01.06.2015 Views

Introduction to Optical Wireless communicaitons - Northumbria ...

Introduction to Optical Wireless communicaitons - Northumbria ...

Introduction to Optical Wireless communicaitons - Northumbria ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Free space optics<br />

(<strong>Optical</strong> <strong>Wireless</strong> Communications)<br />

S. Rajbhandari<br />

<strong>Optical</strong> Communications Research Group,<br />

School of Computing, Engineering and Information Sciences,<br />

<strong>Northumbria</strong> University, UK<br />

http://soe.northumbria.ac.uk/ocr/<br />

Sujan.rajbhandari@northumbria.ac.uk


His<strong>to</strong>ry of <strong>Optical</strong> Communication<br />

• Alexander Graham Bell 1878 more<br />

than 25 years before Reginald<br />

Fessenden did the same thing<br />

with radio 1 .<br />

Diagram of pho<strong>to</strong>phone from Bell paper 1<br />

• Development of LASER in 60’s, optical fibre and semiconduc<strong>to</strong>r has made the<br />

modern communication possible.<br />

• The modern era of indoor wireless optical communications was proposed in<br />

1979 by F.R. Gfeller and U. Bapst 2 . In fact it was the first LAN proposed using<br />

any medium.<br />

1<br />

Alexander Graham BELL, American Journal of Sciences, Third Series, vol. XX, no.118, Oct. 1880, pp. 305- 324.<br />

2<br />

F. R. Gfeller and U. Bapst, Proceedings of the IEEE, vol. 67, pp. 1474- 1486, 1979.


His<strong>to</strong>ry of OWC<br />

800BC Fire beacons (ancient Greeks and Romans)<br />

150BC Smoke signals (American Indians)<br />

1880 Alexander Graham Bell demonstrated the pho<strong>to</strong>phone 1 – 1 st FSO<br />

(THE GENESIS)<br />

1960s Invention of laser (revolutionized FSO), and optical fibre<br />

1970s FSO mainly used in secure military applications<br />

1979 Indoor OWM systems – F R Gfeller and G Bapst<br />

1993 Open standard for IR data commun. The Infrared Data Association<br />

2003 The Visible Light Communications Consortium (VLCC) – Japan<br />

2008 “hOME Gigabit Access” (OMEGA) Project – EU - Develop global<br />

standards for home networking (infrared and VLC technologies).<br />

2009 IEEE802.15.7 - Call for Contributions on IEEE802.15.7 VLC.


Access Network Bottleneck<br />

LAST<br />

MILE<br />

54 Mbps/100 Mbps/GbE<br />

TeraGig Bandwidth<br />

Corporate LAN<br />

Universities<br />

Hospitals<br />

Businesses<br />

Long Haul Fibre Network<br />

Access<br />

Network<br />

2.5G – 10G<br />

Metro Edge<br />

Metro<br />

Network<br />

•Bandwidth hungry applications<br />

•100M/GbE LANS<br />

•HDTV<br />

Bottleneck<br />

•Sufficient bandwidth on most<br />

routes<br />

•DWDM used <strong>to</strong> upgrade<br />

congested routes<br />

•Abundant capacity<br />

•Falling bandwidth<br />

price


RF Bandwidth Congestions


Access Network Technologies<br />

Bandwidth<br />

10 Gbps<br />

FREE SPACE OPTICS<br />

FTTH<br />

1 Gbps<br />

100 Mbps DSL<br />

UWB<br />

10 Mbps<br />

LMDS<br />

1 Mbps<br />

DSL<br />

PLC<br />

50 m 500 m 1 km 2 km 5 km +<br />

Distance from metro fibre route


OWC: Overview<br />

• light beams (visible and infrared)<br />

• propagated through the free space.<br />

• <strong>Optical</strong> transmitter<br />

- Light Emitting Diodes (LED)<br />

- Laser Diodes (LD)<br />

Typical optical wireless system components<br />

• <strong>Optical</strong> receiver<br />

- p-i-n Pho<strong>to</strong>diodes.<br />

- Avalanche Pho<strong>to</strong>diodes<br />

• Links<br />

- Line-of-sight(LOS)<br />

- Non-LOS<br />

- Hybrid<br />

<strong>Optical</strong> wireless connectivity 1<br />

1<br />

M. Kavehrad, Scientific American Magazine, July 2007, pp. 82-87.


OWS<br />

Source: T. Lüftner, "Edge Position Modulation for <strong>Wireless</strong> Infrared<br />

Communications," PhD thesis, Friedrich-Alexander University, 2005.


Comparison with RF<br />

Property Radio Infrared Implication for IR<br />

Bandwidth<br />

regulated<br />

Passes through<br />

walls<br />

Yes No Approval not required<br />

world-wide compatibility<br />

Yes No Inherently secure carrier<br />

reuse in adjacent rooms.<br />

Multipath fading Yes No Simple link design<br />

Multipath Yes Yes Problematic at high data<br />

dispersion<br />

rates<br />

Path loss High High<br />

Dominant noise<br />

Average power<br />

proportional <strong>to</strong><br />

Other<br />

users<br />

BackgroundShort range<br />

f(t)is the input signal with<br />

high peak-average radio


What OWC offers<br />

• Abundance bandwidth High data rate<br />

• License free operation<br />

• High Directivity small cell size can support multiple devices<br />

within a room<br />

• Free from electromagnetic interference suitable for hospital and<br />

library environment.<br />

• cannot penetrate opaque surface like wall Spatial confinement <br />

Secure data transmission<br />

• Compatible with optical fibre (last mile bottle neck?)<br />

• Low cost of deployment<br />

• Quick <strong>to</strong> deploy<br />

• Small size, low cost component and low power consumptions.<br />

• Simple transceiver design.<br />

• No multipath fading


Applications<br />

Send signal<br />

Send and receive reflection<br />

Simple<br />

Sensors / IR viewer<br />

Source: Internet<br />

EN0630 – <strong>Optical</strong> Communications System Design – Dr. Hoa Le Minh


Applications<br />

Controlling & signalling<br />

Functional<br />

Mobile communications<br />

Source: Internet


OWC- Applications<br />

Other applications include:<br />

<br />

<br />

<br />

<br />

<br />

Disaster recovery<br />

Fibre communications backup<br />

Video conferencing<br />

Links in difficult terrains<br />

Intelligent transport system (car-<strong>to</strong>car<br />

Communications, ground-<strong>to</strong>train<br />

communications)<br />

Last Mile Connectivity<br />

Multi-campus University<br />

Hospitals


<strong>Optical</strong> <strong>Wireless</strong> Communications<br />

OWC<br />

Indoor<br />

Outdoor<br />

VLC IR VLC IR<br />

- Broadcasting<br />

- LOS/Diffuse<br />

(3-4m, 100Mbps)<br />

- Short range<br />

communications<br />

- Device <strong>to</strong> device<br />

- <strong>Wireless</strong> hotspot<br />

(4m, ~1Gbps)<br />

- Traffic light<br />

- Car-<strong>to</strong>-car<br />

communications<br />

(low speed)<br />

- Free space optics<br />

(2-3km, > 1Gbps)


Classification of Indoor OWC Links


LOS Links<br />

Rx<br />

Narrow low power transmit beam<br />

Narrow field-of-view receiver<br />

Tx<br />

Advantages<br />

Least path loss<br />

No multipath propagation<br />

High data rate<br />

Suitable <strong>to</strong> point-<strong>to</strong>-point<br />

communications only.<br />

Problems<br />

Noise is limiting fac<strong>to</strong>r<br />

Possibility of blocking/shadowing<br />

Tracking necessary<br />

No/limited mobility


Diffuse Links<br />

Tx<br />

Rx<br />

Use multiple reflections of the<br />

optical beam on surrounding<br />

surfaces such as ceilings, walls, and<br />

furniture.<br />

transmitter and receiver not<br />

necessarily directed one <strong>to</strong>wards the<br />

other.<br />

<br />

<br />

Robust <strong>to</strong> blocking and shadowing<br />

Allows roaming<br />

Problems:<br />

High path loss.<br />

Multiple paths (reflections)<br />

- Result in inter-symbol interference<br />

(ISI).<br />

High power penalty due <strong>to</strong> ISI.<br />

Limited bandwidth- Due <strong>to</strong> large<br />

capacitance of the large area detec<strong>to</strong>rs


Geometry LOS propagation model<br />

Transmitter<br />

ϕ<br />

d<br />

ψ<br />

ψ c<br />

Receiver


Propagation types and definitions<br />

Definitions<br />

Input<br />

– Transmitter parameters<br />

• Average optical power transmitted (Pt)<br />

• Half power angle (Φ)<br />

• Lambert’s mode number (m l )<br />

– Receiver parameters<br />

• Field Of View (FOV), Ψ<br />

• Receiver effective area (A eff )<br />

• Receiver sensitivity (R)<br />

Output<br />

– Average optical received power (P r )<br />

– Geometrical attenuation<br />

– Channel gain, H(0)<br />

– Link Margin


<strong>Optical</strong> Parameters<br />

Average optical power:<br />

Signal-<strong>to</strong>-noise-ratio:<br />

DC channel gain:


LOS/WLOS link margin analysis<br />

The channel gain (response at null frequency) is:<br />

Geometrical attenuation in dB:<br />

d : distance transmitter/receiver<br />

φ: semi-angle of transmission<br />

ψ : semi-angle of reception<br />

P t : transmitted power<br />

Average optical received power P r :<br />

Link margin M l :


Challenges (Indoor)<br />

Challenges Causes (Possible ) Solutions<br />

Power limitation Eye and skin safety. Power efficient modulation techniques,<br />

holographic diffuser, transreceiver at 1500ns<br />

band<br />

Noise<br />

Intense ambient light<br />

(artificial/ natural)<br />

<strong>Optical</strong> and electrical band pass filters,<br />

Error control codes<br />

Intersymbol<br />

interference (ISI)<br />

No/Limited mobility<br />

Shadowing<br />

Blocking<br />

Limited data rate<br />

Multipath propagation<br />

(non-LOS links)<br />

Beam confined <strong>to</strong> small<br />

area.<br />

LOS links<br />

Large area pho<strong>to</strong>detec<strong>to</strong>rs<br />

Equalization, Multi-Beam Transmitter<br />

Wide angle optical transmitter , MIMO<br />

transceiver.<br />

Diffuse links/ Cellular System/ wide<br />

angle optical transmitter<br />

Bandwidth-efficient modulation techniques<br />

/Multiple small area pho<strong>to</strong>-detec<strong>to</strong>r.<br />

Strict link set-up LOS links Diffuse links/ wide angle transmitter


Safety Classifications - Point Source<br />

Emitter


Issue1: Eye- safety<br />

<br />

<br />

<br />

<br />

Infrared communication currently in market<br />

works in two wavelengths: 800 nm and<br />

1550 nm.<br />

At 800 nm (near infrared), light passed<br />

though cornea and lens and focus on <strong>to</strong><br />

the retina.<br />

Invisible light no blinking reflex.<br />

Retina has no pain sensor permanent<br />

eye-damage could occur.<br />

<br />

<br />

<br />

<br />

Infrared transceivers should conform <strong>to</strong> class 1, a few W,(inherently safe) of<br />

the IEC 825 standard. The eye safety limit is a function of the viewing time,<br />

wavelength and apparent size of the optical source.<br />

Class 3B laser can be used by passing the beam through a hologram.<br />

1550 nm is relatively safe as the wavelength is absorbed by the cornea and<br />

lens.<br />

However, the cheap trans-receiver optical devices available in market are in<br />

800 nm band.


Eye- safety- Possible Solutions<br />

Adopt <strong>to</strong> 1500 nm band (expensive solution)<br />

<br />

Power efficient baseband modulation techniques like pulse position<br />

modulation.<br />

Retransmission scheme and error control code .<br />

Power efficiency is also important fac<strong>to</strong>r for battery powered optical wireless<br />

gadgets as the power consumption needs <strong>to</strong> be minimised.<br />

Combining power efficient modulation scheme with the error control code<br />

can be optimum solution.


Issue 2: Artificial Light Interference (ALI)<br />

<strong>Optical</strong> power spectra of common ambient infrared sources. Spectra<br />

have been scaled <strong>to</strong> have the same maximum value.


ALI-Possible Solutions<br />

Differential receiver 1<br />

Differential optical filtering 2<br />

Electrical high pass filter 3,4<br />

Polarisers 5<br />

Angle diversity receiver 6,7<br />

Discrete wavelet transform based denoising 8,9<br />

1<br />

J. R. Barry, PhD Dissertation, University of California at Berkeley, 1992<br />

2<br />

A.J.C Moreira, R. T. Valadas, A. M. De Oliveira Duarte, <strong>Optical</strong> Free Space Communication Links, IEE Colloquium on ,<br />

vol., no., pp.5/1-510, 19 Feb 1996.<br />

3<br />

R. Narasimhan, M. D. Audeh, and J. M. Kahn, IEE Proceedings - Op<strong>to</strong>electronics, vol. 143, pp. 347-354, 1996.<br />

4<br />

A. R. Hayes, Z. Ghassemlooy , N. L. Seed, and R. McLaughlin, IEE Proceedings - Op<strong>to</strong>electronics vol. 147, pp. 295-<br />

300, 2000.<br />

5<br />

S. Lee, Microwave and <strong>Optical</strong> Technology Letters, vol. 40, pp. 228-230, 2004.<br />

6<br />

R. T. Valadas, A. M. R. Tavares, and A. M. Duarte, International Journal of <strong>Wireless</strong> Information Networks, vol. 4, pp.<br />

275-288, 1997 .<br />

7<br />

J. M. Kahn, P. Djahani, A. G. Weisbin, K. T. Beh, A. P. Tang, and R. You, IEEE Communications Magazine, vol. 36, pp.<br />

88-94, 1998.<br />

8<br />

S. Rajbhandari; Z. Ghassemlooy; and M. Angelova, IJEEE, Vol. 5, no. 2 ,pp102-111. 2009.<br />

9<br />

S. Rajbhandari; Z. Ghassemlooy; and M. Angelova, Journal of Lightwave Technology, on print.


Issue 3: Multipath induced ISI<br />

Diffuse Links offers<br />

Robustness <strong>to</strong> blocking and shadowing<br />

Allows roaming<br />

Avoid complex alignment and tracking<br />

between transmitter and receiver<br />

Challenges<br />

<br />

<br />

<br />

<br />

For most surfaces, the light wave is<br />

diffusely reflected (as from a matter<br />

surface) rather than specularly reflected<br />

(as from a mirrored surface).<br />

Pulse spreading beyond symbol duration.<br />

High inter-symbol interference (ISI).<br />

Low data rate and high power penalty.<br />

Amplitude<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Transmitted singal<br />

Received signal<br />

0 0.05 0.1 0.15 0.2<br />

Time (µS)


Channel Model and Performance<br />

without an Equalizer<br />

Characterised by Channel impulse response h(t).<br />

Developed by Carruthers and Kahn 1 .<br />

6(0.1D<br />

)<br />

6<br />

h( t)<br />

=<br />

rms<br />

u(<br />

t)<br />

( t + 0.1D<br />

)<br />

7<br />

rms<br />

where u(t) is the unit step function and D rms RMS<br />

delay spread.<br />

Normalized delay spread,<br />

D =<br />

T<br />

D<br />

rms<br />

T s<br />

T s : bit duration.<br />

<br />

<br />

<br />

The normalized optical power requirement for the<br />

unequalized system increases exponentially with<br />

increasing delay spread.<br />

Modulation techniques having shorter pulse<br />

duration show higher power penalties.<br />

It is practically impossible <strong>to</strong> achieve a<br />

reasonable BER at D T > 0.5 for OOK system.<br />

1<br />

J. B. Carruthers and J. M. Kahn, IEEE Transaction on Communication, vol. 45, pp. 1260-1268, 1997.


Reported Working Systems


Long Distance Systems


Common Baseband Digital Modulation<br />

Techniques<br />

OOK<br />

Simple <strong>to</strong> implement<br />

High average power requirement<br />

Suitable for Bit Rate greater tha 30Mb/s<br />

Performance de<strong>to</strong>reaites at higher bit<br />

rates<br />

PPM<br />

Complex <strong>to</strong> implement<br />

Lower average power requirement<br />

Higher transmission bandwidth<br />

Requires symbol and slot synchronisation<br />

DPIM<br />

Higher average power requirement<br />

compared with PPM<br />

Higher throughput<br />

Built in symbol synchronisation<br />

Performance midway between PPM and<br />

OOK.<br />

DH-PIM<br />

The highest symbol throughput<br />

Lower transmission bandwidth than PPM and DPIM<br />

Built in symbol synchronisation<br />

Higher average power requirement compared with PPM and DPIM.<br />

Complex decoder

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!