17.05.2015 Views

EB205 Motorola GaAs Rectifiers Offer High Efficiency in a 1 ... - ECA

EB205 Motorola GaAs Rectifiers Offer High Efficiency in a 1 ... - ECA

EB205 Motorola GaAs Rectifiers Offer High Efficiency in a 1 ... - ECA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SEMICONDUCTOR ENGINEERING BULLETIN<br />

Order this document<br />

by <strong>EB205</strong>/D<br />

<br />

<br />

By Scott Deuty<br />

<strong>Motorola</strong> Inc.<br />

<br />

Efficient power conversion circuitry requires rectifiers that<br />

exhibit low forward voltage drop, low reverse recovery current,<br />

and fast recovery time. Silicon has been the material of choice<br />

for fast, efficient rectification <strong>in</strong> switched power applications.<br />

However, technology is near<strong>in</strong>g the theoretical limit for<br />

optimiz<strong>in</strong>g reverse recovery <strong>in</strong> silicon devices. A new material<br />

is required to <strong>in</strong>crease switch<strong>in</strong>g speed.<br />

To <strong>in</strong>crease speed, materials with faster carrier mobility are<br />

needed. Gallium Arsenide (<strong>GaAs</strong>) has a carrier mobility which<br />

is five times that of silicon [1]. S<strong>in</strong>ce Schottky technology for<br />

silicon devices is difficult to produce at voltages above 200 V,<br />

development has focused on <strong>GaAs</strong> devices with rat<strong>in</strong>gs of<br />

180 V and higher. The advantages realized by us<strong>in</strong>g <strong>GaAs</strong><br />

rectifiers <strong>in</strong>clude fast switch<strong>in</strong>g and reduced reverse recovery<br />

related parameters. An additional benefit is the variation of<br />

parameters with temperature is much less than Silicon based<br />

rectifiers.<br />

<strong>Motorola</strong>’s 180 V and 250 V <strong>GaAs</strong> rectifiers are be<strong>in</strong>g used<br />

<strong>in</strong> power converters that produce 24, 36 and even 48 Vdc<br />

outputs. Converters produc<strong>in</strong>g 48 Vdc are especially popular<br />

<strong>in</strong> telecommunications and ma<strong>in</strong>frame computer applications.<br />

To show the advantages of the <strong>GaAs</strong> parts, a 48 Volt DC–DC<br />

converter was constructed and the performance of the <strong>GaAs</strong><br />

rectifiers was compared to similar silicon–based parts at a<br />

switch<strong>in</strong>g frequency of 1 MHz. An output power level of<br />

450 watts was chosen to profile the MGR1018 near its 8 amp<br />

current rat<strong>in</strong>g. The converter was tested with an <strong>in</strong>put voltage<br />

level of 400 volts to simulate the commonly used rail produced<br />

by Power Factor Correction boost converters.<br />

For efficient power conversion at the chosen switch<strong>in</strong>g<br />

frequency, power and voltage levels, the chosen topology for<br />

the 48 Vdc converter testbed is the half bridge, zero voltage<br />

switched, converter shown <strong>in</strong> Figure 1. This configuration<br />

would allow for MOSFETs with voltage rat<strong>in</strong>gs to handle V<strong>in</strong> or<br />

400 Vdc (as opposed to 2 V<strong>in</strong>) and allow the MGR1018 diodes<br />

to operate near rated levels at a switch<strong>in</strong>g frequency of 1 MHz.<br />

In addition, a testbed could quickly be developed us<strong>in</strong>g the<br />

exist<strong>in</strong>g <strong>Motorola</strong> MC34076 high performance, resonant<br />

mode, control IC and available demonstration board [2].<br />

RT<br />

CT<br />

VCC<br />

V<strong>in</strong><br />

ROSC<br />

R1<br />

R2<br />

OSC CHARGE<br />

1<br />

COSC OSC<br />

RC<br />

2<br />

IOSO<br />

3<br />

RVFO<br />

E/A 6<br />

OUT<br />

C<strong>in</strong>t<br />

E/A INV<br />

7<br />

E/A NON INV<br />

5.1 V VREF<br />

8<br />

5<br />

MC34067<br />

16<br />

11<br />

SOFT<br />

START<br />

ONE<br />

SHOT<br />

15<br />

VCC<br />

OUTPUT A (5)<br />

14<br />

PWR<br />

GND<br />

13<br />

12<br />

OUTPUT B (1)<br />

10<br />

1N5819 x 2<br />

FAULT<br />

INPUT<br />

Cb<br />

(9)<br />

(10)<br />

(7)<br />

Rg1<br />

18 V<br />

ZENERS<br />

Rg2<br />

(6)<br />

18 V<br />

ZENERS<br />

Rb<br />

MTP8N50E<br />

N CHANNEL<br />

Ra<br />

GATE<br />

GATE<br />

SOURCE<br />

DRAIN<br />

SOURCE<br />

1N5819 x 4<br />

DRAIN<br />

Q2<br />

Q1<br />

MTP8N50E<br />

N CHANNEL<br />

Rc<br />

Ns<br />

T3<br />

C<strong>in</strong>3<br />

C<strong>in</strong>2<br />

T3<br />

Np<br />

T3<br />

C<strong>in</strong>1<br />

Np<br />

2<br />

1<br />

MGR1018<br />

D2<br />

T1<br />

3<br />

Ns<br />

4<br />

5<br />

Ns<br />

6<br />

D1<br />

MGR1018<br />

L<br />

Figure 1. Half Bridge, Zero Voltage Switched Converter<br />

© MOTOROLA<br />

<strong>Motorola</strong>, Inc. 1995<br />

1


<strong>GaAs</strong> PERFORMANCE RESULTS<br />

Performance results for output power levels of 73 watts to<br />

460 watts are presented <strong>in</strong> Figures 2 through 5 and Tables 2<br />

and 3.<br />

In Table 1, shows how 10 amp, MGR1018 <strong>GaAs</strong> rectifiers<br />

offer an advantage over silicon parts with a 20 amp current<br />

rat<strong>in</strong>g. (Note: only one side of the silicon device was used<br />

for equal comparison.) The efficiency ga<strong>in</strong>s of the <strong>GaAs</strong><br />

rectifiers decrease with output power somewhat due to its<br />

larger forward voltage drop. However, the silicon devices<br />

did not perform above 143 watts. This was attributed to the<br />

large amount of r<strong>in</strong>g<strong>in</strong>g due the large reverse recovery peak<br />

exhibited by the silicon devices. The peak current<br />

generated a high voltage spike that <strong>in</strong> turn forced the<br />

MBR20200 <strong>in</strong>to a zener mode and destroyed the part.<br />

Figure 2 shows the efficiency achieved from the<br />

converter over a power output of 96 to 460 watts. The<br />

switch<strong>in</strong>g frequency of the <strong>in</strong>ductor was 1.2 MHz throughout<br />

this power range. Through use of zero voltage switch<strong>in</strong>g by<br />

the MC34067 IC and the fast recovery times of the rectifiers,<br />

the converter was able to achieve efficiencies <strong>in</strong> excess of<br />

91% with a maximum of 95.4%! Note that the <strong>in</strong>crease <strong>in</strong><br />

<strong>GaAs</strong> efficiency <strong>in</strong> Figure 2 over Table 1 is due to the use of<br />

both leads of the MGR1018 part <strong>in</strong> Figure 2. In Table 1, one<br />

outer lead is connected on the s<strong>in</strong>gle die MGR10180 (each<br />

outer leg is attached to the s<strong>in</strong>gle die) and only one outer<br />

lead is connected on the dual die MBR20200. This allows<br />

for comparison of a silicon MBR20200, die rated at 10 amps<br />

(one half of device) to a 10 amp rated MGR1018. After<br />

runn<strong>in</strong>g the silicon comparison, both outer leads of the test<br />

socket were connected for maximum efficiency realized <strong>in</strong><br />

Figure 2.<br />

Table 1. Performance Benefits Realized<br />

When Us<strong>in</strong>g <strong>GaAs</strong> versus Silicon <strong>Rectifiers</strong><br />

(400 Volts Input, 1.1 to 1.29 MHz Converter Frequency)<br />

Output<br />

Power<br />

Center Tap<br />

Si<br />

MBR20200<br />

<strong>Efficiency</strong><br />

S<strong>in</strong>gle<br />

<strong>GaAs</strong><br />

MGR1018<br />

<strong>Efficiency</strong><br />

<strong>GaAs</strong><br />

Advantage<br />

73 Watts 81.6% 84.2% 2.6%<br />

95 Watts 87.2% 91.2% 3.9%<br />

119 Watts 91.4% 91.9% 0.5%<br />

143 Watts 92.7% 92.7% 0.0%<br />

96<br />

MGR1018 <strong>Efficiency</strong> and Regulation at 375 Vdc Input Level<br />

95.5<br />

95.4%<br />

95<br />

94.5<br />

94.5%<br />

EFFICIENCY (%)<br />

94<br />

93.5<br />

93<br />

92.5<br />

92<br />

91.5<br />

91<br />

96 119 143 166 189 237 264 287 309 343 380 427 449 455 462<br />

OUTPUT POWER (WATTS)<br />

Figure 2. <strong>GaAs</strong> <strong>Offer</strong>s <strong>High</strong> <strong>Efficiency</strong> at<br />

Switch<strong>in</strong>g Frequencies Above 1 MHz<br />

(Input Voltage Rang<strong>in</strong>g from 375 Vdc to 405 Vdc)<br />

2 MOTOROLA


Component<br />

Table 2. Parts List<br />

Reference<br />

Designator Part Value 1 Value 2<br />

Transformer T1 Core<br />

Ma<strong>in</strong> Power Path (Bolded on Schematic)<br />

Magnetics Inc. (1)<br />

K 43515–EC<br />

Transformer T1 Primary Turns: Np = 46<br />

Transformer T1 Secondary Turns: Ns = 13<br />

Inductor L Core Magnetics Inc. 55121–A2<br />

Inductor L W<strong>in</strong>d<strong>in</strong>gs Turns: NL = 12<br />

<br />

Wire:<br />

1–180 strand, #44 AWG<br />

Litz (2)<br />

Wire:<br />

1–1000 strand, #48 AWG<br />

Litz (2)<br />

Wire:<br />

1–175 strand, #38 AWG<br />

Litz (2)<br />

Transistors Q1 & Q2 MTP8N50E 8 Amp 500 V<br />

<strong>Rectifiers</strong> D1 & D2 MGR1018 10 Amp 180 V<br />

Output Capacitors (3)<br />

Input Voltage Divider<br />

Capacitors<br />

Cout<br />

T491X685M050AS<br />

(Qty 6)<br />

6–6.8 µF 50 V<br />

C<strong>in</strong>1 & C<strong>in</strong>2 polypropylene 4–0.1 µF 400 Vdc, 250 Vac<br />

Input Capacitor C<strong>in</strong>3 ceramic 0.01 µF 400 V<br />

Gate Drive<br />

Transformer T3 Core Magnetics Inc. K EP7<br />

Transformer T3 All W<strong>in</strong>d<strong>in</strong>gs Turns: 8 #38 AWG Magnet<br />

Resistors Rg1 & Rg2 film resistor 5.2 Ω 1/8 watt<br />

Zeners 1N4747 18 V<br />

Clamp Diodes 1N5819 40 V<br />

Current Sense<br />

Filter Resistor Ra film 800 Ω<br />

Sense Resistor Rb film 670 Ω<br />

Impedance Match<strong>in</strong>g Rc film 100 Ω<br />

Filter Cap Cb ceramic 47.5 pF<br />

Transformer<br />

T3<br />

Coilcraft<br />

H7919–A<br />

Np = 1<br />

Ns = 200<br />

<strong>Rectifiers</strong> 1N5819 40 V<br />

Control IC U1 MC34067<br />

Divider Resistors R1 & R2 film resistor<br />

Control IC/Support Components<br />

<strong>Motorola</strong> Inc.<br />

P. O. Box 20912<br />

Phoenix, AZ 85036<br />

R1 = 10 kΩ<br />

R2 = 1.2 kΩ<br />

Integrator Cap C<strong>in</strong>t ceramic 4700 pF<br />

Tim<strong>in</strong>g Cap CT ceramic 220 pF<br />

Tim<strong>in</strong>g Res RT film 2.3 kΩ<br />

Oscillator Cap COSC ceramic 220 pF<br />

Oscillator Cap ROSC film 31.77 kΩ<br />

Soft Start Cap Soft Start ceramic 47 pF<br />

Control Res RVFO film 7.47 kΩ<br />

(1) Magnetics, Inc., P. O. Box 391, Butler, PA, 16003–0391; (412) 282–8282<br />

(2) Kerrigan Lewis Wire Products, 4421 W. Rice Street., Chicago, IL 60651–3487 (312) 772–7208<br />

(3) Kemit Electronics Corporation, P. O. Box 5928, Greenville, SC 29606, (803) 963–6300<br />

<strong>High</strong> Performance, Zero<br />

Voltage Switch, Resonant<br />

Mode Controller<br />

MOTOROLA<br />

3


I<br />

<br />

In order to illustrate the speed of the <strong>GaAs</strong> part, observe the<br />

waveform of Figure 3 (Figure 4 is an expanded portion of<br />

Figure 3). Note the fast recovery, reduced r<strong>in</strong>g<strong>in</strong>g, and low<br />

peak reverse recovery current <strong>GaAs</strong> technology offers. The<br />

actual values of the fast recovery <strong>GaAs</strong> rectifiers are shown <strong>in</strong><br />

Table 3.<br />

At maximum output power, the converter obta<strong>in</strong>ed an<br />

efficiency of close to 93% at a switch<strong>in</strong>g frequency of 1.2 MHz<br />

while the diode recovered <strong>in</strong> 52 nsec at a peak recovery<br />

current of 1.34 amps.<br />

Table 3. Performance <strong>Offer</strong>ed By <strong>GaAs</strong><br />

at 1.29 MHz, 460 Watts<br />

Parameter<br />

Value<br />

Frequency (MHz) = 1.29<br />

Current Slew Rate (Amps/nsec) = –0.0711029<br />

Current Slew Rate (Amps/µsec) = –71.102941<br />

trr (nsec) = 52<br />

Ipk (max) = 10.24<br />

IRMpk (max) = –1.34<br />

<strong>GaAs</strong> rectifiers not only <strong>in</strong>crease converter efficiency, they<br />

also allow operation at switch<strong>in</strong>g frequencies <strong>in</strong> excess of<br />

1 MHz. Figure 5 shows the smooth waveforms of the<br />

converter’s primary side components. The zero voltage<br />

switch<strong>in</strong>g results <strong>in</strong> a smooth dra<strong>in</strong> to source waveform while<br />

the primary current shows how the rectifier’s fast recovery<br />

results <strong>in</strong> low peak stress on the switch<strong>in</strong>g transistors which<br />

enhances the reliability of the converter and reduces<br />

generated EMI.<br />

p (AMPS)<br />

2<br />

1<br />

0<br />

Primary Current and Dra<strong>in</strong> to Source Voltage<br />

IP<br />

VDS<br />

500<br />

400<br />

300<br />

200<br />

VDS (VOLTS)<br />

12<br />

MGR10180 Current<br />

– 1<br />

100<br />

CURRENT<br />

10<br />

8<br />

6<br />

4<br />

– 2<br />

0<br />

1<br />

0<br />

2 3 4<br />

TIME (SECONDS)<br />

Figure 5. <strong>GaAs</strong> Diodes <strong>Offer</strong> Clean<br />

Primary Side Waveforms<br />

CURRENT<br />

2<br />

0<br />

– 2<br />

0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1000<br />

2000<br />

TIME (ns)<br />

3000 4000<br />

Figure 3. <strong>GaAs</strong> <strong>Rectifiers</strong> Produce Very<br />

Clean Waveforms; Even at 1.2 MHz!!<br />

MGR10180 Expanded Current<br />

– 2<br />

1800<br />

1850<br />

1900<br />

TIME (ns)<br />

1950 2000<br />

Figure 4. Performance Advantage <strong>Offer</strong>ed by<br />

<strong>GaAs</strong> <strong>Rectifiers</strong> is Shown <strong>in</strong> This Expanded View<br />

of the Reverse Recovery Current Waveform<br />

SUMMARY<br />

New <strong>GaAs</strong> technology <strong>in</strong> rectifiers allows efficient power<br />

process<strong>in</strong>g at high frequencies. The 180 V platform offered by<br />

<strong>Motorola</strong> can <strong>in</strong>crease power density <strong>in</strong> 48 Vdc<br />

telecommunications and ma<strong>in</strong>frame computer applications.<br />

Densities as high as 90 Watt/cubic <strong>in</strong>ch have been achieved<br />

us<strong>in</strong>g <strong>GaAs</strong> rectifiers. [1] These devices allow designers to<br />

switch converters at 1 MHz without generat<strong>in</strong>g large amounts<br />

of EMI.<br />

ACKNOWLEDGMENTS<br />

The author wishes to thank Mike Horgan of Magnetics Inc.<br />

for his contributions to this design. Mike was responsible for<br />

design<strong>in</strong>g and provid<strong>in</strong>g materials for the power transformer,<br />

<strong>in</strong>ductor and gate drive transformer. Special thanks goes out<br />

to Allen Richter of Kerrigan Lewis who provided all of the Litz<br />

wire for the transformer and Nancy Reynolds of Kemet<br />

Electronics for the tantalum chip capacitors used on the<br />

output. F<strong>in</strong>ally, the efforts of Jeff Morud and Chris Gass of<br />

<strong>Motorola</strong> were greatly appreciated as they proved vital <strong>in</strong><br />

support<strong>in</strong>g the MC34067 IC performance.<br />

4 MOTOROLA


REFERENCES<br />

[1] S. Delaney, A. Salih, C. Lee, “<strong>GaAs</strong> Diodes Improve<br />

<strong>Efficiency</strong> of 500 kHz DC–DC Converter,” pp 10,11,<br />

Power Conversion Intelligent Motion, August 95.<br />

[2] Chris Gass, et. al. “A New <strong>High</strong>–Performance Control IC<br />

for Zero Voltage Switch<strong>in</strong>g Resonant Mode Controller,<br />

HFPC, May 1992 proceed<strong>in</strong>gs.<br />

[3] “MC34067 Data Sheet,” <strong>Motorola</strong> L<strong>in</strong>ear/Interface ICs<br />

Data Book DL128/D Rev 4, Vol. I 1993, p 3–278.<br />

<br />

<strong>Motorola</strong> reserves the right to make changes without further notice to any products here<strong>in</strong>. <strong>Motorola</strong> makes no warranty, representation or guarantee regard<strong>in</strong>g<br />

the suitability of its products for any particular purpose, nor does <strong>Motorola</strong> assume any liability aris<strong>in</strong>g out of the application or use of any product or circuit, and<br />

specifically disclaims any and all liability, <strong>in</strong>clud<strong>in</strong>g without limitation consequential or <strong>in</strong>cidental damages. “Typical” parameters can and do vary <strong>in</strong> different<br />

applications. All operat<strong>in</strong>g parameters, <strong>in</strong>clud<strong>in</strong>g “Typicals” must be validated for each customer application by customer’s technical experts. <strong>Motorola</strong> does<br />

not convey any license under its patent rights nor the rights of others. <strong>Motorola</strong> products are not designed, <strong>in</strong>tended, or authorized for use as components <strong>in</strong><br />

systems <strong>in</strong>tended for surgical implant <strong>in</strong>to the body, or other applications <strong>in</strong>tended to support or susta<strong>in</strong> life, or for any other application <strong>in</strong> which the failure of<br />

the <strong>Motorola</strong> product could create a situation where personal <strong>in</strong>jury or death may occur. Should Buyer purchase or use <strong>Motorola</strong> products for any such<br />

un<strong>in</strong>tended or unauthorized application, Buyer shall <strong>in</strong>demnify and hold <strong>Motorola</strong> and its officers, employees, subsidiaries, affiliates, and distributors harmless<br />

aga<strong>in</strong>st all claims, costs, damages, and expenses, and reasonable attorney fees aris<strong>in</strong>g out of, directly or <strong>in</strong>directly, any claim of personal <strong>in</strong>jury or death<br />

associated with such un<strong>in</strong>tended or unauthorized use, even if such claim alleges that <strong>Motorola</strong> was negligent regard<strong>in</strong>g the design or manufacture of the part.<br />

<strong>Motorola</strong> and are registered trademarks of <strong>Motorola</strong>, Inc. <strong>Motorola</strong>, Inc. is an Equal Opportunity/Affirmative Action Employer.<br />

MOTOROLA<br />

5


How to reach us:<br />

USA / EUROPE: <strong>Motorola</strong> Literature Distribution;<br />

JAPAN: Nippon <strong>Motorola</strong> Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,<br />

P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315<br />

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 HONG KONG: <strong>Motorola</strong> Semiconductors H.K. Ltd.; 8B Tai P<strong>in</strong>g Industrial Park,<br />

INTERNET: http://Design–NET.com 51 T<strong>in</strong>g Kok Road, Tai Po, N.T., Hong Kong. 852–26629298<br />

6 ◊<br />

MOTOROLA <strong>EB205</strong>/D

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!