17.05.2015 Views

EB205 Motorola GaAs Rectifiers Offer High Efficiency in a 1 ... - ECA

EB205 Motorola GaAs Rectifiers Offer High Efficiency in a 1 ... - ECA

EB205 Motorola GaAs Rectifiers Offer High Efficiency in a 1 ... - ECA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

I<br />

<br />

In order to illustrate the speed of the <strong>GaAs</strong> part, observe the<br />

waveform of Figure 3 (Figure 4 is an expanded portion of<br />

Figure 3). Note the fast recovery, reduced r<strong>in</strong>g<strong>in</strong>g, and low<br />

peak reverse recovery current <strong>GaAs</strong> technology offers. The<br />

actual values of the fast recovery <strong>GaAs</strong> rectifiers are shown <strong>in</strong><br />

Table 3.<br />

At maximum output power, the converter obta<strong>in</strong>ed an<br />

efficiency of close to 93% at a switch<strong>in</strong>g frequency of 1.2 MHz<br />

while the diode recovered <strong>in</strong> 52 nsec at a peak recovery<br />

current of 1.34 amps.<br />

Table 3. Performance <strong>Offer</strong>ed By <strong>GaAs</strong><br />

at 1.29 MHz, 460 Watts<br />

Parameter<br />

Value<br />

Frequency (MHz) = 1.29<br />

Current Slew Rate (Amps/nsec) = –0.0711029<br />

Current Slew Rate (Amps/µsec) = –71.102941<br />

trr (nsec) = 52<br />

Ipk (max) = 10.24<br />

IRMpk (max) = –1.34<br />

<strong>GaAs</strong> rectifiers not only <strong>in</strong>crease converter efficiency, they<br />

also allow operation at switch<strong>in</strong>g frequencies <strong>in</strong> excess of<br />

1 MHz. Figure 5 shows the smooth waveforms of the<br />

converter’s primary side components. The zero voltage<br />

switch<strong>in</strong>g results <strong>in</strong> a smooth dra<strong>in</strong> to source waveform while<br />

the primary current shows how the rectifier’s fast recovery<br />

results <strong>in</strong> low peak stress on the switch<strong>in</strong>g transistors which<br />

enhances the reliability of the converter and reduces<br />

generated EMI.<br />

p (AMPS)<br />

2<br />

1<br />

0<br />

Primary Current and Dra<strong>in</strong> to Source Voltage<br />

IP<br />

VDS<br />

500<br />

400<br />

300<br />

200<br />

VDS (VOLTS)<br />

12<br />

MGR10180 Current<br />

– 1<br />

100<br />

CURRENT<br />

10<br />

8<br />

6<br />

4<br />

– 2<br />

0<br />

1<br />

0<br />

2 3 4<br />

TIME (SECONDS)<br />

Figure 5. <strong>GaAs</strong> Diodes <strong>Offer</strong> Clean<br />

Primary Side Waveforms<br />

CURRENT<br />

2<br />

0<br />

– 2<br />

0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1000<br />

2000<br />

TIME (ns)<br />

3000 4000<br />

Figure 3. <strong>GaAs</strong> <strong>Rectifiers</strong> Produce Very<br />

Clean Waveforms; Even at 1.2 MHz!!<br />

MGR10180 Expanded Current<br />

– 2<br />

1800<br />

1850<br />

1900<br />

TIME (ns)<br />

1950 2000<br />

Figure 4. Performance Advantage <strong>Offer</strong>ed by<br />

<strong>GaAs</strong> <strong>Rectifiers</strong> is Shown <strong>in</strong> This Expanded View<br />

of the Reverse Recovery Current Waveform<br />

SUMMARY<br />

New <strong>GaAs</strong> technology <strong>in</strong> rectifiers allows efficient power<br />

process<strong>in</strong>g at high frequencies. The 180 V platform offered by<br />

<strong>Motorola</strong> can <strong>in</strong>crease power density <strong>in</strong> 48 Vdc<br />

telecommunications and ma<strong>in</strong>frame computer applications.<br />

Densities as high as 90 Watt/cubic <strong>in</strong>ch have been achieved<br />

us<strong>in</strong>g <strong>GaAs</strong> rectifiers. [1] These devices allow designers to<br />

switch converters at 1 MHz without generat<strong>in</strong>g large amounts<br />

of EMI.<br />

ACKNOWLEDGMENTS<br />

The author wishes to thank Mike Horgan of Magnetics Inc.<br />

for his contributions to this design. Mike was responsible for<br />

design<strong>in</strong>g and provid<strong>in</strong>g materials for the power transformer,<br />

<strong>in</strong>ductor and gate drive transformer. Special thanks goes out<br />

to Allen Richter of Kerrigan Lewis who provided all of the Litz<br />

wire for the transformer and Nancy Reynolds of Kemet<br />

Electronics for the tantalum chip capacitors used on the<br />

output. F<strong>in</strong>ally, the efforts of Jeff Morud and Chris Gass of<br />

<strong>Motorola</strong> were greatly appreciated as they proved vital <strong>in</strong><br />

support<strong>in</strong>g the MC34067 IC performance.<br />

4 MOTOROLA

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!