈ 0.05 – 0.3). However this stage, considered the most<br />

uncerta<strong>in</strong> from the po<strong>in</strong>t of view of accurate measur<strong>in</strong>g, does not seem to <strong>in</strong>flu<strong>en</strong>ce the Raman<br />

acquisition. It is the second part of the reaction that has a behaviour differ<strong>en</strong>t than the predicted one.<br />

Several hypotheses may be formulated to expla<strong>in</strong> the slight decrease <strong>in</strong> <strong>polymerization</strong> rate at the <strong>en</strong>d<br />

of the reaction. The first assumption may be related to the accuracy of the Raman spectroscopy <strong>in</strong><br />

such highly heterog<strong>en</strong>eous mediums. Besides, the monomer conc<strong>en</strong>tration at this po<strong>in</strong>t is severely<br />

decreased. Therefore the specific monomer band dim<strong>in</strong>ished considerably and is sometimes hard to be<br />

dist<strong>in</strong>guished from the noise. The reaction rate should be slowed down wh<strong>en</strong> the monomer<br />

conc<strong>en</strong>tration <strong>in</strong> the particles is very poor and has to be r<strong>en</strong>ewed by monomer <strong>in</strong> the aqueous phase.<br />

This process might be very long because VCM must diffuse from the aqueous phase <strong>in</strong>to the d<strong>en</strong>se<br />

polymer gra<strong>in</strong>.<br />

Another possible explanation for the decrease <strong>in</strong> reaction rate could be due to the lower<strong>in</strong>g of the<br />

<strong>in</strong>itiator effici<strong>en</strong>cy. In this case the <strong>in</strong>itiation would only take place by cha<strong>in</strong> transfer to monomer still<br />

pres<strong>en</strong>t <strong>in</strong> the reaction though <strong>in</strong> a smaller ext<strong>en</strong>t.<br />

As the propagation rate constant (K p ) is proportional to the monomer conc<strong>en</strong>tration it would be<br />

rational to expect that the latter would decrease due to the decreas<strong>in</strong>g pres<strong>en</strong>ce of the monomer <strong>in</strong> the<br />

polymer phase. But if the gel effect takes place, the bimolecular term<strong>in</strong>ation is slowed down.<br />

Therefore the radical conc<strong>en</strong>tration <strong>in</strong> the system <strong>in</strong>creases thus <strong>in</strong>creas<strong>in</strong>g the propagation rate. Wh<strong>en</strong><br />

the polymer-rich phase becomes more and more conc<strong>en</strong>trated and consequ<strong>en</strong>tly the gel effect will be<br />

more pronounced, it results <strong>in</strong> a well dist<strong>in</strong>ct hot spot. Dur<strong>in</strong>g this hot spot the <strong>polymerization</strong> rate<br />

may be accelerated due to the excessive heat. This makes that, <strong>in</strong> common batch <strong>reactor</strong>s these effects<br />

usually counterbalance each other and the <strong>polymerization</strong> rate practically rema<strong>in</strong>s constant. However<br />

<strong>in</strong> micro<strong>reactor</strong> the heat transfer is <strong>en</strong>hanced, thus no hot spot is produced, and the propagation rate is<br />

no longer accelerated. This explanation seems valid for the decrease <strong>in</strong> <strong>polymerization</strong> rate with<br />

respect to common batch <strong>reactor</strong>s.<br />

VII.C.2) Influ<strong>en</strong>ce of the <strong>in</strong>itiator conc<strong>en</strong>tration on conversion<br />

Differ<strong>en</strong>t <strong>in</strong>itiator conc<strong>en</strong>trations were tested <strong>in</strong> order to verify their <strong>in</strong>flu<strong>en</strong>ce on the k<strong>in</strong>etics of a<br />

polymeriz<strong>in</strong>g v<strong>in</strong>yl <strong>chloride</strong> droplet. DCHPC was pre-dispersed <strong>in</strong> the VCM phase <strong>in</strong> various<br />

quantities with respect to monomer: 0.15, 0.28, 0.48 % wt. These quantities are <strong>in</strong> close agreem<strong>en</strong>t<br />

with the usual amount of <strong>in</strong>itiator employed at <strong>in</strong>dustrial scale.<br />

150


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

Conversion histories obta<strong>in</strong>ed experim<strong>en</strong>tally are compared to the model predictions. Figure III- 37<br />

pres<strong>en</strong>ts the results obta<strong>in</strong>ed at a temperature of 60°C.<br />

Conversion degree X<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0.15%<br />

0.28%<br />

0,2<br />

0.48%<br />

0.15% model<br />

0,1<br />

0.28% model<br />

0.48% model<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure III- 37 : Susp<strong>en</strong>sion <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong> <strong>in</strong> micro<strong>reactor</strong> at differ<strong>en</strong>t <strong>in</strong>itiator<br />

conc<strong>en</strong>trations and constant temperature T = 60°C.<br />

Obviously, the more <strong>in</strong>itiator, the faster the reaction takes place. Note that at lower <strong>in</strong>itiator<br />

conc<strong>en</strong>tration the reaction seems to reach a plateau at about 80% <strong>in</strong> conversion. This slowdown of the<br />

reaction at this po<strong>in</strong>t may also be to the compact structure of the PVC gra<strong>in</strong> obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

(see Chapter IV), which directly impact<strong>in</strong>g the diffusion of reactants. The effect of slight decrease <strong>in</strong><br />

conversion at values above the critical value X f may also be observed <strong>in</strong> Figure III- 38 for differ<strong>en</strong>t<br />

<strong>in</strong>itiator conc<strong>en</strong>trations at differ<strong>en</strong>t <strong>polymerization</strong> temperatures.<br />

151


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

1<br />

0,9<br />

0,8<br />

Conversion degree X<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

0.15 wt%<br />

0.28 wt%<br />

0.42 wt%<br />

0.15 wt% model<br />

0.28 wt% model<br />

0.42 wt% model<br />

Figure III- 38 : Susp<strong>en</strong>sion <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong> <strong>in</strong> micro<strong>reactor</strong> at differ<strong>en</strong>t <strong>in</strong>itiator<br />

conc<strong>en</strong>trations and constant temperature T = 70°C.<br />

Figure III- 39 plots the logarithmic repres<strong>en</strong>tation of the <strong>in</strong>itial <strong>polymerization</strong> rate (R p ) versus the<br />

<strong>in</strong>itial conc<strong>en</strong>tration <strong>in</strong> <strong>in</strong>itiator ([I 0 ]). The <strong>polymerization</strong> rate was graphically deduced from the first<br />

m<strong>in</strong>utes of the <strong>polymerization</strong>. The slope of the trace ln(R p ) versus ln([I 0 ]) permits to reach the value<br />

of the reaction order with respect to the <strong>in</strong>itiator conc<strong>en</strong>tration. It may be se<strong>en</strong> on the graph that it<br />

leads to a straight l<strong>in</strong>e with a slope of 0.55. This result is <strong>in</strong> good agreem<strong>en</strong>t with previous work which<br />

found reaction orders betwe<strong>en</strong> 0.5 – 0.8 with respect to <strong>in</strong>itiator (Abdel-Alim and Hamielec,1972;<br />

Kuchanov and Bort, 1973; Olaj, 1977).<br />

-4<br />

-3,5<br />

-3<br />

-2,5<br />

y = 0,5534x - 2,8095<br />

R 2 = 0,9321<br />

ln[R p0]<br />

-2<br />

-1,5<br />

-1<br />

0<br />

-0,5<br />

-0,5<br />

-1<br />

-1,5<br />

-2<br />

0<br />

ln[I0]<br />

Figure III- 39 : Logarithmic repres<strong>en</strong>tation of the <strong>polymerization</strong> rate versus the <strong>in</strong>itial <strong>in</strong>itiator<br />

conc<strong>en</strong>tration<br />

152


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

VII.C.3) Contribution to the model<br />

In order to validate the model over the <strong>en</strong>tire conversion range, some changes had to be made<br />

especially <strong>in</strong> the second part of the reaction, at X > X f where S-PVC reactions are diffusion controlled.<br />

In De Roo et al. (2004), v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong> is modelled with a g<strong>en</strong>eral approach for the<br />

calculation of diffusion effects. For the <strong>in</strong>itiator decomposition, propagation and term<strong>in</strong>ation, the<br />

authors determ<strong>in</strong>e an appar<strong>en</strong>t rate coeffici<strong>en</strong>t, tak<strong>in</strong>g <strong>in</strong>to account the <strong>in</strong>tr<strong>in</strong>sic rate coeffici<strong>en</strong>t K chem<br />

and the diffusion contribution K diff :<br />

1<br />

K<br />

app<br />

1<br />

K<br />

chem<br />

1<br />

+<br />

K<br />

= (III- 31)<br />

diff<br />

The g<strong>en</strong>eral expression for the diffusion contributions to the rate coeffici<strong>en</strong>t has the form:<br />

K diff = 4π σ m D m N A<br />

(III-32)<br />

with σ m is the L<strong>en</strong>nard-Jones diameter of a monomer molecule σ m = 1.69 x 10 -10 m, N A repres<strong>en</strong>ts the<br />

Avogadro constant and D m the self-diffusion coeffici<strong>en</strong>t of monomer calculated with the free-volume<br />

theory (Bueche, 1962):<br />

D<br />

m<br />

= D<br />

m,0<br />

⎛ − E<br />

exp<br />

⎜<br />

⎝ RT<br />

*<br />

⎛<br />

~ *<br />

⎞ −V<br />

⎞<br />

⎜<br />

mj<br />

⎟<br />

⎟exp<br />

⎠<br />

~<br />

⎝<br />

VFH<br />

/γ ⎠<br />

(III- 33)<br />

~ *<br />

)<br />

where<br />

V<br />

mj =<br />

V *<br />

x<br />

M<br />

xj , D m,0 is the pre-expon<strong>en</strong>tial factor, E * the activation <strong>en</strong>ergy needed to make a<br />

⎛<br />

~ *<br />

−V<br />

⎞<br />

⎜<br />

mj<br />

⎟<br />

~<br />

diffusional jump, ⎝<br />

VFH<br />

/γ ⎠ repres<strong>en</strong>ts the free-volume contribution.<br />

As for the pre-expon<strong>en</strong>tial factor, it is determ<strong>in</strong>ed with the equation:<br />

D<br />

m,0<br />

−16<br />

~<br />

0.124x10<br />

Vc<br />

= )<br />

0<br />

M µ V<br />

m<br />

m<br />

2 / 3<br />

, m<br />

)<br />

*<br />

RT ⎛<br />

⎞<br />

⎜<br />

γ<br />

mVm<br />

/ K11<br />

exp<br />

⎟<br />

⎝ K21<br />

− Tg<br />

, m<br />

+ T ⎠<br />

(III- 34)<br />

with<br />

~<br />

V<br />

c , m<br />

viscosity,<br />

the monomer critical volume, M m the monomer molecular mass, µ the pure monomer<br />

0<br />

V ) m the pure monomer volume, K 11 / γm and K 21 are the free-volume parameters.<br />

153


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

The methodology of calculat<strong>in</strong>g the diffusion controlled rate coeffici<strong>en</strong>ts is described more <strong>in</strong> detail <strong>in</strong><br />

App<strong>en</strong>dix 2.<br />

Apply<strong>in</strong>g the model equations pres<strong>en</strong>ted above, a self-diffusion coeffici<strong>en</strong>t of the monomer D m = 1.1 x<br />

10 -7 m 2 .s -1 is obta<strong>in</strong>ed. This directly impacts the propagation rate coeffici<strong>en</strong>t <strong>in</strong> the polymer phase<br />

which thus dim<strong>in</strong>ishes drastically after X > X f .<br />

By act<strong>in</strong>g only on the propagation rate constant <strong>in</strong> this <strong>in</strong>terval we obta<strong>in</strong>ed the results pres<strong>en</strong>ted <strong>in</strong><br />

Figure III- 40. The model is s<strong>en</strong>sitive to this change and it reacts accord<strong>in</strong>g to physical predictions.<br />

Therefore, the conversion history slightly decreased <strong>in</strong> the second part of the reaction.<br />

1<br />

0,9<br />

0,8<br />

Conversion degree X<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

60°C<br />

64°C<br />

70°C<br />

60°C model<br />

64°C model<br />

70°C model<br />

0,1<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure III- 40 : Experim<strong>en</strong>tal versus model prediction of the conversion degree at differ<strong>en</strong>t temperatures<br />

and modified K p2 .<br />

A considerable improvem<strong>en</strong>t of the model was obta<strong>in</strong>ed by recalculat<strong>in</strong>g the propagation rate constant<br />

at X > X f yet leav<strong>in</strong>g the other parameters unchanged. Actually a smaller propagation rate constant<br />

leads to a decrease <strong>in</strong> radical conc<strong>en</strong>tration <strong>in</strong> polymer phase traduced by a decrease <strong>in</strong> <strong>polymerization</strong><br />

rate. This corresponds well to the data obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong> on a s<strong>in</strong>gle isolated droplet and it was<br />

expla<strong>in</strong>ed by the att<strong>en</strong>uation of the autoacceleration ph<strong>en</strong>om<strong>en</strong>a. It is therefore mandatory to precisely<br />

determ<strong>in</strong>e the propagation rate because it repres<strong>en</strong>ts a key parameter <strong>in</strong> the k<strong>in</strong>etic study of v<strong>in</strong>yl<br />

<strong>chloride</strong> <strong>polymerization</strong>.<br />

154


Chapter III: On-l<strong>in</strong>e k<strong>in</strong>etic monitor<strong>in</strong>g of S-PVC<br />

VIII. Conclusion<br />

The ma<strong>in</strong> objective of this chapter was the study of S-PVC k<strong>in</strong>etics by means of an <strong>in</strong>-l<strong>in</strong>e analysis<br />

<strong>in</strong>side an isolated droplet <strong>in</strong> microchannel. This was accomplished us<strong>in</strong>g the Raman spectroscopy as a<br />

technique for quantitative analysis of monomer/polymer droplets <strong>in</strong> micro<strong>reactor</strong>. A qualitative<br />

approach was also put <strong>in</strong> place by means of imag<strong>in</strong>g of the PVC particles dur<strong>in</strong>g or at the <strong>en</strong>d of the<br />

reaction.<br />

A microfluidic device was designed to allow high pressure and temperature conditions <strong>in</strong> a perfectly<br />

safe manner. The quantities of v<strong>in</strong>yl <strong>chloride</strong> monomer, which pres<strong>en</strong>ts a highly toxic character, were<br />

m<strong>in</strong>imised, therefore the process rema<strong>in</strong>ed completely reliable at any time for the operator as well as<br />

for the ambi<strong>en</strong>t <strong>en</strong>vironm<strong>en</strong>t. A co-flow device was set up to <strong>en</strong>able monodisperse VCM droplet<br />

g<strong>en</strong>eration. An isolated monomer droplet was visualized dur<strong>in</strong>g the reaction. Its volume contraction<br />

was evaluated <strong>in</strong> terms of reaction conversion.<br />

One of the most important contributions of this project was to exploit the advantages of Raman<br />

spectroscopy <strong>in</strong> the field of S-PVC <strong>polymerization</strong> performed <strong>in</strong> micro<strong>reactor</strong>. Fused silica capillaries<br />

allowed application of Raman analysis technique for monitor<strong>in</strong>g of monomer droplets susp<strong>en</strong>ded <strong>in</strong><br />

aqueous solution. Good quality data have be<strong>en</strong> acquired us<strong>in</strong>g this spectroscopy method applied to<br />

small droplets of monomer. The relatively long acquisition time (2 m<strong>in</strong>utes) is not a limit<strong>in</strong>g factor for<br />

data acquir<strong>in</strong>g because the monitor<strong>in</strong>g is performed on a stationary droplet. After spectra<br />

normalization, the monomer conversion degree was estimated with an acceptable accuracy versus<br />

time. A first model of the <strong>polymerization</strong> k<strong>in</strong>etics was performed with satisfactory results. The results<br />

also confirmed a reaction order with respect to <strong>in</strong>itiator conc<strong>en</strong>tration. A more complex k<strong>in</strong>etic model<br />

already pres<strong>en</strong>t <strong>in</strong> the literature was further developed to better correspond with the micro<strong>reactor</strong><br />

experim<strong>en</strong>tal data.<br />

155


156


CHAPTER IV:<br />

MORPHOLOGIC<br />

CHARACTERISTICS OF<br />

THE PVC OBTAINED IN<br />

MICROREACTOR<br />

157


158


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

The previous chapters furnished <strong>in</strong>formation about the k<strong>in</strong>etics of a VCM droplet dur<strong>in</strong>g the<br />

<strong>polymerization</strong> reaction. The impact of differ<strong>en</strong>t parameters such as temperature or <strong>in</strong>itiator<br />

conc<strong>en</strong>tration was <strong>in</strong>vestigated and the experim<strong>en</strong>tal conversion histories were compared to the<br />

classical k<strong>in</strong>etic curves obta<strong>in</strong>ed <strong>in</strong> batch <strong>reactor</strong>s.<br />

Further on it was considered <strong>in</strong>terest<strong>in</strong>g to visualize the PVC particles recovered from the micro<strong>reactor</strong><br />

at the <strong>en</strong>d of the reaction. Also important was to evaluate the <strong>in</strong>flu<strong>en</strong>ce of some reaction conditions<br />

such as temperature or <strong>in</strong>itiator amount on the morphological characteristics of the PVC gra<strong>in</strong>s. In this<br />

chapter these qualitative aspects are described by means of scann<strong>in</strong>g electron microscopy (SEM)<br />

technique. Interest<strong>in</strong>g dist<strong>in</strong>guished qualities are observed on the gra<strong>in</strong>s polymerized <strong>in</strong> differ<strong>en</strong>t<br />

reaction situations.<br />

I. SEM characterization of PVC gra<strong>in</strong>s<br />

The macromolecules shapes as well as the way molecules are arranged <strong>in</strong> a solid particle are important<br />

factors <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the properties of polymers. The molecular structure, conformation and<br />

ori<strong>en</strong>tation of the polymers can have a major effect on the macroscopic properties of the material and<br />

consequ<strong>en</strong>tly on the <strong>en</strong>d-use of the product.<br />

The morphology of PVC gra<strong>in</strong>s has be<strong>en</strong> studied more ext<strong>en</strong>sively <strong>in</strong> the ‘80s <strong>in</strong> order to id<strong>en</strong>tify the<br />

differ<strong>en</strong>t <strong>en</strong>tities formed <strong>in</strong> a particle. Also it was found that the <strong>in</strong>ternal polymer structure dep<strong>en</strong>ds on<br />

many <strong>polymerization</strong> factors such as the agitation speed, reaction temperature, susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>ts or<br />

conversion. These features <strong>in</strong>flu<strong>en</strong>ce the process<strong>in</strong>g aspects of the PVC. However it may be concluded<br />

that if the macroradicals and their agglomerations have be<strong>en</strong> well established (see Chapter I section<br />

I.D.1) there are still some ambiguities regard<strong>in</strong>g the role played by some system parameters <strong>in</strong>volved<br />

<strong>in</strong> the common batch process (such as <strong>in</strong>itiator amount).<br />

In this context, it was considered <strong>in</strong>terest<strong>in</strong>g to observe the PVC gra<strong>in</strong>s obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong> <strong>in</strong><br />

quiesc<strong>en</strong>t conditions. The follow<strong>in</strong>g sections pres<strong>en</strong>t the morphological characteristics observed wh<strong>en</strong><br />

analys<strong>in</strong>g the polymer particles obta<strong>in</strong>ed at differ<strong>en</strong>t reaction temperatures or various <strong>in</strong>itiator<br />

conc<strong>en</strong>trations.<br />

Before SEM analysis of the granular <strong>in</strong>terior of the PVC gra<strong>in</strong>s prepared at differ<strong>en</strong>t temperatures and<br />

<strong>in</strong>itiator amounts, the exterior appearance of the polymer particles was observed. Please note that the<br />

parameters m<strong>en</strong>tioned before do not seem to <strong>in</strong>flu<strong>en</strong>ce the exterior morphology of the beads formed.<br />

159


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

I.A. PVC gra<strong>in</strong>s obta<strong>in</strong>ed from micro<strong>reactor</strong><br />

Once VCM droplets were polymerized it was possible to carefully remove them from the<br />

microchannel. The monomer droplets are well protected aga<strong>in</strong>st coalesc<strong>en</strong>ce by the addition of the<br />

surfactants. Therefore, once formed, they are completely stable, preserv<strong>in</strong>g their shape through the<br />

<strong>en</strong>tire reaction as <strong>in</strong>dividual droplets. Consequ<strong>en</strong>tly they will become polymer gra<strong>in</strong>s of ess<strong>en</strong>tially<br />

spherical shape. Figure IV- 1 repres<strong>en</strong>ts a photo of PVC gra<strong>in</strong>s observed with SEM technique. It may<br />

be observed that the polymer beads are ori<strong>en</strong>ted <strong>in</strong> superimposed staggered rows form<strong>in</strong>g a quite<br />

regular necklace. Please note that this type of polymer necklace was formed as a result of an<br />

irregularity <strong>in</strong> flow at the beg<strong>in</strong>n<strong>in</strong>g of the reaction, <strong>en</strong>abl<strong>in</strong>g the VCM droplets to come together<br />

form<strong>in</strong>g the structure pres<strong>en</strong>ted <strong>in</strong> Figure IV- 1.<br />

Figure IV- 1 : PVC polymer necklace obta<strong>in</strong>ed <strong>in</strong> microchannel.<br />

In Figure IV- 2 and Figure IV- 3 the polymerized gra<strong>in</strong>s are observed from a side view. The images<br />

allow to notice that the beads only orig<strong>in</strong>ate from a s<strong>in</strong>gle monomer droplet, thus form<strong>in</strong>g unicellular<br />

particles.<br />

160


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

Figure IV- 2 : Side view of the staggered rows of PVC gra<strong>in</strong>s obta<strong>in</strong>ed <strong>in</strong> microchannel.<br />

The change occurred <strong>in</strong> the spherical appearance of the gra<strong>in</strong> is understandable because of the<br />

shr<strong>in</strong>kage ph<strong>en</strong>om<strong>en</strong>a. As already discussed <strong>in</strong> Chapter III – section I.D, due to the d<strong>en</strong>sity differ<strong>en</strong>ce<br />

betwe<strong>en</strong> monomer and polymer, the shr<strong>in</strong>kage consists of approximately 30% of volume loss.<br />

Figure IV- 3 : Side view of a group of polymerized droplets.<br />

Wh<strong>en</strong> tak<strong>in</strong>g a closer look on a PVC particle it may be observed that its contour describes roughly a<br />

sphere of approximately 250 µm <strong>in</strong> diameter. This corresponds to the <strong>in</strong>itial VCM droplet diameter.<br />

Afterwards the membrane contracts and folds lead<strong>in</strong>g to such f<strong>in</strong>al structure observed <strong>in</strong> the picture <strong>in</strong><br />

Figure IV- 4.<br />

161


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

257.3µm<br />

Figure IV- 4 : Zoom on a PVC particle.<br />

The result<strong>in</strong>g PVC particles exhibit a regular shape, a smooth surface repres<strong>en</strong>ted by the perricellular<br />

membrane folded due to shr<strong>in</strong>kage. A qualitative description of the membrane was already giv<strong>en</strong> <strong>in</strong><br />

Chapter III – section I.C. The morphological features of PVC polymer obta<strong>in</strong>ed <strong>in</strong> the novel<br />

micro<strong>reactor</strong> device are m<strong>en</strong>tioned <strong>in</strong> the follow<strong>in</strong>g sections.<br />

I.B. Influ<strong>en</strong>ce of the temperature<br />

I.B.1) Short bibliographic review<br />

The <strong>in</strong>flu<strong>en</strong>ce of temperature on the <strong>in</strong>ternal structure of PVC polymer was studied by several authors.<br />

For <strong>in</strong>stance, Smalwood (1986) <strong>in</strong>vestigated the formation of gra<strong>in</strong>s <strong>in</strong> susp<strong>en</strong>sion <strong>polymerization</strong> of<br />

v<strong>in</strong>yl <strong>chloride</strong>. The author found that the primary particle diameter <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g the<br />

reaction temperature. This was expla<strong>in</strong>ed by the fact that the colloidal stability of the primary particles<br />

is reduced thus their number is dim<strong>in</strong>ished and their size is <strong>in</strong>creased with temperature. Smallwood<br />

also def<strong>in</strong>ed a limit<strong>in</strong>g size of the primary particles <strong>in</strong> the order of magnitude of 1.4 µm. Later, <strong>in</strong><br />

2001, Bao and Brooks studied the <strong>in</strong>flu<strong>en</strong>ce of some reaction conditions on the <strong>in</strong>ternal structure of<br />

PVC res<strong>in</strong>. The results they obta<strong>in</strong>ed show that the agglomeration degree of the primary particles<br />

<strong>in</strong>creases with temperature and conversion. Figure IV- 5 shows the SEM pictures obta<strong>in</strong>ed by Bao and<br />

Brooks at differ<strong>en</strong>t temperatures. The <strong>in</strong>ternal structure was studied by section<strong>in</strong>g the particles<br />

previously embedded <strong>in</strong> an epoxy res<strong>in</strong>. At 45°C the degree of agglomeration and fusion is lower,<br />

some primary particles still exist<strong>in</strong>g <strong>in</strong> an <strong>in</strong>dividual form. At 57°C, the degree of agglomeration and<br />

fusion <strong>in</strong>creased.<br />

162


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

a) b)<br />

Figure IV- 5 : Example of SEM micrographs of PVC res<strong>in</strong> at a) 45°C and b) 57°C obta<strong>in</strong>ed by Bao and<br />

Brooks, 2001.<br />

It was found that the porosity decreases l<strong>in</strong>early with the <strong>in</strong>crease <strong>in</strong> temperature (Allsopp, 1981; Bao<br />

and Brooks, 2001). This ph<strong>en</strong>om<strong>en</strong>on was noticed <strong>in</strong> the SEM pictures pres<strong>en</strong>ted above <strong>in</strong> Figure IV-<br />

5. It was also proved experim<strong>en</strong>tally and the results of Bao and Brooks (2001) are pres<strong>en</strong>ted <strong>in</strong> Figure<br />

IV- 6. These experim<strong>en</strong>tal porosity degrees were obta<strong>in</strong>ed by means of cold plasticizer adsorption<br />

(CPA) of dioctyl phthalate (DOP).<br />

Figure IV- 6 : Effect of the <strong>polymerization</strong> temperature on the porosity degree measured by Bao and<br />

Brooks, 2001.<br />

I.B.2) Experim<strong>en</strong>tal results from micro<strong>reactor</strong><br />

The <strong>in</strong>ternal microstructures of PVC particles recovered from the micro<strong>reactor</strong> were also observed by<br />

means of SEM. The particles were cut <strong>in</strong> cross section with meticulous care not to crush the primary<br />

particles formed at the <strong>in</strong>terior. In Figure IV- 7 the <strong>in</strong>terior morphology of polymer particles obta<strong>in</strong>ed<br />

at differ<strong>en</strong>t temperature is observed. Figure IV- 7a corresponds to a gra<strong>in</strong> obta<strong>in</strong>ed at the <strong>en</strong>d of a<br />

163


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

<strong>polymerization</strong> reaction carried out at 60°C. It may be noticed that the primary particles have a well<br />

preserved spherical shape with a diameter <strong>in</strong>ferior to 1µm. On the other hand, Figure IV- 7b pres<strong>en</strong>ts<br />

the <strong>in</strong>ternal characteristics of gra<strong>in</strong>s obta<strong>in</strong>ed at 70°C. Primary particles are larger <strong>in</strong> size hav<strong>in</strong>g<br />

approximately 1.3 µm <strong>in</strong> diameter. The particle shape is less regular and the particles seem to be more<br />

fused together. The agglomerates formed are also quite irregular <strong>in</strong> shape. It is also important to note<br />

that the PVC particles polymerized at a higher temperature pres<strong>en</strong>t a less porous character.<br />

a) b)<br />

Figure IV- 7 : Cross section of PVC gra<strong>in</strong> obta<strong>in</strong>ed at constant <strong>in</strong>itiator conc<strong>en</strong>tration of 0.15% wt. at<br />

reaction temperature of: a) 60°C; b) 70°C.<br />

The same gra<strong>in</strong> morphology was obta<strong>in</strong>ed for differ<strong>en</strong>t reaction conditions, at a higher <strong>in</strong>itial <strong>in</strong>itiator<br />

conc<strong>en</strong>tration of 0.28 wt. %. Figure IV- 8 offers an example of the <strong>in</strong>ternal morphology of PVC gra<strong>in</strong>s<br />

obta<strong>in</strong>ed at 60° and 70°C.<br />

a) b)<br />

Figure IV- 8 : Cross section of PVC gra<strong>in</strong> obta<strong>in</strong>ed at constant <strong>in</strong>itiator conc<strong>en</strong>tration of 0.28% wt. at<br />

reaction temperature of: a) 60°C; b) 70°C.<br />

164


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

These results from the analysis of PVC gra<strong>in</strong>s obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong> confirm the literature<br />

considerations regard<strong>in</strong>g the impact of the temperature.<br />

I.C. Influ<strong>en</strong>ce of agitation<br />

An important issue is related to the quiesc<strong>en</strong>t conditions <strong>in</strong> micro<strong>reactor</strong>. It was found that the<br />

agitation speed has an important impact on the <strong>in</strong>ternal morphology of PVC obta<strong>in</strong>ed <strong>in</strong> batch mode.<br />

The effects of agitation on the mean particle size have be<strong>en</strong> already discussed briefly <strong>in</strong> Chapter I<br />

section I.D.2.d. The effect of this parameter on the porosity was also studied by differ<strong>en</strong>t research<br />

groups (Davidson and Wit<strong>en</strong>hafer 1980; Smalwood, 1986; Tornell and Uustalu, 1988). They found<br />

that <strong>in</strong> agitated systems the primary particles coagulate early with conversion and the f<strong>in</strong>al result is a<br />

PVC particle with an irregular <strong>in</strong>ternal structure, unique to this polymer. An example of a typical PVC<br />

particle is pres<strong>en</strong>t <strong>in</strong> Figure IV- 9a (from Diego et al., 2004). Please note its specific porous<br />

character.<br />

However it may be se<strong>en</strong> on the particles obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong>, where no agitation is employed, that<br />

the <strong>in</strong>terior morphology is differ<strong>en</strong>t than one of the common particles obta<strong>in</strong>ed <strong>in</strong> batch <strong>reactor</strong> such as<br />

the one <strong>in</strong> Figure IV- 9a. The PVC gra<strong>in</strong>s obta<strong>in</strong>ed dur<strong>in</strong>g this study possesses an <strong>in</strong>terior filled with<br />

uniform primary particle beads. They cont<strong>in</strong>ue to grow as <strong>in</strong>dividual particles pack<strong>in</strong>g closely together<br />

but without aggregat<strong>in</strong>g. They are growth c<strong>en</strong>tres for further <strong>polymerization</strong> giv<strong>in</strong>g a f<strong>in</strong>al gra<strong>in</strong> which<br />

pres<strong>en</strong>ts a uniform <strong>in</strong>ternal morphology. This compact structure may be clearly observed <strong>in</strong> Figure IV-<br />

9b-d repres<strong>en</strong>t<strong>in</strong>g cross sections of a polymer particle obta<strong>in</strong>ed <strong>in</strong> microchannel at differ<strong>en</strong>t applied<br />

<strong>en</strong>largem<strong>en</strong>ts.<br />

a)<br />

Grand. = 650 X<br />

100µm = 214.9 µm<br />

Détecteur = SE1<br />

EHT = 10.00 Kv Date :9 Jan 2012<br />

b)<br />

165


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

c) d)<br />

Figure IV- 9 : a) SEM observation of a susp<strong>en</strong>sion PVC res<strong>in</strong> obta<strong>in</strong>ed <strong>in</strong> batch <strong>reactor</strong> (Diego et al.,<br />

2004); b-d) SEM observation of a susp<strong>en</strong>sion PVC gra<strong>in</strong> obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong> at differ<strong>en</strong>t<br />

magnifications.<br />

It is not known if the compact structure of the PVC gra<strong>in</strong> plays a role <strong>in</strong> the reaction k<strong>in</strong>etics.<br />

However, it was observed <strong>in</strong> Chapter III that the k<strong>in</strong>etics were slowed down <strong>in</strong> the second part of the<br />

reaction, at X > X f . Thus, one may state that the diffusion ph<strong>en</strong>om<strong>en</strong>a are retarded due to this d<strong>en</strong>se<br />

structure. Furthermore, this ph<strong>en</strong>om<strong>en</strong>a is ev<strong>en</strong> more observed on the reactions conducted at lower<br />

temperature and lower <strong>in</strong>itiator conc<strong>en</strong>tration (see Chapter III – Figure III-37).<br />

I.D. Influ<strong>en</strong>ce of <strong>in</strong>itiator conc<strong>en</strong>tration<br />

The <strong>in</strong>flu<strong>en</strong>ce of the <strong>in</strong>itiator amount on the <strong>in</strong>ternal PVC morphology did not make the object of<br />

research studies to our knowledge. This is the reason why it was considered <strong>in</strong>terest<strong>in</strong>g to <strong>in</strong>vestigate<br />

whether or not this parameter might be <strong>in</strong>volved <strong>in</strong> the primary particles arrangem<strong>en</strong>t <strong>in</strong>side the gra<strong>in</strong>.<br />

It may be thought that the <strong>in</strong>itiator amount does not affect the <strong>in</strong>ternal PVC morphology. It is known<br />

that the greater the <strong>in</strong>itiator conc<strong>en</strong>tration the faster the reaction takes place. The <strong>in</strong>crease <strong>in</strong> rate of<br />

formation of <strong>in</strong>itiator radicals could however affect the size or the number of the microdoma<strong>in</strong>s. In<br />

other words, the fact that the PVC forms more rapidly could affect the way it is formed. However this<br />

<strong>in</strong>flu<strong>en</strong>ce on the formation mechanism of the primary particles <strong>in</strong>side the monomer droplet was never<br />

proved. The studies performed <strong>in</strong> this chapter on the PVC polymerized particles <strong>in</strong>side the<br />

microdevice contributed to <strong>en</strong>light<strong>en</strong> this aspect of the <strong>polymerization</strong>.<br />

The SEM micrographs pres<strong>en</strong>ted <strong>in</strong> Figure IV- 11 show the PVC morphology obta<strong>in</strong>ed at differ<strong>en</strong>t<br />

DCHPC conc<strong>en</strong>trations and at a temperature of 60°C.<br />

166


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

a)<br />

0.15% wt.<br />

b)<br />

Increase<br />

0.28% wt.<br />

of the<br />

<strong>in</strong>itiator<br />

amount<br />

c)<br />

0.42% wt.<br />

Figure IV- 10 : SEM micrographs of the <strong>in</strong>terior of PVC particles polymerized at 60°C and differ<strong>en</strong>t<br />

<strong>in</strong>itiator amounts.<br />

The cross sections of the particles obta<strong>in</strong>ed at 70°C are pres<strong>en</strong>ted <strong>in</strong> Figure IV- 11.<br />

167


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

a)<br />

0.15% wt.<br />

b)<br />

Increase<br />

0.28% wt.<br />

of the<br />

<strong>in</strong>itiator<br />

amount<br />

c)<br />

0.42% wt.<br />

Figure IV- 11 : SEM micrographs of the <strong>in</strong>terior of PVC particles polymerized at 70°C and differ<strong>en</strong>t<br />

<strong>in</strong>itiator amounts.<br />

168


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

By analys<strong>in</strong>g these photos one may conclude that the <strong>in</strong>itiator conc<strong>en</strong>tration def<strong>in</strong>itely pres<strong>en</strong>ts an<br />

impact on the <strong>in</strong>ternal particle morphology. It may be noticed from the micrographs <strong>in</strong> Figure IV- 10<br />

and Figure IV- 11, that the greater the <strong>in</strong>itiator amount, the smaller the primary particles become. For<br />

the two temperatures employed, and for a constant 0.15 wt. % of DCHPC, the primary particles are<br />

bigger <strong>in</strong> diameter and conserve a sphere-like shape. Wh<strong>en</strong> <strong>in</strong>creas<strong>in</strong>g the <strong>in</strong>itiator amount to 0.28 wt.<br />

%, the primary particles become smaller, they seem to be <strong>in</strong> a greater number and their fusion is more<br />

pronounced. At 0.42 wt. %, the primary particles are ev<strong>en</strong> smaller, much numerous and fused together.<br />

This might be expla<strong>in</strong>ed by the fact that the number of <strong>in</strong>itiat<strong>in</strong>g sites <strong>in</strong> the VCM droplet raises with<br />

the <strong>in</strong>crease of <strong>in</strong>itiator amount. Therefore the total amount of <strong>in</strong>itial primary particles is <strong>in</strong>creased and<br />

the probability of them to <strong>en</strong>counter and agglomerate is ev<strong>en</strong> greater.<br />

In was possible to estimate the size of the primary particles from each micrograph. The diameter was<br />

measured from each clearly visible or partially coalesced spherical primary particle. The measurem<strong>en</strong>t<br />

was carried out with Photron Fastcam Viewer software on the MEB pictures. The results at each<br />

temperature or <strong>in</strong>itiator amount are plotted <strong>in</strong> Figure IV- 12. They confirm the decrease <strong>in</strong> primary<br />

particle size with the <strong>in</strong>crease of <strong>in</strong>itiator conc<strong>en</strong>tration <strong>in</strong> the droplet. Also it may be observed the<br />

<strong>in</strong>crease <strong>in</strong> particle size with the temperature.<br />

1,7<br />

1,5<br />

70°C 60°C<br />

Primary particle diameter (µm)<br />

1,3<br />

1,1<br />

0,9<br />

0,7<br />

0,5<br />

0,3<br />

0,1<br />

0 0,1 0,2 0,3 0,4 0,5<br />

Initiator conc<strong>en</strong>tration (wt.%)<br />

Figure IV- 12 : Primary particle diameter as function of the <strong>in</strong>itiator amount for two differ<strong>en</strong>t<br />

temperatures<br />

As a g<strong>en</strong>eral remarque one may note the resemblance betwe<strong>en</strong> the aspect of the micro<strong>reactor</strong> PVC<br />

gra<strong>in</strong>s and the primary particles. This aspect is more obvious wh<strong>en</strong> referred to the primary particles<br />

issued from a reaction conducted at higher temperature and <strong>in</strong>itiator amount (Figure IV- 11a). Both<br />

169


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

structures afore-m<strong>en</strong>tioned have a spherical shape and a rigid layer surround<strong>in</strong>g them. If for the PVC<br />

gra<strong>in</strong>s this ‘shell’ has be<strong>en</strong> associated to the formation of the perricellular membrane, there is no<br />

<strong>in</strong>formation on the exist<strong>en</strong>ce of a ‘shell’ around the primary particles, to our knowledge. Because the<br />

mechanism of formation of the perricellular membrane and the primary particle membrane are not<br />

comparable, a more <strong>in</strong> depth study of the primary particle morphology may be an <strong>in</strong>terest<strong>in</strong>g path to<br />

explore for the <strong>polymerization</strong> <strong>en</strong>g<strong>in</strong>eer<strong>in</strong>g. Moreover, micro<strong>reactor</strong>s seem <strong>in</strong> this context to be a<br />

useful tool for develop<strong>in</strong>g new ways of PVC particles synthesis with differ<strong>en</strong>t morphological<br />

properties.<br />

II. Conclusion<br />

In the susp<strong>en</strong>sion <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong> there are numerous complex processes <strong>in</strong>volved,<br />

start<strong>in</strong>g from the monomer emulsification to the formation of the f<strong>in</strong>al PVC gra<strong>in</strong>. With<strong>in</strong> the droplets,<br />

once the first polymer cha<strong>in</strong> is formed, it precipitates as stable primary particles of about 1µm. They<br />

may subsequ<strong>en</strong>tly aggregate <strong>in</strong>to stable packages as the <strong>polymerization</strong> proceeds. The appear<strong>en</strong>ce of<br />

these packs of aggregates def<strong>in</strong>es the porosity degree of the f<strong>in</strong>al particle: loose pack<strong>in</strong>g leads to a<br />

high porosity and close pack<strong>in</strong>g causes a reduced porous character.<br />

The <strong>polymerization</strong> variables have a high impact on the granule porosity. Some of these parameters<br />

were evaluated <strong>in</strong> this chapter. Therefore a qualitative explanation of the effect of reaction temperature<br />

or <strong>in</strong>itiator amount on the morphology of S-PVC has be<strong>en</strong> proposed. This was possible by remov<strong>in</strong>g<br />

PVC gra<strong>in</strong>s from the microchannel at the <strong>en</strong>d of the reaction. They were afterwards cut and their<br />

cross-sections were exam<strong>in</strong>ed with SEM technique.<br />

The effect of temperature on the <strong>in</strong>ternal PVC gra<strong>in</strong> morphology was confirmed <strong>in</strong> our experim<strong>en</strong>ts.<br />

The primary particle <strong>in</strong> the gra<strong>in</strong> <strong>in</strong>creases <strong>in</strong> size with the <strong>in</strong>crease of temperature. Certa<strong>in</strong>ly the<br />

porosity decreases with <strong>in</strong>creas<strong>in</strong>g the reaction temperature.<br />

170


Chapter IV: Morphologic characteristics of the PVC obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong><br />

1,7<br />

1,5<br />

70°C 60°C<br />

Primary particle diameter (µm)<br />

1,3<br />

1,1<br />

0,9<br />

0,7<br />

0,5<br />

0,3<br />

0,1<br />

0 0,1 0,2 0,3 0,4 0,5<br />

Initiator conc<strong>en</strong>tration (wt.%)<br />

It seems that the use of differ<strong>en</strong>t <strong>in</strong>itiator amounts or the <strong>in</strong>crease <strong>in</strong> the rate of formation of <strong>in</strong>itiator<br />

radicals affects the number and the size of the primary particles or their agglomerates. The <strong>in</strong>creased<br />

amount of <strong>in</strong>itiator allows for the developm<strong>en</strong>t of a greater number of <strong>in</strong>itiat<strong>in</strong>g sites, further<br />

develop<strong>in</strong>g as primary particles. They maybe forced to agglomerate due to the shr<strong>in</strong>k<strong>in</strong>g forces that<br />

appear with the <strong>in</strong>crease <strong>in</strong> conversion due to monomer-polymer d<strong>en</strong>sity differ<strong>en</strong>ce.<br />

171


172


GENERAL CONCLUSION<br />

AND PERSPECTIVES OF<br />

THIS STUDY<br />

173


174


G<strong>en</strong>eral conclusion and perspectives of this study<br />

GENERAL CONCLUSION AND PERSPECTIVES OF THIS STUDY<br />

Dur<strong>in</strong>g this PhD thesis differ<strong>en</strong>t objectives were fixed <strong>in</strong> agreem<strong>en</strong>t with our <strong>in</strong>dustrial partners. The<br />

first <strong>in</strong>volved the study of some specific ph<strong>en</strong>om<strong>en</strong>a of the S-PVC reaction related to the<br />

physicochemistry of the process us<strong>in</strong>g a special-designed micro<strong>reactor</strong> device. The second major task<br />

consisted <strong>in</strong> the acquisition of k<strong>in</strong>etic data at a droplet scale by implem<strong>en</strong>t<strong>in</strong>g a novel <strong>in</strong>-l<strong>in</strong>e analysis<br />

system adapted to the reaction and to the experim<strong>en</strong>tal set-up.<br />

The state of the art on the v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong> reaction <strong>en</strong>ables to conclude that it repres<strong>en</strong>ts<br />

a highly complex reaction, thus the <strong>in</strong>dustrial equipm<strong>en</strong>t used is also elaborated. Basically, the ma<strong>in</strong><br />

difficulty relates to the hazardous nature of the monomer and to the pressure conditions associated to<br />

the reactions. It was showed that the parameters <strong>in</strong>volved must be well controlled because they might<br />

<strong>in</strong>flu<strong>en</strong>ce <strong>in</strong> a decisive manner the course of reaction or the characteristics of the f<strong>in</strong>al product. PVC is<br />

the result of a multitude of chemical reactions and its morphology is a consequ<strong>en</strong>ce of the reaction<br />

conditions which must be therefore well managed. The <strong>in</strong>dustrial manufacturers have achieved a batch<br />

process of S-PVC which ess<strong>en</strong>tially has rema<strong>in</strong>ed unchanged over the last decades. Situated <strong>in</strong> a<br />

curr<strong>en</strong>t optimization t<strong>en</strong>d<strong>en</strong>cy, the developm<strong>en</strong>t of a cont<strong>in</strong>uous S-PVC process appears as a job<br />

requir<strong>in</strong>g great effort. In this g<strong>en</strong>eral context the basis of this PhD is to assembly fundam<strong>en</strong>tal<br />

knowledge on the physics and chemistry of the reaction which rema<strong>in</strong>s unknown at a monomer droplet<br />

scale. For this purpose, micro<strong>reactor</strong>s have particular characteristics which may be successfully<br />

applied to our study, namely the ability of rapid data acquisition, such as k<strong>in</strong>etic, thermal or mass<br />

transfer <strong>in</strong>formation.<br />

The method of S-PVC synthesis proposed allows a good control of the diameter of v<strong>in</strong>yl <strong>chloride</strong><br />

droplet obta<strong>in</strong>ed and it limits the risks of monomer exposure by us<strong>in</strong>g small amounts of reag<strong>en</strong>t. The<br />

specific chall<strong>en</strong>ges of each step were id<strong>en</strong>tified and confronted.<br />

For the study of S-PVC, a novel capillary-based micro<strong>reactor</strong> device was designed for pressure and<br />

temperature function<strong>in</strong>g <strong>in</strong> safe conditions. It allowed po<strong>in</strong>t<strong>in</strong>g out specificities of the VCM/water<br />

system behaviour <strong>in</strong> a fused silica capillary microchannel. For <strong>in</strong>stance, it has be<strong>en</strong> noted an aff<strong>in</strong>ity of<br />

v<strong>in</strong>yl <strong>chloride</strong> towards the <strong>reactor</strong> wall, due to the wettability of the latter. This <strong>in</strong>conv<strong>en</strong>i<strong>en</strong>t was<br />

surpassed by implem<strong>en</strong>t<strong>in</strong>g a droplet g<strong>en</strong>eration system prev<strong>en</strong>t<strong>in</strong>g the VCM/wall contact.<br />

175


G<strong>en</strong>eral conclusion and perspectives of this study<br />

Once the hydrodynamic parameters were well established and the behaviour of VCM <strong>in</strong> microchannel<br />

was characterized and acknowledged, the second step of the project regard<strong>in</strong>g the reaction k<strong>in</strong>etics,<br />

was approached. In a first stage it was appreh<strong>en</strong>ded that wh<strong>en</strong> <strong>in</strong>troduc<strong>in</strong>g the <strong>in</strong>itiator <strong>in</strong> a water<br />

susp<strong>en</strong>sion its distribution among droplets is not homog<strong>en</strong>eous and thus <strong>polymerization</strong> took place<br />

dissimilar or did not take place at all. Note that this <strong>in</strong>troduction mode of the phases is similar to the<br />

one <strong>in</strong>dustrially employed. Consequ<strong>en</strong>tly for the mico<strong>reactor</strong> experim<strong>en</strong>ts the <strong>in</strong>itiator was predispersed<br />

<strong>in</strong>to the monomer phase prior to the reaction.<br />

The <strong>polymerization</strong> was monitored by means of microscopy tests. This technique <strong>en</strong>abled to visualize<br />

the formation of the perricellular membrane at the beg<strong>in</strong>n<strong>in</strong>g of the reaction and to measure the<br />

volume contraction of the polymeriz<strong>in</strong>g droplet. It was found that the sk<strong>in</strong> has a 400 nm thickness and<br />

the droplet shr<strong>in</strong>ks to about 70% of its orig<strong>in</strong>al volume. This volume change was correlated with the<br />

conversion progression.<br />

A new chall<strong>en</strong>ge consisted <strong>in</strong> the choice of the <strong>in</strong>-l<strong>in</strong>e monitor<strong>in</strong>g technique adapted to micro<strong>reactor</strong>s<br />

and to the <strong>in</strong>tr<strong>in</strong>sic characteristics of the reaction such as two-phase <strong>en</strong>vironm<strong>en</strong>t, heterog<strong>en</strong>eous<br />

process, or high temperature. A second micro<strong>reactor</strong> device was designed to allow implem<strong>en</strong>tation of<br />

Raman spectroscopy as a technique for quantitative analysis of monomer/polymer droplets<br />

conc<strong>en</strong>tration <strong>in</strong> micro<strong>reactor</strong>. It was also adapted to high pressure and temperature conditions <strong>in</strong> a<br />

perfectly safe manner.<br />

Good quality data have be<strong>en</strong> acquired us<strong>in</strong>g this spectroscopy method applied to micro droplets of<br />

monomer. The relatively long acquisition time (2 m<strong>in</strong>utes) is not a limit<strong>in</strong>g factor for data acquir<strong>in</strong>g<br />

because the monitor<strong>in</strong>g is performed on a stationary droplet. After spectra normalization, the monomer<br />

conversion degree was estimated with an acceptable accuracy versus time. A complex k<strong>in</strong>etic<br />

developed <strong>in</strong> the literature for two-phase <strong>polymerization</strong> of VCM was modified <strong>in</strong> order to suite the<br />

conf<strong>in</strong>ed S-PVC conditions as those <strong>in</strong> micro<strong>reactor</strong>.<br />

A qualitative approach was also put <strong>in</strong> place by means of visualization of the PVC particles at the <strong>en</strong>d<br />

of the reaction. They were carefully collected away from the device and analysed. Their dim<strong>en</strong>sions<br />

and shapes were <strong>in</strong> good agreem<strong>en</strong>t with published data from a morphological po<strong>in</strong>t of view. Also<br />

particular specificities of PVC gra<strong>in</strong>s obta<strong>in</strong>ed <strong>in</strong> micro<strong>reactor</strong> were underl<strong>in</strong>ed. It was found that the<br />

primary particles agglomerate differ<strong>en</strong>tly than <strong>in</strong> stirred batch <strong>reactor</strong>s. The result is a compact<br />

polymer particle with a folded exterior appearance. Wh<strong>en</strong> <strong>in</strong>creas<strong>in</strong>g the temperature the porosity<br />

176


G<strong>en</strong>eral conclusion and perspectives of this study<br />

decreases because the primary particles <strong>in</strong>crease <strong>in</strong> size, while <strong>in</strong>creas<strong>in</strong>g the <strong>in</strong>itiator amount the<br />

agglomeration is favoured thus the porosity <strong>in</strong>creases.<br />

The orig<strong>in</strong>ality of this project consisted <strong>in</strong> the achievem<strong>en</strong>t of a micro<strong>reactor</strong> set-up easy-to-build but<br />

adapted to the severe imperatives of the S-PVC reaction. It allowed both qualitative and quantitative<br />

reaction monitor<strong>in</strong>g. A method of on-l<strong>in</strong>e analysis was developed, thus perform<strong>in</strong>g the first Raman<br />

spectroscopy monitor of S-PVC.<br />

This project op<strong>en</strong>ed new perspectives for the <strong>polymerization</strong> studies or reactions requir<strong>in</strong>g special<br />

conditions. In the field of PVC, there are still fundam<strong>en</strong>tal paths to explore, such as the<br />

droplet/coalesc<strong>en</strong>ce dynamics repres<strong>en</strong>tative for the batch <strong>reactor</strong>s. The use of a more competitive<br />

high-speed camera may allow further process<strong>in</strong>g of the images tak<strong>en</strong> dur<strong>in</strong>g the polymerized droplet<br />

monitor<strong>in</strong>g. This would furnish <strong>in</strong>formation about the location of the first primary particles <strong>in</strong> the<br />

droplet. The same task could be achieved by us<strong>in</strong>g an Infrared camera, thus spott<strong>in</strong>g the location of the<br />

macroradical formation due to the exothermic character of the reaction. Furthermore, micro<strong>reactor</strong>s<br />

might offer the possibility to carry out prelim<strong>in</strong>ary tests of new reactions recipes and protocols before<br />

perform<strong>in</strong>g them <strong>in</strong> <strong>in</strong>dustrial <strong>reactor</strong>s. This way the <strong>in</strong>flu<strong>en</strong>ce on the k<strong>in</strong>etics and on PVC gra<strong>in</strong><br />

morphology may be evaluated rapidly.<br />

Raman spectroscopy proved to be a well suited <strong>in</strong>-l<strong>in</strong>e analysis technique at droplet scale, be<strong>in</strong>g able<br />

to correctly monitor the S-PVC reaction au cours du temps. This offers new perspectives for the S-<br />

PVC control at <strong>in</strong>dustrial scale. Curr<strong>en</strong>tly, the reaction monitor<strong>in</strong>g is only performed by means of<br />

pressure measurem<strong>en</strong>t which obviously is very poor <strong>in</strong> <strong>in</strong>formation concern<strong>in</strong>g the composition of the<br />

reaction media. On the contrary, an immersion probe head <strong>in</strong>troduced <strong>in</strong> the <strong>reactor</strong> could analyse the<br />

real-time evolution of the <strong>polymerization</strong>. It would therefore detect straightaway any abnormal<br />

reaction behaviour, thus ga<strong>in</strong><strong>in</strong>g time and <strong>en</strong>ergy.<br />

In a broader spectrum of chemical <strong>en</strong>g<strong>in</strong>eer<strong>in</strong>g, the micro<strong>reactor</strong> developed dur<strong>in</strong>g this project might<br />

serve to study reactions usually more difficult to perform at laboratory scale due to pressure<br />

constra<strong>in</strong>s. Although it repres<strong>en</strong>ts an assembly of complicated equipm<strong>en</strong>t, the core consists <strong>in</strong> the<br />

fused silica capillary tubes which repres<strong>en</strong>t a low-cost alternative to the glass <strong>reactor</strong>s requir<strong>in</strong>g special<br />

and exp<strong>en</strong>sive mach<strong>in</strong><strong>in</strong>g conditions <strong>in</strong> order to withstand pressures up to 30 bar.<br />

177


178


App<strong>en</strong>dix 1<br />

APPENDIX 1<br />

<strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> monomer (VCM) toxicity data<br />

Health Risk Limits for Groundwater 2008 Rule Revision<br />

Health Risk Assessm<strong>en</strong>t Unit, Environm<strong>en</strong>tal Health Division 51-201-<br />

4899<br />

651-201-5797 TDD<br />

Web Publication Date: 5/4/2009<br />

Chemical Name: <strong>V<strong>in</strong>yl</strong> Chloride<br />

CAS: 75-01-4<br />

Synonyms: Chloroeth<strong>en</strong>e; chloroethyl<strong>en</strong>e; ethyl<strong>en</strong>e mono<strong>chloride</strong>; Monochloroeth<strong>en</strong>e;<br />

Monochloroethyl<strong>en</strong>e<br />

Acute Non-Cancer Health Risk Limit (nHRLacute) = Not Derived (Insuffici<strong>en</strong>t data)<br />

Short-term Non-Cancer Health Risk Limit (nHRLshort-term) = Not Derived (Insuffici<strong>en</strong>t data)<br />

Subchronic Non-Cancer Health Risk Limit (nHRLsubchronic) = 80 ug/L<br />

= (Refer<strong>en</strong>ce Dose, mg/kg/d) x (Relative Source Contribution) x (Conversion Factor)<br />

(Subchronic <strong>in</strong>take, L/kg/d)<br />

= (0.03 mg/kg/d) x (0.2) x (1000 ug/mg)<br />

(0.077 L/kg-d)<br />

= 77.92 rounded to 80 ug/L<br />

Toxicity value:<br />

0.03 (laboratory animal)<br />

Source of toxicity value: MDH 2007<br />

Po<strong>in</strong>t of Departure: 10 ppm (NOAEL, CMA 1998 as cited by EPA 2000)<br />

Human Equival<strong>en</strong>t Dose Adjustm<strong>en</strong>t: 1 mg/kg-d<br />

Total uncerta<strong>in</strong>ty factor: 30<br />

UF allocation:<br />

10 for <strong>in</strong>traspecies and 3 for <strong>in</strong>terspecies extrapolation because PBPK<br />

model<strong>in</strong>g decreases uncerta<strong>in</strong>ty for animal to human extrapolation but<br />

does not account for toxicodynamic differ<strong>en</strong>ces.<br />

179


App<strong>en</strong>dix 1<br />

Critical effect(s):<br />

Co-critical effect(s):<br />

Additivity <strong>en</strong>dpo<strong>in</strong>t(s):<br />

Secondary effect(s):<br />

<strong>in</strong>creased liver weight, hypertrophy and hepatocellular foci.<br />

none<br />

Hepatic (liver) system<br />

none<br />

Chronic Non-Cancer Health Risk Limit (nHRLchronic) = 10 ug/L<br />

= (Refer<strong>en</strong>ce Dose, mg/kg/d) x (Relative Source Contribution) x (Conversion Factor)<br />

(Chronic <strong>in</strong>take rate, L/kg/d)<br />

= ( 0.003 mg/kg/d) x (0.2) x (1000 ug/mg)<br />

(0.043 L/kg-d)<br />

=13.98 rounded to 10 ug/L<br />

Toxicity value:<br />

0.003 (laboratory animal)<br />

Source of toxicity value: MDH, 2007<br />

Po<strong>in</strong>t of Departure: 0.13 mg/kg-d (NOAEL, Til et al., 1991 as cited by EPA 2000)<br />

Human Equival<strong>en</strong>t Dose Adjustm<strong>en</strong>t: 0.09 mg/kg-d<br />

Total uncerta<strong>in</strong>ty factor: 30<br />

UF allocation:<br />

10 for <strong>in</strong>traspecies and 3 for <strong>in</strong>terspecies extrapolation<br />

because PBPK model<strong>in</strong>g decreases uncerta<strong>in</strong>ty for animal to human<br />

extrapolation but does not account for toxicodynamic differ<strong>en</strong>ces<br />

Critical effect(s):<br />

liver cell polymorphism and cyst formation<br />

Co-critical effect(s):<br />

none<br />

Additivity <strong>en</strong>dpo<strong>in</strong>t(s):<br />

Hepatic (liver) system<br />

Secondary effect(s):<br />

none<br />

Cancer Health Risk Limit (cHRL) = 0.2 ug/L<br />

The lifetime oral slope factor from IRIS was used as a chemical-specific slope factor:<br />

= (Additional Lifetime Cancer Risk, 1 x 10-5) x (Conversion Factor,1000 ug/mg)<br />

(Slope Factor, per mg/kg-d) x (Lifetime Adjustm<strong>en</strong>t Factor) x (Lifetime Intake Rate, L/kg)<br />

= (1E-5) x (1000 ug/mg)<br />

(1.4 (mg/kg-d)-1 x (1) x 0.043 L/kg-d)<br />

= 0.166 rounded to 0.2 ug/L<br />

Cancer classification: A (a known human carc<strong>in</strong>og<strong>en</strong>)<br />

Oral Slope factor: 1.4 (mg/kg-d)-1 (laboratory animal)<br />

Source of slope factor: IRIS 2000<br />

Tumor site(s): Liver, and blood vessels (primary sites);<br />

180


App<strong>en</strong>dix 1<br />

Kidney, stomach and sk<strong>in</strong> cancers (secondary sites)<br />

Volatile: Yes (highly volatile)<br />

Summary of changes s<strong>in</strong>ce 1993/1994 HRL promulgation:<br />

S<strong>in</strong>ce no non-cancer HRL was previously calculated, the short-term, subchronic, and chronic nHRLs<br />

repres<strong>en</strong>t new values.<br />

The cancer HRL (0.2 ug/L) is the same as the 1993/94 cancer HRL (0.2 ug/L) as the result of: 1) the<br />

utilization of the cont<strong>in</strong>uous lifetime exposure from birth cancer slope factor (1.4 per mg/kg/day), 2)<br />

the use of a lifetime time-weighted average of water consumption rate of 0.043 L/kg-d and 3)<br />

round<strong>in</strong>g to one significant digit.<br />

Summary of toxicity test<strong>in</strong>g for health effects id<strong>en</strong>tified <strong>in</strong> the Health Standards Statute:<br />

Endocr<strong>in</strong>e Immunotoxicity Developm<strong>en</strong>t Reproductive Neurotoxicity<br />

Tested? No Yes Yes Yes Yes<br />

Effects? Yes1 Yes2 Yes3 Yes4 Yes5<br />

Note: Ev<strong>en</strong> if test<strong>in</strong>g for a specific health effect was not conducted for this chemical, <strong>in</strong>formation about that<br />

effect might be available from studies conducted for other purposes. Most chemicals have be<strong>en</strong> subject to<br />

multiple studies <strong>in</strong> which researchers id<strong>en</strong>tify a dose where no effects were observed, and the lowest dose that<br />

caused one or more effects. A toxicity value based on the effect observed at the lowest dose across all available<br />

studies is considered protective of all other effects that occur at higher doses.<br />

Comm<strong>en</strong>ts on ext<strong>en</strong>t of test<strong>in</strong>g or effects:<br />

Note: Many reported effects occur via the <strong>in</strong>halation route of exposure. <strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> is readily and<br />

rapidly absorbed via all routes of exposure and effects via all routes occur systemically.<br />

1 A study of workers exposed to v<strong>in</strong>yl <strong>chloride</strong> <strong>in</strong> PVC manufactur<strong>in</strong>g plants reported that most<br />

workers who pres<strong>en</strong>ted with scleroderma were shown to have thyroid <strong>in</strong>suffici<strong>en</strong>cy. No histopathology<br />

effects on the adr<strong>en</strong>als were reported <strong>in</strong> gu<strong>in</strong>ea pigs exposed to 400,000 ppm for 30 m<strong>in</strong>utes. Rats<br />

were found to have colloid goiter and markedly <strong>in</strong>creased numbers of perifollicular cells.<br />

2 Stimulation of spontaneous lymphocyte transformation was observed <strong>in</strong> mice follow<strong>in</strong>g <strong>in</strong>halation<br />

exposure. There is some evid<strong>en</strong>ce to suggest that an adaptive process may lead to a reduction or<br />

elim<strong>in</strong>ation of this effect over time. Also, it is not clear from the evid<strong>en</strong>ce that a clear adverse effect to<br />

the immune system is tak<strong>in</strong>g place.<br />

181


App<strong>en</strong>dix 1<br />

3 Developm<strong>en</strong>tal toxicity occurred <strong>in</strong> <strong>in</strong>halation experim<strong>en</strong>ts at doses that caused maternal toxicity.<br />

These effects occurred at exposure levels significantly higher than those produc<strong>in</strong>g liver toxicity (i.e.,<br />

the basis of the RfD)<br />

4Testicular histopathological changes and decreased male fertility have be<strong>en</strong> reported <strong>in</strong> <strong>in</strong>halation<br />

studies. These effects occur at exposure levels significantly higher than those produc<strong>in</strong>g liver toxicity<br />

(i.e., the basis of the RfD).<br />

5 Nervous system toxicity has be<strong>en</strong> observed <strong>in</strong> <strong>in</strong>halation studies at high exposure levels. <strong>V<strong>in</strong>yl</strong><br />

<strong>chloride</strong> was once considered for use as an <strong>in</strong>halation anesthetic. Investigators study<strong>in</strong>g the effects of<br />

v<strong>in</strong>yl <strong>chloride</strong> exposure frequ<strong>en</strong>tly report c<strong>en</strong>tral nervous system symptoms that are consist<strong>en</strong>t with the<br />

anesthetic properties of v<strong>in</strong>yl <strong>chloride</strong>. The most commonly reported c<strong>en</strong>tral nervous system effects<br />

are ataxia or dizz<strong>in</strong>ess, drows<strong>in</strong>ess or fatigue, loss of consciousness, and/or headache. Other c<strong>en</strong>tral<br />

nervous system effects that have be<strong>en</strong> reported by v<strong>in</strong>yl <strong>chloride</strong> workers <strong>in</strong>clude euphoria and<br />

irritability, visual and/or hear<strong>in</strong>g disturbances, nausea, memory loss, and nervousness and sleep<br />

disturbances.<br />

Refer<strong>en</strong>ces:<br />

Ag<strong>en</strong>cy for Toxic Substances and Disease Registry (ATSDR). M<strong>in</strong>imal Risk Levels (MRLs) for<br />

Hazardous Substances (April 2001) http://www.atsdr.cdc.gov/mrls.html (pr<strong>in</strong>ted, 7/10/01)<br />

http://www.atsdr.cdc.gov/mrls.html: (07/06) accessed 4/12/07<br />

Ag<strong>en</strong>cy for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for <strong>V<strong>in</strong>yl</strong><br />

Chloride (September, 1997) http://www.atsdr.cdc.gov/toxprofiles/tp20.pdf (7/3/02) Updated 07/2006<br />

toxprofile pr<strong>in</strong>ted 4/18/07<br />

Ag<strong>en</strong>cy for Toxic Substances and Disease Registry (ATSDR): Dr<strong>in</strong>k<strong>in</strong>g Water Comparison Values<br />

(CV) (see table on O drive: O:\HRA\COMMON\ATSDR MRLs,CVs,etc)<br />

Cal EPA, OEHHA Public Health Goal for <strong>V<strong>in</strong>yl</strong> Chloride. (September, 2000)<br />

http://www.oehha.ca.gov/water/phg/pdf/v<strong>in</strong>ylch.pdf (pr<strong>in</strong>ted,) accessed 4/18/07<br />

Cal EPA, OEHHA Toxicity Criteria Database http://www.oehha.ca.gov/risk/chemicalDB/<strong>in</strong>dex.asp<br />

(pr<strong>in</strong>ted, 7/8/02) accessed 4/18/07<br />

ChemF<strong>in</strong>der http://chemf<strong>in</strong>der.cambridgesoft.com/refer<strong>en</strong>ce/chemf<strong>in</strong>der.asp: accessed 4/15/07<br />

EPA Dr<strong>in</strong>k<strong>in</strong>g Water Standards and Health Advisories (2000)<br />

http://www.epa.gov/ost/dr<strong>in</strong>k<strong>in</strong>g/standards/dwstandards.pdf (pr<strong>in</strong>ted, 7/25/01)<br />

EPA Office of Dr<strong>in</strong>k<strong>in</strong>g Water:http://www.epa.gov/watersci<strong>en</strong>ce/criteria/dr<strong>in</strong>k<strong>in</strong>g/dwstandards.pdf<br />

accessed 4/12/07<br />

EPA: Health Effects Assessm<strong>en</strong>t Summary Tables (HEAST): Table 3 07/1997 accessed 4/12/07<br />

182


App<strong>en</strong>dix 1<br />

EPA. Integrated Risk Information System. <strong>V<strong>in</strong>yl</strong> Chloride. (8/7/00)<br />

http://www.epa.gov/iris/subst/1001.htm (pr<strong>in</strong>ted, 6/28/01) accessed 4/12/07<br />

EPA. Integrated Risk Information System. Toxicological Review of <strong>V<strong>in</strong>yl</strong> Chloride. (May, 2000)<br />

http://www.epa.gov/iris/toxreviews/1001-tr.pdf (pr<strong>in</strong>ted, 7/9/02) accessed 4/12/07<br />

EPA Region 3:http://www.epa.gov/reg3hwmd/risk/human/<strong>in</strong>dex.htm : (10/31/2000) accessed 4/12/07<br />

EPA Region 9:http://www.epa.gov/region09/waste/sfund/prg/<strong>in</strong>dex.html: (10/2004) accessed 4/12/07<br />

Feron VJ, Speek AJ, Willems MI, van Battum D, and de Groot AP. (1975) Observations on the oral<br />

adm<strong>in</strong>istration and toxicity of v<strong>in</strong>yl <strong>chloride</strong> <strong>in</strong> rats. Food Cosmet. Toxicol. 13:633-638<br />

IARC evaluation (date and classification):http://monographs.iarc.fr/ENG/Classification/<strong>in</strong>dex.php<br />

(1987) accessed 4/18/07<br />

ITER http://iter.ctcnet.net/publicurl/pub_search_list.cfm accessed 4/15/07<br />

In ternational Programme on Chemical Safety http://www.who.<strong>in</strong>t/ipcs/assessm<strong>en</strong>t/<strong>en</strong>/ accessed<br />

4/15/07<br />

Syracuse Research PhysProp Database accessed 4/15/07<br />

Til HP, Feron VJ, and Immel HR. (1991) Lifetime (149-week) oral carc<strong>in</strong>og<strong>en</strong>icity study of v<strong>in</strong>yl<br />

<strong>chloride</strong> <strong>in</strong> rats. Food Chem. Toxicol. 1991 29:713-718<br />

183


184


App<strong>en</strong>dix 2<br />

APPENDIX 2<br />

Modell<strong>in</strong>g of diffusion controlled propagation rate <strong>in</strong> S-PVC<br />

at X > Xf<br />

Not all the radicals formed dur<strong>in</strong>g the <strong>in</strong>itiator dissociation stage can <strong>in</strong>itiate the <strong>polymerization</strong><br />

reaction. Frequ<strong>en</strong>tly, the actual rates of <strong>in</strong>itiation of radical <strong>polymerization</strong> are lower than those of<br />

primary radical formation. The parameter that reflects this ph<strong>en</strong>om<strong>en</strong>on is the <strong>in</strong>itiator effici<strong>en</strong>cy, f I . It<br />

repres<strong>en</strong>ts the fraction of <strong>in</strong>itiat<strong>in</strong>g radicals with respect to all the radicals g<strong>en</strong>erated <strong>in</strong> the system.<br />

f<br />

I<br />

rate of <strong>in</strong>itiation of propagat<strong>in</strong>g cha<strong>in</strong>s v<strong>in</strong>itiation<br />

= =<br />

(2- 1)<br />

rate of primary radical formation d[ I ]<br />

−<br />

dt<br />

Effici<strong>en</strong>cies below unity correspond to a waste of primary radicals, which ma<strong>in</strong>ly occurs via secondary<br />

reactions, such as cage term<strong>in</strong>ation reactions or term<strong>in</strong>ation with other polymer radicals, thus form<strong>in</strong>g<br />

<strong>in</strong>ert molecules.<br />

It is thus clear that the value of the <strong>in</strong>itiator effici<strong>en</strong>cy may be important to be known <strong>in</strong> the<br />

quantitative description of S-PVC k<strong>in</strong>etics, as it directly impacts the actual radical flux that drives the<br />

reaction. Initiator effici<strong>en</strong>cy data may also dictate the costs for <strong>in</strong>itiator consumption and reflects the<br />

level of side product formation. Despite this importance, there are relatively few methods available for<br />

acquir<strong>in</strong>g f I values. For <strong>in</strong>stance, <strong>in</strong>direct approaches may evaluate the rate of <strong>polymerization</strong> data and<br />

than extract f I after <strong>in</strong>sertion of propagation and term<strong>in</strong>ation rate coeffici<strong>en</strong>ts. The latter need to be<br />

obta<strong>in</strong>ed via <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t measurem<strong>en</strong>ts. S<strong>in</strong>ce these coeffici<strong>en</strong>ts are sometimes not known with high<br />

precision, valuation of f I may also be performed aga<strong>in</strong>st a refer<strong>en</strong>ce <strong>in</strong>itiator of known effici<strong>en</strong>cy at<br />

exactly the same reaction conditions.<br />

Moreover, dur<strong>in</strong>g S-PVC, the effici<strong>en</strong>cy should exhibit significant fall-off at high monomer<br />

conversions. This is due to the higher diffusion coeffici<strong>en</strong>ts <strong>in</strong> the monomer-rich phase as compared to<br />

the polymer-rich phase. Radicals issued from <strong>in</strong>itiator can readily diffuse apart <strong>in</strong> the monomer phase,<br />

thus <strong>in</strong>creas<strong>in</strong>g the effici<strong>en</strong>cy.<br />

Literature studies perform<strong>in</strong>g S-PVC k<strong>in</strong>etic analysis have already be<strong>en</strong> described <strong>in</strong> Chapter III. Most<br />

of them assume peroxide <strong>in</strong>itiator effici<strong>en</strong>cy to be equival<strong>en</strong>t to unit. However, a detailed study of the<br />

185


App<strong>en</strong>dix 2<br />

<strong>in</strong>itiator effici<strong>en</strong>cy f I can only be made wh<strong>en</strong> the reaction mechanism of the decomposition of the<br />

<strong>in</strong>itiator is completely understood. All possible occurr<strong>in</strong>g reactions and accompany<strong>in</strong>g k<strong>in</strong>etic<br />

parameters are difficult to trace.<br />

For <strong>in</strong>stance, Xie et al. (1991) described the <strong>in</strong>itiation mechanism as pres<strong>en</strong>ted <strong>in</strong> Scheme 2- 1:<br />

K d<br />

(a) I [2R• 1 ] radical pair <strong>in</strong> cage<br />

K R1<br />

(b) [2R• 1 ] <strong>in</strong>ert recomb<strong>in</strong>ation <strong>in</strong> cage<br />

K R2<br />

(c) [2R• 1 ] I (peroxide) recomb<strong>in</strong>ation <strong>in</strong> cage<br />

K D<br />

(d) [2R• 1 ] 2R• 1 diffusion out from cage<br />

K x<br />

(e) [2R• 1 ] + M R• 1 + R• 1 reaction of radical pair with monomer<br />

K’ p<br />

(f) R• 1 + M R• 1 g<strong>en</strong>eration of polymer radical cha<strong>in</strong><br />

Scheme 2- 1 : Possible reactions <strong>in</strong>volv<strong>in</strong>g the <strong>in</strong>itiator.<br />

Based on the <strong>in</strong>itiator def<strong>in</strong>ition and the stationary-state assumption, it may be obta<strong>in</strong>ed:<br />

f<br />

I<br />

=<br />

K<br />

K<br />

D<br />

+ K<br />

x<br />

+ K +<br />

R1<br />

D<br />

[ M ]<br />

K [ M ]<br />

x<br />

(2- 2)<br />

Reaction (b) may furthermore <strong>in</strong>volve decarboxylation and β-scission reactions. However Xie et al.<br />

considered that the recomb<strong>in</strong>ation <strong>in</strong> cage lead<strong>in</strong>g to the formation of the peroxide is important to a<br />

much greater ext<strong>en</strong>t that the radical recomb<strong>in</strong>ation lead<strong>in</strong>g to an <strong>in</strong>ert cha<strong>in</strong>. Thus K R2 >> K R1 and the<br />

reaction (b) could be consequ<strong>en</strong>tly neglected. In this case the <strong>in</strong>itiator effici<strong>en</strong>cy for peroxide <strong>in</strong>itiators<br />

f I ≈ 1. In Figure 2- 1 the s<strong>en</strong>sibility of the model with respect to the <strong>in</strong>itiator effici<strong>en</strong>cy is repres<strong>en</strong>ted.<br />

Obviously, the conversion degree decreases wh<strong>en</strong> f I is smaller than 1.<br />

186


App<strong>en</strong>dix 2<br />

Conversion degree<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

f=1<br />

f=0.9<br />

f=0.7<br />

f=0.5<br />

0,2<br />

0,1<br />

0<br />

0 50 100 150<br />

Reaction time (m<strong>in</strong>)<br />

Figure 2- 1 : Conversion degrees versus time at differ<strong>en</strong>t values of <strong>in</strong>itiator effici<strong>en</strong>cy f I for S-PVC<br />

reaction conditions of 60°C and 0.028%wt. of DCHPC .<br />

In De Roo et al. (2004), S-PVC is modelled with a g<strong>en</strong>eral approach for the calculation of diffusion<br />

effects on the reaction. For the <strong>in</strong>itiator decomposition, propagation and term<strong>in</strong>ation, the authors<br />

determ<strong>in</strong>e an appar<strong>en</strong>t rate coeffici<strong>en</strong>t, tak<strong>in</strong>g <strong>in</strong>to account the <strong>in</strong>tr<strong>in</strong>sic rate coeffici<strong>en</strong>t K chem and the<br />

diffusion contribution K diff :<br />

1<br />

K<br />

app<br />

1 1<br />

= +<br />

(2- 3)<br />

K K<br />

chem<br />

diff<br />

The diffusional contribution K diff is estimated with the Smoluchowski model (Smoluchovski, 1918):<br />

K diff = 4π(r y + r z )(D y + D z )N A (2- 4)<br />

where (r y + r z ) is the distance betwe<strong>en</strong> two species wh<strong>en</strong> the reaction occurs, and it was tak<strong>en</strong> as the<br />

L<strong>en</strong>nard-Jones diameter of a monomer molecule σ m = 1.69 x 10 -10 m. (D y + D z ) are the mutual<br />

diffusion coeffici<strong>en</strong>ts consist<strong>in</strong>g of the two contributions of the react<strong>in</strong>g species y and z. N A repres<strong>en</strong>ts<br />

the Avogadro constant.<br />

The g<strong>en</strong>eral expression for the diffusion contributions to the propagation rate coeffici<strong>en</strong>t has the form:<br />

K diff = 4π σ m D m N A (2- 5)<br />

187


App<strong>en</strong>dix 2<br />

with D m the self-diffusion coeffici<strong>en</strong>t of monomer calculated with the free-volume theory (Bueche,<br />

1962):<br />

* ⎛<br />

~ *<br />

⎛ − E ⎞ −V<br />

⎞<br />

⎜<br />

mj<br />

D ⎟<br />

m=<br />

Dm,0exp<br />

⎜<br />

⎟exp<br />

⎝ ⎠<br />

~<br />

(2- 6)<br />

RT<br />

⎝<br />

VFH<br />

/γ ⎠<br />

~ *<br />

)<br />

where V<br />

mj<br />

= V *<br />

x<br />

M<br />

xj<br />

, D m,0 is the pre-expon<strong>en</strong>tial factor, E * the activation <strong>en</strong>ergy needed to make a<br />

~ *<br />

⎛ −V<br />

⎞<br />

diffusional jump, ⎜<br />

mj<br />

⎟<br />

*<br />

~ repres<strong>en</strong>ts the free-volume contribution. V )<br />

x<br />

is the specific volume that a<br />

⎝<br />

VFH<br />

/γ ⎠<br />

molecule needs <strong>in</strong> order to make a diffusional jump, V ~<br />

FH<br />

the hole free volume of polymer-monomer<br />

mixture of the polymer-rich phase available for diffusion and γ the overlap factor.<br />

~<br />

V<br />

FH<br />

V )<br />

FH<br />

)<br />

V<br />

/ γ =<br />

wm<br />

M<br />

mj<br />

/ γ<br />

w<br />

+<br />

M<br />

FH<br />

p<br />

pj<br />

(2- 7)<br />

repres<strong>en</strong>ts the hole free volume, w x is the monomer/polymer weight fraction <strong>in</strong> the polymer rich<br />

phase, M mj the molecular mass of the monomer or macroradical jump<strong>in</strong>g unit.<br />

)<br />

V<br />

FH<br />

)<br />

)<br />

0<br />

0<br />

Vm<br />

( Tg<br />

, m)<br />

G<br />

Vp<br />

( Tg<br />

, p)<br />

G<br />

/ γ = wm<br />

( fH<br />

, m<br />

+ αm(<br />

T − Tg<br />

, m))<br />

+ wp<br />

( fH<br />

, p<br />

+ ( α<br />

p<br />

−αc,<br />

p)(<br />

T − Tg<br />

,<br />

γ<br />

γ<br />

m<br />

p<br />

m<br />

))<br />

(2- 8)<br />

with α x the monomer/polymer thermal expansion coeffici<strong>en</strong>t, T g,x the glass transition temperature of the<br />

pure monomer/polymer,<br />

G<br />

f<br />

H , x<br />

the fractional hole free volume of the pure compon<strong>en</strong>t at T g and γ x the<br />

hole free volume overlap factor. α c,p repres<strong>en</strong>ts the close-packed crystall<strong>in</strong>e state expansion<br />

coeffici<strong>en</strong>t:<br />

)<br />

0<br />

G<br />

1 ⎛V<br />

⎞<br />

p<br />

( Tg<br />

, p)(1<br />

− fH<br />

, p<br />

α = ln⎜<br />

⎟<br />

c,<br />

p<br />

)<br />

(2- 9)<br />

0<br />

T<br />

g,<br />

p ⎝ Vp<br />

(0) ⎠<br />

)<br />

0<br />

V T ) = 1/ ρ ( T )<br />

(2- 10)<br />

p<br />

(<br />

g,<br />

x<br />

x g , x<br />

0<br />

V ) p<br />

(0)<br />

is the specific volume of pure compon<strong>en</strong>t at 0K.<br />

As for the pre-expon<strong>en</strong>tial factor, it is determ<strong>in</strong>ed with the equation:<br />

−16<br />

~ 2 / 3<br />

)<br />

*<br />

0.124x10<br />

V ⎛<br />

⎞<br />

c,<br />

m<br />

RT<br />

=<br />

⎜<br />

γ<br />

mVm<br />

/ K11<br />

D<br />

⎟<br />

m,0<br />

) exp<br />

(2- 11)<br />

0<br />

M V<br />

mµ<br />

m ⎝ K21<br />

− Tg<br />

, m<br />

+ T ⎠<br />

~<br />

with<br />

V<br />

c , m the monomer critical volume, M m the monomer molecular mass, µ the pure monomer<br />

0<br />

viscosity, V ) m the pure monomer volume, K 11 /γ m and K 21 the free-volume parameters:<br />

188


App<strong>en</strong>dix 2<br />

K 11 /γ m =<br />

0<br />

V ) m (T g,m )α m /γ m (2- 12)<br />

K 21 =<br />

f<br />

,<br />

/α m (2- 13)<br />

G<br />

H x<br />

Table 2- 1 <strong>in</strong>dicates the values of the differ<strong>en</strong>t parameters used <strong>in</strong> the model:<br />

Property Units Monomer Polymer<br />

η N.m -2 s 6.4 x 10 -9 T 2 - 5.27 x 10 -6 T + 1.18 x 10 -3 -<br />

) )<br />

* 0<br />

V x = V x<br />

(0) m 3 .kg -1 7.94 x 10 -4 6.66 x 10 -4<br />

~ * ~ * m<br />

V<br />

xj<br />

= V x<br />

(0)<br />

3 .mol -1 49.6 x 10 -6 132.85 x 10 -6<br />

G<br />

f - 0.025 0.025<br />

,<br />

H x<br />

α x K -1 1.42 x 10 -3 5.852 x 10 -4<br />

T g,x K 70 353.15<br />

γ x - 1 1<br />

E * kj.mol -1 16.4 -<br />

M m Kg.mol -1 0.0625 -<br />

Table 2- 1 : Physical properties and free volume parameters for monomer and polymer<br />

189


190


Bibliographic refer<strong>en</strong>ces<br />

BIBLIOGRAPHIC REFERENCES<br />

A<br />

Abdel-Alim A. H., Hamielec H. E., 1972, Bulk <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong>. J. Appl. Polym. Sci.,<br />

Vol. 16, 783 – 799.<br />

Abdel-Alim A.H., Hamielec A.E., 1972, Bulk <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong>, J. Appl. Polym. Sci.,<br />

Vol. 16, 783–799.<br />

Alexopoulos A., Kiparissides C., 2007, On the prediction of <strong>in</strong>ternal particle morphology <strong>in</strong><br />

susp<strong>en</strong>sion <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong>. Part I: The effect of primay particle size distribution,<br />

Chem. Eng. Sci, Vol. 62, 3970 – 3983.<br />

Allsopp M. W., 1981, The developm<strong>en</strong>t and importance of susp<strong>en</strong>sion PVC morphology, Pure and<br />

Appl. Chem., Vol. 53, 449 – 465.<br />

Allsopp M. W., 1982, Manufactur<strong>in</strong>g and Process<strong>in</strong>g of PVC, Applied Sci<strong>en</strong>ce Publishers, London.<br />

Anna S. L, Bontoux N., Stone H. A., 2003, Formation of dispersions us<strong>in</strong>g “flow focus<strong>in</strong>g” <strong>in</strong><br />

Microchannels, Appl. Phys. Lett., Vol. 82, 364–366.<br />

Anxionnaz Z., 2006, Etude de l'<strong>in</strong>flu<strong>en</strong>ce de la géométrie des canaux sur les performances d'un<br />

réacteur/échangeur, phD thesis, l’Institut National Polytechnique de Toulouse.<br />

At<strong>en</strong>cia J., Beebe D.J., 2005, Controlled microfluidic <strong>in</strong>terfaces, Nature, Vol. 437, 648–654.<br />

B<br />

Bally F., Serra C. A., Hessel V., Hadziioannou G., 2010, Homog<strong>en</strong>eous <strong>polymerization</strong>: b<strong>en</strong>efits<br />

brought by microprocess technologies to the synthesis and production of polymers, Macromol. React.<br />

Eng., Vol. 4, 543 – 561.<br />

191


Bibliographic refer<strong>en</strong>ces<br />

Bao Y. Z., Brooks B. W., 2001, Influ<strong>en</strong>ce of some <strong>polymerization</strong> conditions on particle size<br />

properties of susp<strong>en</strong>sion poly (v<strong>in</strong>yl<strong>chloride</strong>), J. Appl. Polym. Sci. Vol. 85, 1544 – 1552.<br />

Bao Y. Z., Brooks B.W., 2001, Influ<strong>en</strong>ces of some <strong>polymerization</strong> conditions on particle properties of<br />

susp<strong>en</strong>sion poly(v<strong>in</strong>yl<strong>chloride</strong>) res<strong>in</strong>, J. Applied Polym. Sci., Vol. 85, 1544 – 1552.<br />

Barnes S. E., Cygan Z. T., Yates J. K., Beers K. L., Amis E. J., 2006, Raman spectroscopic<br />

monitor<strong>in</strong>g of droplet <strong>polymerization</strong> <strong>in</strong> a microfluidic device, Analyst, Vol. 131, 1027-1033.<br />

Bauer C., Amram B., Agnely M., Charmot D., Sawatzki J., Dupuy N., Huv<strong>en</strong>ne J.-P., 2000, Onl<strong>in</strong>e<br />

monitor<strong>in</strong>g of a latex emulsion <strong>polymerization</strong> by fiber-optic FT-Raman spectroscopy. Part I:<br />

Calibration, Appl. Spectrosc., Vol. 54, 528 – 535.<br />

Bayer T., Pysall D., Wachs<strong>en</strong> O., 2000, Micro mix<strong>in</strong>g effects <strong>in</strong> cont<strong>in</strong>uous radical <strong>polymerization</strong>,<br />

Paper pres<strong>en</strong>ted at the 3rd International Confer<strong>en</strong>ce on Microreaction Technology IMRET 3, Berl<strong>in</strong>.<br />

Beattie D. R. H., and Whalley P. B., 1982, A simple two-phase frictional pressure drop calculated<br />

method, Int. J. Multiphase Flow, Vol. 8, 83-87.<br />

Blout, E. R., Hoh<strong>en</strong>ste<strong>in</strong>, W. P., Mark, H., 1949, <strong>V<strong>in</strong>yl</strong> <strong>chloride</strong>; In Monomers. A collection of data<br />

and procedures on the basic materials for the synthesis of fibres, plastics and rubbers, eds. Intersci<strong>en</strong>ce<br />

Publishers, Inc.: New York, 1-32.<br />

Boissel J., Fischer N. J., 1977, Bulk <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong> – nucleation phase, J.<br />

Macromol. Sci. Vol. A11, N°. 7, 1249 – 1269.<br />

Bouquey M., Serra C., Berton N., Prat L., Hadziioannou G., 2008, Microfluidic synthesis and<br />

assembly of reactive polymer beads to form new structured polymer materials”, Chem. Eng. J., Vol.<br />

135, S93-S98.<br />

Brandner J., Fichtner M., Schubert K., 2000, Electrically heated microstructure heat exchangers<br />

and <strong>reactor</strong>s. Paper pres<strong>en</strong>ted at the Microreaction Technology: 3 rd International Confer<strong>en</strong>ce on<br />

Microreaction Technology, Proceed<strong>in</strong>g of IMRET 3, Berl<strong>in</strong>.<br />

Bueche F., 1962, Physical Properties of Polymers, Wiley – Intersci<strong>en</strong>ce: New York.<br />

192


Bibliographic refer<strong>en</strong>ces<br />

C<br />

Cameron, J. B.; Lude<strong>en</strong>, A. J.; MCCully, J. H., Jr.; Schwab, P. A., 1981, Tr<strong>en</strong>ds <strong>in</strong> susp<strong>en</strong>sion<br />

PVC manufacture, J.Appl.Polym.Sci.:Appl.Polym.Symp. Vol. 36, 133-150.<br />

Cav<strong>in</strong> L., R<strong>en</strong>k<strong>en</strong> A., Meyer T., 2000, Onl<strong>in</strong>e conversion monitor<strong>in</strong>g through ultrasound velocity<br />

measurem<strong>en</strong>ts <strong>in</strong> bulk styr<strong>en</strong>e <strong>polymerization</strong> <strong>in</strong> a recycle <strong>reactor</strong> - part II: mathematical model,<br />

Polym. React. Eng., Vol. 8, N° 3, 225 – 240.<br />

Chang Z., Liu G., Fang F., Tian Y., Zhang Z., 2004b, Gamma-ray-<strong>in</strong>itiated dispersion<br />

<strong>polymerization</strong> of PMA <strong>in</strong> micro<strong>reactor</strong>, Chem. Eng. J, Vol. 101, 195-199.<br />

Chang Z., Liu G., Tian Y., Zhang Z., 2004a, Preparation of micron-size monodisperse poly(v<strong>in</strong>yl<br />

acetate) microspheres with gamma-rays-<strong>in</strong>itiated dispersion <strong>polymerization</strong> <strong>in</strong> micro<strong>reactor</strong>, Materials<br />

Lett., Vol. 58, 522-524.<br />

Chatzi E. G. and Kiparissides C., 1994, Drop size distributions <strong>in</strong> high holdup fraction dispersion<br />

systems: effect of the degree of hydrolysis of PVA stabilizer, Chem. Eng. Sci., Vol. 49, 5039-5052<br />

Chung S. I. and Wasan D. T., 1988, Dynamic Stability of Liquid-Liquid Dispersions Conta<strong>in</strong><strong>in</strong>g<br />

Polymeric Susp<strong>en</strong>sion Stabilizers, Colloids and Surfaces, Vol.29, 323-336<br />

Cicchitti A. C., Lombardi M., Silvestri M., Soldda<strong>in</strong>i G., Zavalluilli R. 1960, Two-phase cool<strong>in</strong>g<br />

experim<strong>en</strong>ts – pressure drop, heat transfer and burnout measurem<strong>en</strong>t, Energ. Nucl., Vol. 7, 407-425.<br />

Cotman J. D., Gonzales M. F., Claver G. C., 1967, Studies on poly (vonyl<strong>chloride</strong>). III: The role of<br />

precipitated polymer <strong>in</strong> the k<strong>in</strong>etics of <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong>, J. Polym. Sci., Vol. A-I, N°. 5,<br />

1137 – 1488.<br />

Cramer C., Fischer P., W<strong>in</strong>dhab E., 2004, Drop Formation <strong>in</strong> a Co-Flow<strong>in</strong>g Ambi<strong>en</strong>t Fluid, J.<br />

Chem. Eng. Sci., Vol. 59, 3045-3058.<br />

Cubaud T., and Mason T. G., 2008, Capillary threads and viscous droplets <strong>in</strong> square microchannels,<br />

Physics of Fluids, Vol. 20, 053320.<br />

193


Bibliographic refer<strong>en</strong>ces<br />

Cygan Z.T., Cabral J.T., Beers K.L. Amis E.J., 2005, Microfluidic platform for the g<strong>en</strong>eration of<br />

organic-phase micro<strong>reactor</strong>s, Langmuir, Vol. 21, 3629-3634.<br />

D<br />

Daupert T. E., and Danner R. P., 1985, Data Compilation Tables of Properties of Pure Compounds.<br />

Design Insitute for Physical Properties Data, AIChE: New York.<br />

Davidson A. J. and Witehafer D. E., 1980, Particle structure of susp<strong>en</strong>sion poly (v<strong>in</strong>yl<strong>chloride</strong>) and<br />

its orig<strong>in</strong> <strong>in</strong> the <strong>polymerization</strong> process, J. Polym Sci.: Polym Phys, Vol. 18, N° 1, 51 – 69.<br />

De Faria Jr. J. M., Machado F., Lima E. L., P<strong>in</strong>to J . C., 2010, In-l<strong>in</strong>e monitor<strong>in</strong>g of v<strong>in</strong>yl <strong>chloride</strong><br />

susp<strong>en</strong>sion <strong>polymerization</strong> with Near- Infrared spectroscopy, 1-analysis of morphological properties,<br />

Macromol. React. Eng., Vol. 4, 11 – 24.<br />

De Roo T., J. Wieme, G. J. Heynderickx, G.B. Mar<strong>in</strong>, 2005, Estimation of <strong>in</strong>tr<strong>in</strong>sic rate coeffici<strong>en</strong>ts<br />

<strong>in</strong> v<strong>in</strong>yl <strong>chloride</strong> susp<strong>en</strong>sion <strong>polymerization</strong>, Polymer, Vol. 46, 8340 – 8454.<br />

Diego B., David L., Girard-Reydet E., Lucas J. M., D<strong>en</strong>izart O., 2004, Mutiscale morphology and<br />

thermomechanical history of poly(v<strong>in</strong>yl<strong>chloride</strong>) (PVC), Polym. Int., Vol. 53, 515 – 522.<br />

Dorobantu Bodoc M., Prat L., Xuereb C., Gourdon C., Lasuye T., 2012, Onl<strong>in</strong>e Monitor<strong>in</strong>g of<br />

<strong>V<strong>in</strong>yl</strong> Chloride Polymerization <strong>in</strong> a Micro<strong>reactor</strong> Us<strong>in</strong>g Raman Spectroscopy, Chem. Eng. Technol.,<br />

Vol. 35, 1-9.<br />

Duckler A. E., Wicks M., and Cleveland R. G., 1964, Pressure drop and hold-up <strong>in</strong> two-phase flow,<br />

AIChE J. Vol. 10, 38-51.<br />

E<br />

Eggers, J., 1997, Nonl<strong>in</strong>ear dynamics and breakup of free-surface flows, Rev. Modern Phys. Vol. 69,<br />

865–929.<br />

Ehrfeld W., Hessel V., Haverkamp V., 1999, Micro<strong>reactor</strong>s, Ullmann's Encyclopedia of Industrial<br />

Reactors. We<strong>in</strong>heim: Wiley-VCH.<br />

194


Bibliographic refer<strong>en</strong>ces<br />

Ehrfeld W., Hessel V., Löwe H., 2001, Micro<strong>reactor</strong>s: New Technology for Modern Chemistry (1st<br />

ed.). We<strong>in</strong>heim: Wiley-VCH.<br />

Eliassaf J., 1974, The morphology of susp<strong>en</strong>sion polyv<strong>in</strong>yl <strong>chloride</strong>, J. Macromolec. Sci., Vol. 8, N°.<br />

2, 459 – 462.<br />

Elizalde O., Leiza J. R., Asua J. M., 2004, On-l<strong>in</strong>e monitor<strong>in</strong>g of all acrylic emulsion <strong>polymerization</strong><br />

<strong>reactor</strong>s by Raman spectroscopy, Macromol. Symp. Vol. 206, 135 – 148.<br />

Endo, K., 2002, Synthesis and structure of poly (v<strong>in</strong>yl<strong>chloride</strong>), Prog. Polym. Sci., Vol. 27, 2021 –<br />

2054.<br />

English J. N., and Kandlikar S., 2005, An experim<strong>en</strong>tal <strong>in</strong>vestigation <strong>in</strong>to the effect of surfactants on<br />

air-water two-phase flow <strong>in</strong> m<strong>in</strong>ichannels, Proc. 3 rd Int. Conf. on M<strong>in</strong>ichannels and microchannels,<br />

June 13-15, Toronto, Ontario, Canada, ICMM2005-75110.<br />

F<br />

Fontoura J. M. R., Santos A. F., Silva F. M., L<strong>en</strong>zi M. K., Lima,E. L., P<strong>in</strong>to, J. C., 2003,<br />

Monitor<strong>in</strong>g and control of styr<strong>en</strong>e solution <strong>polymerization</strong> us<strong>in</strong>g NIR spectroscopy, J. Appl. Polym.<br />

Sci. Vol. 90 N° 5, 1273 – 1289.<br />

G<br />

Gañán-Calvo A.M., 1998, G<strong>en</strong>eration of steady liquid microthreads and micron-sized monodisperse<br />

sprays <strong>in</strong> gas streams, Phys. Rev. Lett., Vol. 80, 285-288.<br />

Garstecki P., Fuerstman M. J., Whitesides G. M., 2006, Formation of droplets and bubbles <strong>in</strong> a<br />

microfluidic T-junction─scal<strong>in</strong>g and mechanism of break-up, Phys. Rev. Lett., Vol. 94, 436-446.<br />

Garton A., George M. H., 1974, Effect of oxyg<strong>en</strong> on the <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong>. II.<br />

Polymer properties, J. Polym. Sci. Polym. Chem., Vol. 12, 2779 – 2788.<br />

Geact<strong>in</strong>ov C., Smid J., Szwarc M., 1962, K<strong>in</strong>etics of anionic <strong>polymerization</strong> of styr<strong>en</strong>e <strong>in</strong> THF, J.<br />

Am. Chem. Soc, Vol. 84, 2508.<br />

195


Bibliographic refer<strong>en</strong>ces<br />

H<br />

Hessel, V., Löwe, H., 2003, Microchemical <strong>en</strong>g<strong>in</strong>eer<strong>in</strong>g: compon<strong>en</strong>ts, plant concepts user acceptance<br />

- part 1. Chem. Eng. Tech., Vol. 26, 13-24.<br />

Hong S., Albu R., Labbe C., Lasuye T., Stasik B. and Riess G., 2006, Preparation and<br />

characterization of colloidal dispersions of v<strong>in</strong>yl alcohol-v<strong>in</strong>yl acetate copolymers: application as<br />

stabilizers for v<strong>in</strong>yl <strong>chloride</strong> susp<strong>en</strong>sion <strong>polymerization</strong>, Polym. Int., Vol. 55, 1426-1434.<br />

Hong, Y.P., Wang, F.J., 2007, Flow rate effect on droplet control <strong>in</strong> a co-flow<strong>in</strong>g microfluidic<br />

device, Microfluidics and Nanofluidics, Vol. 3, 341–346.<br />

Hu S. W., R<strong>en</strong> X. Q., Bachman M., Sims C. E., Li G. P., Allbritton N. L., 2004, Tailor<strong>in</strong>g the<br />

surface properties of poly(dimethylsiloxane) microfluidic devices, Langmuir, Vol. 20, 5569-5574.<br />

Hua, J., St<strong>en</strong>e, J.F., L<strong>in</strong>, P., 2008, Numerical simulation of 3D bubbles ris<strong>in</strong>g <strong>in</strong> viscous liquids<br />

us<strong>in</strong>g a front track<strong>in</strong>g method, J. Comput. Phys., Vol. 227, 3358–3382.<br />

Husny J., Cooper-White J.J., 2006, The effect of elasticity on drop creation <strong>in</strong> T-shaped<br />

microchannels”, J. Non-Newtonian Fluid Mech., Vol. 137, 121-136.<br />

I<br />

Iida K., Chastek T. Q., Beers K. L., Kavicchi K. A., Chun J., Fasolka M. J., 2009, Liv<strong>in</strong>g anionic<br />

<strong>polymerization</strong> us<strong>in</strong>g a microfluidic <strong>reactor</strong>, Lab Chip, Vol. 9, 339-345.<br />

Iwasaki T., Yoshida, J., 2005, Free Radical Polymerization <strong>in</strong> Micro<strong>reactor</strong>s. Significant<br />

Improvem<strong>en</strong>t <strong>in</strong> Molecular Weight Distribution Control, Macromolec., Vol. 38, N°. 4, 1159-1163.<br />

J<br />

Jonhnson G.R. 1980, Effect of agitation dur<strong>in</strong>g VCM susp<strong>en</strong>sion <strong>polymerization</strong>, J. <strong>V<strong>in</strong>yl</strong> Tech. Vol.<br />

2, N°. 3, 138 – 141.<br />

196


Bibliographic refer<strong>en</strong>ces<br />

K<br />

Kamachi M., Satoh J., Nozakura S.-I., 1978, Effect of solv<strong>en</strong>t on radical <strong>polymerization</strong> of v<strong>in</strong>yl<br />

b<strong>en</strong>zoate, J. Polym. Sci:. Polym. Chem. Ed., Vol. 16, N° 8, 1789 – 1800.<br />

Kawahara A., Chung P. M.-Y., and Kawaji M., 2002, Investigation of two-phase flow pattern, void<br />

fraction and pressure drop <strong>in</strong> microchannel, Int. J. Multiphase Flow, Vol. 28, 1411-1435.<br />

Kiparissides C., Daskalakis G., Achilias D.S., Sidiropoulou E., 1997, Dynamic Simulation of<br />

<strong>in</strong>dustrial poly (v<strong>in</strong>yl <strong>chloride</strong>) batch susp<strong>en</strong>sion <strong>polymerization</strong> <strong>reactor</strong>s, Ind. Eng. Chem. Res., Vol.<br />

36, 1253 – 1267.<br />

Knight J. B., Vishwanath A., Brody J. P., Aust<strong>in</strong>, R. H., 1998, Hydrodynamic focus<strong>in</strong>g on a silicon<br />

ship: mix<strong>in</strong>g nanoliters <strong>in</strong> microseconds, Physical Review Letters, Vol. 80, N°. 17, 3863.<br />

Kobayashi I., Mukataka S., Nakajima M., 2005, Effects of type and physical properties of oil phase<br />

on oil-<strong>in</strong>-water emulsion droplet formation <strong>in</strong> straight- through microchannel emulsification,<br />

experim<strong>en</strong>tal and CFD studies, Langmuir, Vol. 21, 5722–5730.<br />

Köhler J.M. Kirner T., 2005, Nanoliter segm<strong>en</strong>t formation <strong>in</strong> micro fluid devices for chemical and<br />

biological micro serial flow processes on dep<strong>en</strong>d<strong>en</strong>ce on flow rate and viscosity, S<strong>en</strong>sors and<br />

Actuators A, Vol. 119, 19-27.<br />

Kuchanov S. I., Bort D. N., 1973, K<strong>in</strong>etics and mechanism of bulk <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong>,<br />

Polym. Sci. USSR, Vol. 15, N°. 10, 2712 – 2736.<br />

L<br />

L<strong>in</strong> S., Kwok C. C. K., Li, R. Y., Ch<strong>en</strong> Z. H., and Ch<strong>en</strong> Z. Y., 1991, Local frictional pressure drop<br />

dur<strong>in</strong>g vaporization for R-12 through capillary tubes, Int. J. Multiphase flow, Vol. 17, 95-102.<br />

Löb P., P<strong>en</strong>nemann H., Hessel V., 2004, G/L -dispersion <strong>in</strong> <strong>in</strong>terdigital micromixers with differ<strong>en</strong>t<br />

mix<strong>in</strong>g chamber geometries, Chem. Eng. J., Vol. 101, 75-85.<br />

197


Bibliographic refer<strong>en</strong>ces<br />

Lorber N., Pavageau B., Mignard E., 2010, Droplet-based milifluidics as a new m<strong>in</strong>iaturized tool to<br />

<strong>in</strong>vestigate <strong>polymerization</strong> reactions, Macromolecules, Vol. 43, 5524 – 5529.<br />

Lousberg H. H. A., Boel<strong>en</strong>s H. F., Le Comte E. P., 2002, Onl<strong>in</strong>e determ<strong>in</strong>ation of the conversion <strong>in</strong><br />

a styr<strong>en</strong>e bulk <strong>polymerization</strong> batch <strong>reactor</strong> us<strong>in</strong>g near-<strong>in</strong>frared spectroscopy, J. Appl. Polym. Sci.,<br />

Vol. 84, N° 1, 90 – 98.<br />

M<br />

Maggioris D., Goulas A., Alexopoulos A. H., Chatzi E. G., Kiparissides C., 2000, Prediction of<br />

particle size distribution <strong>in</strong> susp<strong>en</strong>sion <strong>polymerization</strong> <strong>reactor</strong>s: effect of turbul<strong>en</strong>ce nonhomog<strong>en</strong>eity,<br />

Chem. Eng. Sci., Vol. 55, 4611 – 4627.<br />

Mala Gh. M., and Li D., 1999, Flow characteristics of water <strong>in</strong> microtubes, Int. J. Heat and Fluid<br />

Flow, Vol. 20, 142-148.<br />

Malmonge S. M., 1996, Emerg<strong>en</strong>cy stoppers for CVM susp<strong>en</strong>sion <strong>polymerization</strong>, J. <strong>V<strong>in</strong>yl</strong> Tech.,<br />

Vol. 2, N°. 3, 211 – 215.<br />

Marcati A., 2009, Génération de particules de polymères à structure contrôlée par la microfluidique,<br />

phD thesis, l’Institut National Polytechnique de Toulouse.<br />

Marcati A., Prat L., Serra C., Tasseli J. and Dubreuil P., 2009, Fast build and designed<br />

microdevices for early-stage liquid-liquid system studies, Chem.Eng. Technol, Vol. 11, 1-9.<br />

Marcati A., Serra C., Bouquey M., Prat L., 2010, Handl<strong>in</strong>g of polymer particles <strong>in</strong> microchannels,<br />

Chem. Eng. Technol., Vol. 33, N°. 11, 1779-1787.<br />

Mart<strong>in</strong> E., 2008, Ceresana research release new compreh<strong>en</strong>sice PVC market study, Newswire Today.<br />

Mart<strong>in</strong> E.B., Morris A.J., Papazoglou M. C., Kiparissides C., 1996, Batch process monitor<strong>in</strong>g for<br />

consist<strong>en</strong>t production, Comp. Chem. Eng., Vol. 20, 599 – 604.<br />

Mart<strong>in</strong> K., H<strong>en</strong>kel T., Baier V., Grodrian A., Schon T., Roth M., Kohler J. M., Metze J., 2003,<br />

G<strong>en</strong>eration of larger numbers of separated microbial populations by cultivation <strong>in</strong> segm<strong>en</strong>ted-flow<br />

microdevices, Lab Chip, Vol. 3, 202–207.<br />

198


Bibliographic refer<strong>en</strong>ces<br />

McAdams W. H., 1954, Heat transmission, 3rd ed. McGraw-Hill, New York.<br />

Meeks M. R., 1969, An analog computer study of <strong>polymerization</strong> rates <strong>in</strong> v<strong>in</strong>yl <strong>chloride</strong> susp<strong>en</strong>sions,<br />

Polym. Eng. Sci., Vol. 9, N° 2, 141–151.<br />

Merkle C.L., Kubota T.,and Ko D.R.S., 1974, An analytical study of the e€ects of surface<br />

roughness on boundary-layer transition, AF Office of Sci<strong>en</strong>. Res. Space and Missile Sys. Org.,<br />

AD/A004786.<br />

N<br />

Nagaki A., Kawamura K., Suga S., Ando T., Sawamoto M., Yoshida J., 2004, Cation pool<strong>in</strong>itiated<br />

controlled/liv<strong>in</strong>g <strong>polymerization</strong> us<strong>in</strong>g Microsystems, J. Am. Chem. Soc., Vol. 126, 14702-<br />

14703.<br />

Nagasawa H., Aoki N., Mae K., 2005, Design of a New Micromixer for Instant Mix<strong>in</strong>g Based on the<br />

Collision of Micro Segm<strong>en</strong>ts, Chem. Eng. Tech., Vol. 28, N°. 3, 324-330.<br />

Nie Z., Xu S., Seo M., Lewis P.C., Kumacheva E., 2005, Polymer particles with various shapes and<br />

morphologies produced <strong>in</strong> cont<strong>in</strong>uous microfluidic <strong>reactor</strong>s, J. Am. Chem. Soc., Vol. 127, 8058-8063.<br />

Nilsson H., Silvegr<strong>en</strong> C., Törnell B., 1985, Susp<strong>en</strong>sion Stabilizers for PVC production I: Interfacial<br />

T<strong>en</strong>sion Measurem<strong>en</strong>ts, J. <strong>V<strong>in</strong>yl</strong> Technol., Vol. 7, 112-118.<br />

Nisisako T., Torii T., and Higushi T., 2002, Droplet formation <strong>in</strong> microchannel network, Lab on<br />

Chip, Vol. 2, 24-26.<br />

Nisisako T., Torii T., Higuchi T., 2004, Novel micro<strong>reactor</strong>s for functional polymer beads, Chem.<br />

Eng. J., Vol. 101, 23-29.<br />

Nisisako, T., Torii, T. and Higushi, T., 2002, Droplet formation <strong>in</strong> microchannel network, Lab on<br />

Chip, Vol. 2, 24 – 26.<br />

199


Bibliographic refer<strong>en</strong>ces<br />

O<br />

Okubo Y., Maki T., Nakanishi F., Hayashi T., Mae, K., 2010, Precise control of polymer particle<br />

properties us<strong>in</strong>g droplets <strong>in</strong> the microchannel, Chem. Eng. Sci., Vol. 65, 386-391.<br />

Okushima S., Nisisako T., Torii T., Higuchi T., 2004, Controlled Production of Monodisperse<br />

Double Emulsions by Two-Step Droplet Breakup <strong>in</strong> Microfluidic Devices, Langmuir, Vol. 20, 9905–<br />

9908.<br />

Olaj O. F., 1977, K<strong>in</strong>etic models for bulk <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong> and their rate expressions,<br />

J. Macromol. Sci. – Chem., Vol. 11, N°. 7, 1307 – 1317.<br />

Ormondroyd S., 1987, The <strong>in</strong>flu<strong>en</strong>ce of poly (v<strong>in</strong>yl alcohol) susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>ts on susp<strong>en</strong>sion poly<br />

(v<strong>in</strong>yl<strong>chloride</strong>) morphology, British Polymer J. Vol. 20, N°. 4, 353 – 359.<br />

Ouchi M., Inagaki N., Ando T., Sawamoto M., 2005, Liv<strong>in</strong>g cationic <strong>polymerization</strong> of v<strong>in</strong>yl ethers<br />

<strong>in</strong> a cont<strong>in</strong>uous flow system with micromixers, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.),<br />

Vol. 46, 939-940.<br />

P<br />

Padovan D. and Woods D. R., 1986, Polyv<strong>in</strong>yl alcohol as a susp<strong>en</strong>d<strong>in</strong>g ag<strong>en</strong>t for PVC production,<br />

AIChE Symp. Ser., Vol. 82, 91-99<br />

P<strong>in</strong>to J. M., Giudici R., 2001, Optimization of a cocktail of <strong>in</strong>itiators for susp<strong>en</strong>sion <strong>polymerization</strong><br />

of v<strong>in</strong>yl<strong>chloride</strong> <strong>in</strong> batch <strong>reactor</strong>s, Chem. Eng. Sci., Vol. 56, 1021 – 1028.<br />

Pit R., Hervet H. and Leger L., 2000, Direct experim<strong>en</strong>tal evid<strong>en</strong>ce of slip <strong>in</strong> hexadecane: solid<br />

<strong>in</strong>terfaces, Phys.Rev. Lett., Vol. 85, 980 – 983.<br />

PVC Symposium, 1990, Application of water-based peroxide formulations for PVC manufacture.<br />

PVC Symposium, 1990, Distribution of <strong>in</strong>itiators <strong>in</strong> S-PVC: Impact of <strong>in</strong>itiator type, physical form,<br />

and charge procedure.<br />

200


Bibliographic refer<strong>en</strong>ces<br />

Q<br />

Quevedo E., Ste<strong>in</strong>bacher J., McQuade D. T., 2005, Interfacial <strong>polymerization</strong> with<strong>in</strong> a simplified<br />

microfluidic device: captur<strong>in</strong>g capsules, J. Am. Chem. Soc., Vol. 127, 10498-10499.<br />

R<br />

Rance D. G., Zichy E. L., 1981, The life cycle of the two-phase <strong>polymerization</strong> system <strong>in</strong> v<strong>in</strong>yl<br />

<strong>chloride</strong>, Pure Appl. Chem, Vol. 53, N°. 2, 377 – 384.<br />

Ravey M., Waterman J. A., Shorr L. M., Kramer M. J., 1974, <strong>V<strong>in</strong>yl</strong> <strong>chloride</strong> – propyl<strong>en</strong>e<br />

co<strong>polymerization</strong>, J. Polym. Sci., Polym. Chem. Edn., Vol. 14, N°. 7, 1609-1616.<br />

Ravey M., Waterman J. A., Shorr L. M., Kramer M., 1974, Mechanism of v<strong>in</strong>yl <strong>chloride</strong><br />

<strong>polymerization</strong>, J. Polym. Sci.: Polym. Chem. Ed., Vol. 12, N° 12, 2821–2843.<br />

Reis M. M., Araujo P. H. H., Sayer C., Giudici R., 2003, Evid<strong>en</strong>ces of correlation betwe<strong>en</strong> polymer<br />

particle size and Raman scatter<strong>in</strong>g, Polymer, Vol. 44, 6123 – 6128 .<br />

Rodrigues J.M.E., Pereira M.R., de Souza A.G., Carvalho M.L., Dantas Neto A.A., Dantas<br />

T.N.C., Fonseca J.L.C., 2005, DSC monitor<strong>in</strong>g of the cure k<strong>in</strong>etics of a castor oil-based<br />

polyurethane, Thermochimica Acta, Vol. 427, 31-36.<br />

Ros<strong>en</strong>feld C., Serra C., Brochon C., Hadziioannou G., 2007, High-temperature nitroxide mediated<br />

radical <strong>polymerization</strong> <strong>in</strong> a cont<strong>in</strong>uous microtube <strong>reactor</strong>: Towards a better control of the<br />

<strong>polymerization</strong> reaction, Chem. Eng. Sci., Vol. 62, 5245-5250.<br />

S<br />

Saeki Y., Emura T., 2002, Technical progress for PVC production, Prog. Polym. Sci. Vol. 27, 2055 –<br />

2131.<br />

Salim A., Fourar M., Pironon J, and Sausse J., 2008, Oil-water two phase flow <strong>in</strong> microchannels:<br />

flow patterns and pressure drop measurem<strong>en</strong>ts, The Canadian Journal of Chemical Eng<strong>in</strong>eer<strong>in</strong>g, Vol.<br />

86, 978-988.<br />

201


Bibliographic refer<strong>en</strong>ces<br />

Sanderson A. K., 1980, Aspects of <strong>V<strong>in</strong>yl</strong> Chloride Susp<strong>en</strong>sion Polymerisation, Br.Polym.J., Vol. 12,<br />

N° 4, 186–191.<br />

Santos J. C., Reis M. M., Machado A. F., Bolzan A., Sayer C., Giudici R., Araujo P. H. H., 2004,<br />

Onl<strong>in</strong>e monitor<strong>in</strong>g of susp<strong>en</strong>sion <strong>polymerization</strong> reactions us<strong>in</strong>g Raman spectroscopy, Ind. Eng.<br />

Chem. Res., Vol. 43, 7282-7289.<br />

Sarraz<strong>in</strong> F., Loubière K., Prat L., Gourdon C., 2006, Experim<strong>en</strong>tal and numerical study of droplets<br />

hydrodynamics <strong>in</strong> microchannel, AIChe J., Vol. 52, N°12, 4061 – 4070.<br />

Sasic S., Ozaki Y., Ol<strong>in</strong>ga A., Siesler H. W., 2002, Comparison of various chemometric evalutation<br />

approaches for onl<strong>in</strong>e RT-NIR transmission and FT-MIR/ATR spectroscopic data of methyl<br />

methacrylate solution <strong>polymerization</strong>, Anal. Chim. Acta, Vol. 452, 265 – 276.<br />

Schroder V., Behr<strong>en</strong>d O., Schubert H., 1998, Effect of dynamic <strong>in</strong>terfacial t<strong>en</strong>sion on the<br />

emulsification process us<strong>in</strong>g microporous, ceramic membranes, J. Colloid. Interface Sci., Vol. 202,<br />

334–340.<br />

Schubert K., Brandner J., Fichtner M., L<strong>in</strong>der G., Schygulla U., W<strong>en</strong>ka A., 2001, Microstructure<br />

devices for applications <strong>in</strong> thermal and chemical process <strong>en</strong>g<strong>in</strong>eer<strong>in</strong>g. Micro. Thermophys. Eng., Vol.<br />

5, 17-39.<br />

Seo M., Nie Z., Xu S., Mok M., Lewis P. C., Graham R., Kumacheva E., 2005, Cont<strong>in</strong>uous<br />

microfluidic <strong>reactor</strong>s for polymer particles, Langmuir, Vol. 21, 11614-11622.<br />

Serra C., Berton N., Bouquey M., Prat L., Hadziioannou G., 2007, A predictive approach of the<br />

<strong>in</strong>flu<strong>en</strong>ce of the operat<strong>in</strong>g parameters on the size of polymer particles synthesized <strong>in</strong> a simplified<br />

microfluidic system, Langmuir, Vol. 23, 7745-7750.<br />

Serra C., Sary N., Schlatter G., Hadziioannou, G., Hessel, V., 2005, Numerical simulation of<br />

<strong>polymerization</strong> <strong>in</strong> <strong>in</strong>terdigital multilam<strong>in</strong>ation micromixers, Lab Chip, Vol. 5, N°. 9, 966-973.<br />

Shiraishi M. and Toyoshima K., 1973, Use of polyv<strong>in</strong>yl alcohol <strong>in</strong> the manufacture of polyv<strong>in</strong>yl<br />

<strong>chloride</strong>, Br. Polym. J., Vol. 5, 419-432.<br />

202


Bibliographic refer<strong>en</strong>ces<br />

Sidiropoulou E., Kiparissides C., 1990, Mathematic Modell<strong>in</strong>g of PVC susp<strong>en</strong>sion <strong>polymerization</strong>,<br />

J.Macromol. Sci., Chem, Vol. A27, N° 3, 257 – 288.<br />

Sladky P., Parma L., Zdrazil I., 1982, Automatic ultrasonic monitor<strong>in</strong>g of v<strong>in</strong>yl <strong>chloride</strong><br />

<strong>polymerization</strong>, Polym. Bull., Vol. 7, 401 – 408.<br />

Sladky P., Pelant I., Parma L., 1979, Ultrasonic monitor<strong>in</strong>g of v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong>,<br />

Ultrasonics, Vol. 17, 32 – 36.<br />

Smallwood P. V., 1986, The formation of gra<strong>in</strong>s of susp<strong>en</strong>sion poly(v<strong>in</strong>yl<strong>chloride</strong>), Polymer, Vol. 27,<br />

1609 – 1618.<br />

Smoluchovski M.Z., 1918, Versuch e<strong>in</strong>er mathemathisch<strong>en</strong> theorie der koagulationsk<strong>in</strong>etisch<strong>en</strong><br />

Lösung<strong>en</strong>, Phys. Chem., Vol. 92, 129 - 168.<br />

Squires T.M., Quake S.R., 2005, Microfluidic: fluid physics at the nanoliter scale, Rev. Modern Phys<br />

Vol.77, 977–1026.<br />

Studart A. R, Studer J., Xu L., Yoon K., Shum H. C., Weitz D. A., 2010, Hierarchical porous<br />

materials made by dry<strong>in</strong>g complex susp<strong>en</strong>sions, Langmuir, Vol. 27, 955-964.<br />

Sugiura S., Nakajima M., Oda T., Satake M., Seki M., 2004, Effect of <strong>in</strong>terfacial t<strong>en</strong>sion on the<br />

dynamic behavior of droplet formation dur<strong>in</strong>g microchannel emulsification. J. Colloid Interface Sci<br />

Vol. 269, 178–185.<br />

Sullivan M. T., Stone H. A., 2008, The role of feedback <strong>in</strong> microfluidic flow-focus<strong>in</strong>g devices, Phil.<br />

Trans. R. Soc., Vol. 336, 2131-2143.<br />

Summers J., 1997, A review of v<strong>in</strong>yl technologies, J. <strong>V<strong>in</strong>yl</strong> Technol. Vol. 3, 2.<br />

Suresh A.K. and Chanda M., 1982, A new k<strong>in</strong>etic model for bulk <strong>polymerization</strong> of v<strong>in</strong>yl <strong>chloride</strong><br />

based on two-phase hypothesis, Europ. Polym. J., Vol. 18, N°. 7, 607-616.<br />

203


Bibliographic refer<strong>en</strong>ces<br />

T<br />

Talam<strong>in</strong>i, G., 1966, The heterog<strong>en</strong>eous bulk <strong>polymerization</strong> of v<strong>in</strong>yl<strong>chloride</strong>, J.Polym.Sci., Part<br />

A2,Vol. 4, N°. 3, 535-537.<br />

Thompson H.W., Tork<strong>in</strong>gton P., 1945, The <strong>in</strong>fra-red spectra of polymers and related monomers,<br />

Proceed<strong>in</strong>gs of the Royal Society of London. Series A, Mathematical and Physical Sci<strong>en</strong>ces, Vol. 184,<br />

N° 996, 21-41.<br />

Thors<strong>en</strong> T., Roberts R. W., Arnold F. H., Quake S. R. 2001, Dynamic pattern formation <strong>in</strong> a<br />

vesicle-g<strong>en</strong>erat<strong>in</strong>g microfluidic device, Phys. Rev. Lett., Vol. 86, 4163–4166.<br />

Thors<strong>en</strong> T., Roberts R.W., Arnold F.H. and Quake S.R., 2001, Dynamic pattern formation <strong>in</strong> a<br />

vesicleg<strong>en</strong>erat<strong>in</strong>g microfluidic device, Physical Review Letters, Vol. 86, 4163-4166.<br />

Tice J.D., Song H., Lyon A.D. and Ismagilov R.F., 2003, Formation of droplets and mix<strong>in</strong>g <strong>in</strong><br />

multiphase microfluidics at low values of the Reynolds and the Capillary numbers, Langmuir, Vol. 19,<br />

9127-9133.<br />

Tice J.D., Song H., Lyon A.D., Ismagilov R.F., 2004, Formation of droplets and mix<strong>in</strong>g <strong>in</strong><br />

multiphase microfluidics at low values of the Reynolds and the Capillary numbers, Langmuir, Vol. 19,<br />

9127-9133.<br />

Titova V. A., Zegel’man V. I., Pessiva A. I., Popov V. A., Bort D. N., 1982,Effect of the nature of<br />

the <strong>in</strong>itiator on the k<strong>in</strong>etics of <strong>polymerization</strong> of v<strong>in</strong>yl<strong>chloride</strong> at high conversions and on the thermal<br />

stability of polyv<strong>in</strong>yl<strong>chloride</strong>, Polym. Sci., Vol. 6, 1360 – 1366.<br />

Tornell B., 1988, Rec<strong>en</strong>t developm<strong>en</strong>ts <strong>in</strong> PVC <strong>polymerization</strong>, Polym-Plast Technol. Eng. Vol. 27,<br />

N°. 1, 1-36.<br />

Tornell B., Uustalu J., 1988, Formation of primary particles <strong>in</strong> v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong>, J. Appl.<br />

Polym. Sci., Vol. 35, 63 – 74.<br />

U<br />

Ugelstad J., 1977, Model for k<strong>in</strong>etics of v<strong>in</strong>yl <strong>chloride</strong> <strong>polymerization</strong>. J. Macromol. Sci.- Chem.<br />

Vol. A11, N°. 7, 1281 – 1305.<br />

204


Bibliographic refer<strong>en</strong>ces<br />

Umbanhowar P.B., Prasad V., Weitz D.A., 2000, Monodisperse emulsion g<strong>en</strong>eration via drop break<br />

off <strong>in</strong> a coflow<strong>in</strong>g stream, Langmuir, Vol. 16, 347-351.<br />

Urbant P., 2007, Numerical simulations of drops <strong>in</strong> microchannels, M.S. thesis, Technion, 2007.<br />

Utada A.S., Fernandez-Nieves A., Stone H.A., Weitz D.A., 2007, Dripp<strong>in</strong>g to jett<strong>in</strong>g transitions <strong>in</strong><br />

coflow<strong>in</strong>g liquid streams, Phys. Rev. Lett., Vol. 99, 094502.<br />

V<br />

Van D<strong>en</strong> Br<strong>in</strong>k M., Hans<strong>en</strong> J. F., De Pe<strong>in</strong>der P., Van Herk A. M., German A. L., 2000,<br />

Measurem<strong>en</strong>t of partial conversions dur<strong>in</strong>g the solution co<strong>polymerization</strong> of styr<strong>en</strong>e and butyl acrylate<br />

us<strong>in</strong>g onl<strong>in</strong>e Raman spectroscopy, J. Appl. Polym. Sci., Vol. 79, N° 3, 426 – 436.<br />

van d<strong>en</strong> Br<strong>in</strong>k M., Pepers M., van Herk A. M., German A. L., 2001, On-l<strong>in</strong>e monitor<strong>in</strong>g and<br />

composition control of the emulsion co<strong>polymerization</strong> of VeoVA 9 and butyl acrylate by Raman<br />

spectroscopy, Polym. React. Eng., Vol. 9, 101 – 133.<br />

van der Graaf S., Schro<strong>en</strong> C.G.P.H., van der Sman R.G.M., Boom R.M., 2004, Influ<strong>en</strong>ce of<br />

dynamic <strong>in</strong>terfacial t<strong>en</strong>sion on droplet formation dur<strong>in</strong>g membrane emulsification. J. Colloid Interface<br />

Sci., Vol. 277, 456–463.<br />

van der Graaf S., Steegmans M.L.J., van der Sman R.G.M., Schro<strong>en</strong> C.G.P.H., Boom R.M.,<br />

2005, Droplet formation <strong>in</strong> a T-shaped microchannel junction: a model system for membrane<br />

emulsification, Colloids and Surfaces a, Vol. 266, 106–116.<br />

Verhelst W. F., Oosterwijk H. H. J., van der B<strong>en</strong>d H. Th., 1980, The production of PVC, us<strong>in</strong>g<br />

peroxide susp<strong>en</strong>sions, Kunststoffe, Vol. 70, N°. 4, 224-228.<br />

W<br />

Wu N., Zhu Y., Leech P.W., Sexton B.A., Brown S., Easton C., 2008, Effects of surfactants on the<br />

formation of <strong>microdroplet</strong>s <strong>in</strong> the flow focus<strong>in</strong>g microfluidic device, Biomems and Nanotechnology<br />

III, Vol. 6799, U84–U91.<br />

205


Bibliographic refer<strong>en</strong>ces<br />

Wu T., Mei Y., Cabral J. T., Xu C., Beers K. L., 2004, A new synthetic method for controlled<br />

<strong>polymerization</strong> us<strong>in</strong>g a microfluidic system, J. Am. Chem. Soc., Vol. 126, 9880-9881.<br />

Wurm F., Wilms D., Klos J., Lowe H., Frey H., 2008, Carbanions on Tap – Liv<strong>in</strong>g Anionic<br />

Polymerization <strong>in</strong> a Microstructured Reactor, Macromol. Chem. Phys., Vol. 209, 1106-1109.<br />

X<br />

Xie T. Y., Hamielec A. E., Wood P. E., Woods D. R., 1991a, Experim<strong>en</strong>tal <strong>in</strong>vestigation of v<strong>in</strong>yl<br />

<strong>chloride</strong> <strong>polymerization</strong> at high conversion : mechanism, k<strong>in</strong>etics and modell<strong>in</strong>g, Polymer, Vol. 32,<br />

N°. 3, 537 – 548.<br />

Xie T. Y., Hamielec A. E., Wood P. E., Woods D. R., 1991b, Experim<strong>en</strong>tal <strong>in</strong>vestigation of v<strong>in</strong>yl<br />

<strong>chloride</strong> <strong>polymerization</strong> at high conversion – <strong>reactor</strong> dynamics, J. Appl. Polym. Sci. Vol. 43, 1259 -<br />

1269.<br />

Xu J. H., Li S. W., Tan J., Wang Y. J., Luo G. S., 2006, Controllable Preparation of Monodisperse<br />

O/W and W/O Emulsions <strong>in</strong> the Same Microfluidic Device, Langmuir, 22, 7943–7946.<br />

Xu J.H., Li S.W., Tan J., Wang, Y.J. and Luo G.S., 2008, Correlations of droplet formation <strong>in</strong> T-<br />

junction microfluidic devices: from squeez<strong>in</strong>g to dripp<strong>in</strong>g, Microfluidics and Nanofluidics, Vol. 5,<br />

711-717.<br />

Xu J.H., Luo G.S., Li S.W., Ch<strong>en</strong> G.G., 2006, Shear force <strong>in</strong>duced monodisperse droplet formation<br />

<strong>in</strong> a microfluidic device by controll<strong>in</strong>g wett<strong>in</strong>g properties, Lab on a Chip, Vol. 6, 131–136.<br />

Xu S., Nie Z., Seo M., Lewis P., Kumacheva E., Stone H. A., Garstecki P.,. Weibel D. B, Gitl<strong>in</strong> I.,<br />

Whitesides G. M., 2005, G<strong>en</strong>eration of Monodisperse Particles by Us<strong>in</strong>g Microfluidics: Control over<br />

Size, Shape, and Composition, Angew. Chem. Int. Ed., Vol. 44, 724-728.<br />

Y<br />

Yamada B., Kageoka M., Otsu T., 1991, Dep<strong>en</strong>d<strong>en</strong>ce of propagation and term<strong>in</strong>ation rate constants<br />

on conversion for the radical <strong>polymerization</strong> of styr<strong>en</strong>e <strong>in</strong> bulk as studied by ESR spectroscopy,<br />

Macromolecules, Vol. 24, N° 18, 5234 – 5236.<br />

206


Bibliographic refer<strong>en</strong>ces<br />

Z<br />

Zerfa M., and Brooks B. M., 1997, Experim<strong>en</strong>tal <strong>in</strong>vestigation of v<strong>in</strong>yl <strong>chloride</strong> drop behaviour<br />

dur<strong>in</strong>g susp<strong>en</strong>sion <strong>polymerization</strong>, J. Appl. Polym. Sci., Vol. 65, 127 – 134.<br />

Zhao Y., Ch<strong>en</strong> G., and Yuan Q., 2006, Liquid-liquid two phase flow patterns <strong>in</strong> rectangular<br />

microchannel, AIChE J., Vol.52, N°. 12, 4052-4060.<br />

Zhao Y., Su Y., Ch<strong>en</strong> G., Yuan Q., 2009, Effect of surface properties on the flow characteristics and<br />

mass transfer performance <strong>in</strong> microchannels, Chem. Eng. Sci., Vol. 65, 1563-1570.<br />

Zh<strong>en</strong>g B., Tice J.D., Roach L.S., Ismagilov R.F., 2004, A droplet-based, composite PDMS/glass<br />

capillary microfluidic system for evaluat<strong>in</strong>g prote<strong>in</strong> crystallization conditions by micro-batch and<br />

vapor-diffusion methods with on-chip X-ray diffraction, Angew. Chem., Vol. 43, 2508–2511.<br />

207

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!