17.05.2015 Views

Strength of Materials Design of steel beam under high temperature.

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Poznan University <strong>of</strong> Technology<br />

Institute <strong>of</strong> Structural Engineering<br />

<strong>Strength</strong> <strong>of</strong> <strong>Materials</strong><br />

<strong>Design</strong> <strong>of</strong> <strong>steel</strong> <strong>beam</strong> <strong>under</strong><br />

<strong>high</strong> <strong>temperature</strong>.<br />

Jakub Turbakiewicz, SE<br />

2014/2015


I. Task information<br />

The lowest, right sided <strong>beam</strong> was selected for calculations:<br />

-length <strong>of</strong> the <strong>beam</strong>: 6.5 m<br />

-type <strong>of</strong> the <strong>beam</strong>: simply supported <strong>beam</strong><br />

Assumed <strong>steel</strong>: S355:<br />

-yield strength: f y = 355 MPa<br />

-modulus <strong>of</strong> elasticity: E = 210 GPa<br />

-shear modulus: G = 81 GPa<br />

-Poisson’s ratio in elastic stage: ν = 0,3<br />

Figure 1. Frame scheme<br />

-co-efficient <strong>of</strong> linear thermal expansion: α = 1,2 ∙ 10 −5 1<br />

°C<br />

for T < 100°C<br />

II.<br />

Chosen cross-section:<br />

IPE 550 was chosen:<br />

h = 550 mm I y = 67120 cm 4<br />

b f = 210 mm I z = 2668 cm 4<br />

t f = 17,2 mm W el,y = 2440 cm 3<br />

t w = 11,1 mm W pl,y = 2787 cm 3<br />

r = 24 mm I ω = 1884000 cm 6<br />

A = 134,0 cm 2 I t = 123 cm 4<br />

m = 106 kg/m<br />

Figure 2. Cross-section scheme


Cross-section class:<br />

ε = √ 235<br />

f y<br />

= √ 235<br />

355 = 0,814<br />

-web<br />

-flange<br />

c<br />

t = h − 2 ∙ (t f + r) 550 − 2 ∙ (17,2 + 24)<br />

= = 42,13<br />

t w 11,1<br />

42,13 < 72ε<br />

42,13 < 58,32 → class 1<br />

c<br />

t = 0,5 ∙ (b f − t w − r) 0,5 ∙ (210 − 11,1 − 24)<br />

= = 5,08<br />

t f 17,2<br />

5,08 < 9ε<br />

5,08 < 7,29 → class 1<br />

The whole cross-section if a class 1 cross-section.<br />

III.<br />

<strong>Design</strong> in ambient <strong>temperature</strong><br />

Characteristic loading:<br />

-dead load: <strong>beam</strong> weight,<br />

-dead load: ceiling dead load (3,5 kN/m 2 , with frame spacing <strong>of</strong> 6,2 m equal to 21,7 kN/m),<br />

-live load (2,0 kN/m 2 , with frame spacing <strong>of</strong> 6,2 m equal to 12,4 kN/m).<br />

Figure 3. Beam loading scheme<br />

Figure 4. Moments in the designed <strong>beam</strong> - ULS loading combination<br />

Figure 5. Moments in the designed <strong>beam</strong> - SLS loading combination


Beam capacity due to bending:<br />

W pl,y = 2787 cm 3<br />

M c,Rd = W pl ∙ f y 2787 ∙ 35,5<br />

= = 98938 kNcm = 989,38 kNm<br />

γ M0 1,0<br />

M Ed<br />

≤ 1,0 → 258,40 = 0,261 < 1,0 → conditions met<br />

M c,Rd 989,38<br />

Beam capacity due to shear force:<br />

h w<br />

t w<br />

< 72 ∗ ε η<br />

h w<br />

= h − 2 ∗ (t f + r) 550 − 2 ∙ (17,2 + 24)<br />

= = 42,13<br />

t w t w 11,1<br />

72 ∗ ε 0,814<br />

= 72 ∗<br />

η 1,0 = 58,32<br />

h w<br />

< 72 ∗ ε → 42,13 < 58,32 → conditions met<br />

t w η<br />

Beam capacity due to shearing stress:<br />

Figure 6. Shear force in the designed <strong>beam</strong> - ULS loading combination<br />

V Ed = 114,18 kN<br />

A w = t w ∗ (h − 2 ∗ t f ) = 1,11 ∗ (55 − 2 ∗ 1,72) = 57,23 cm 2<br />

τ Ed = V Ed<br />

= 114,18<br />

A w 57,23<br />

= 2,00<br />

kN<br />

cm 2<br />

τ Ed<br />

f y /(√3 ∙ γ M0 ) < 1,0 → 2,00<br />

< 1,0 → 0,10 < 1,0 − conditions met<br />

35,5/(√3 ∙ 1,0)<br />

Beam capacity due to the elastic critical moment:<br />

π 2 EI z<br />

M cr = C 1<br />

(kL) 2 { √( k 2 I w<br />

) + (kL)2 GI t<br />

k w I z π 2 + (C<br />

EI 2 z g ) 2 − C 2 z g }<br />

z<br />

k = 1,0; k w = 1,0; C 1 = 1,127; C 2 = 0,454


M cr = 1,127 ∗ 3,142 ∗ 21000 ∗ 2668<br />

(1 ∗ 650) 2 ∗<br />

∗ {√( 1 1 )2 1884000<br />

2668 + (1 ∗ 650)2 ∗ 8100 ∗ 123<br />

3,14 2 ∗ 21000 ∗ 2668 + (0,454 ∗ 27,5)2 − 0,454 ∗ 27,5}<br />

= 45670,19 kNcm<br />

λ LT = √ W pl,yf y 2787 ∗ 35,5<br />

= √<br />

M cr 45670,19 = 1,472<br />

α LT = 0,34; (buckling curve b: h b > 2)<br />

Φ LT = 0,5 [1 + α LT (λ LT − 0,2) + λ 2 LT] = 0,5 ∗ [1 + 0,34 ∗ (1,472 − 0,2) + 1,472 2 ] = 1,799<br />

χ LT =<br />

1<br />

Φ LT + √ Φ 2 LT − λ 2 LT<br />

1<br />

1,0<br />

=<br />

= 0,353 ≤<br />

1,799 + √1,799 2 − 1,4722 1,472 2 = 0,46<br />

M b,Rd = χ LT ∗ W y ∗ f y 0,353 ∗ 2787 ∗ 35,5<br />

= = 34904,85 kNcm = 349,05 kNm<br />

γ M1 1,0<br />

M Ed<br />

M = 258,40 = 0,74 → as close to requested design ratio as possible<br />

b,Rd 349,05<br />

IV.<br />

<strong>Design</strong> <strong>of</strong> <strong>steel</strong> <strong>beam</strong> at <strong>high</strong> <strong>temperature</strong><br />

Figure 6. Moments in the designed <strong>beam</strong> – accidental loading combination<br />

Beam bending capacity:<br />

M fi,Ed<br />

M b,fi,t,Rd<br />

≤ 1,0<br />

M b,fi,t,Rd = χ LT,fi ∙ W pl,y ∙ k y,θ ∙ f y<br />

γ M,fi<br />

Assumed critical <strong>temperature</strong>: Θ = 550℃<br />

Max bending moment: M fi,Ed = 120,05 kNm<br />

The elastic critical moment: M cr = 34904,85 kNcm


Ambient <strong>temperature</strong> slenderness: λ LT = 1,472<br />

Reduction factors for <strong>steel</strong> parameters in <strong>high</strong> <strong>temperature</strong> (Θ = 550℃):<br />

k y,Θ = 0,625; k E,Θ = 0,455<br />

λ LT,Θ = λ LT √ k y,Θ<br />

k E,Θ<br />

= 1,472√ 0,625<br />

0,455 = 1,725<br />

α = 0,65 √ 235<br />

f y<br />

= 0,65 √ 235<br />

355 = 0,53<br />

2<br />

Φ LT,Θ = 0,5 ∗ [1 + α ∗ λ LT,Θ + λ LT,Θ ] = 0,5 ∗ [1 + 0,53 ∗ 1,725 + 1,725 2 ] = 2,445<br />

χ LT,fi =<br />

1<br />

2<br />

Φ LT,Θ + √Φ LT,Θ<br />

2<br />

− λ LT,Θ<br />

=<br />

1<br />

2,445 + √2,445 2 − 1,725 2 = 0,239<br />

The design buckling resistance moment in <strong>high</strong> <strong>temperature</strong>:<br />

M b,fi,t,Rd = χ LT,fi ∗ W y,pl ∗ k y,Θ ∗ f y<br />

γ M,fi<br />

= 148,01 kNm<br />

=<br />

0,239 ∗ 2787 ∗ 0,625 ∗ 35,5<br />

1,0<br />

= 14801 kNcm<br />

M fi,Ed<br />

= 120,05 = 0,811 = 81,1 % → Θ = 550℃ is the critical <strong>temperature</strong><br />

M b,fi,t,Rd 148,01<br />

V. Emphasizing the critical <strong>temperature</strong> and the fire resistance<br />

<strong>Design</strong> assumptions:<br />

-partial exposure<br />

-density <strong>of</strong> <strong>steel</strong>: ρ a = 7850 kg/m 3<br />

-increment <strong>of</strong> <strong>temperature</strong> rise: ∆t = 4s<br />

-heat transfer coefficient: α c = 25 W<br />

m 2 K<br />

-configuration factor: Φ = 1,0<br />

-emissivity <strong>of</strong> the <strong>steel</strong> surface: ε m = 0,7<br />

-fire emissivity: ε f = 1,0<br />

-Boltzmann’s constant: σ = 5,67 ∗ 10 −8<br />

Section factors:<br />

⌈ A m<br />

V ⌉ b<br />

= 113 1 m ; A m<br />

V = 140 1 m<br />

W<br />

m 2 K<br />

k sh = 0,9 ∙<br />

⌈ A m<br />

V<br />

⌉<br />

b<br />

A mV<br />

= 0,9 ∙ 113<br />

140 = 0,726


Temperature [°C]<br />

Functions used in MS Excel calculations<br />

Specific heat <strong>of</strong> <strong>steel</strong> for 20 0 C ≤ θ a < 600 0 C: c a = 425 + 7,73 ∙ 10 −1 ∙ θ a − 1,69 ∙ 10 −3 ∙ θ a 2 +<br />

2,22 ∙ 10 −6 ∙ θ a<br />

3 J<br />

kgK<br />

Net design heat flux: ḣ<br />

net,d = ḣ<br />

conv + ḣ<br />

rad<br />

Convection flux: ḣ<br />

conv = α c (Θ g − Θ m )<br />

Radiation heat flux: ḣ<br />

net,r = Φ ∙ ε m ∙ ε f ∙ σ ∙ [(Θ r + 273) 4 − (Θ m + 273) 4 ]<br />

Gas <strong>temperature</strong>: Θ g = 20 + 345 ∙ log 10 (8 ∙ t + 1)<br />

Temperature increase: ΔΘ a,t = k sh ∙<br />

Am<br />

V<br />

c a ∙ρ a<br />

∙ ḣ<br />

net,d ∙ Δ<br />

Results <strong>of</strong> <strong>steel</strong> <strong>temperature</strong> calculations:<br />

Air and element's <strong>temperature</strong><br />

<strong>steel</strong><br />

air<br />

900,0<br />

800,0<br />

700,0<br />

600,0<br />

500,0<br />

400,0<br />

300,0<br />

200,0<br />

100,0<br />

0,0<br />

0,0 10,0 20,0 30,0<br />

Time [min]<br />

Graph 1. Increase in <strong>steel</strong> <strong>temperature</strong> in time<br />

The critical <strong>steel</strong> <strong>temperature</strong> is reached after 816 seconds (13,6 min).


VI.<br />

Fire paint design<br />

Promapaint SC4 was chosen as fire protection paint. Three different assumptions were set:<br />

-fire resistance R15<br />

Figure 7. Fire paint specification – R15<br />

-fire resistance R30<br />

Figure 8. Fire paint specification – R30


-fire resistance R60<br />

Figure 9. Fire paint specification – R60<br />

R15 R30 R60<br />

Layer thickness [μm] 188 191 1094<br />

Amount <strong>of</strong> pain [l/m 2 ] 0,31 0,32 1,82<br />

Table 1. Fire paint specifications<br />

VII. Results<br />

Utilisation factor for<br />

normal conditions<br />

<strong>Design</strong><br />

section<br />

Critical moment in<br />

ambient temp.<br />

Med/Med,fire<br />

Critical<br />

<strong>temperature</strong><br />

Utilistaion for<br />

fire conditions<br />

Fire<br />

resistance<br />

time<br />

74 % IPE 550 349,05 kNm 2,36 550⁰C 81,1 % 816 s<br />

Table 2. Final results <strong>of</strong> the calculations

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!