02.06.2015 Views

Uncertainty in hydrological models - IMAGe

Uncertainty in hydrological models - IMAGe

Uncertainty in hydrological models - IMAGe

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> <strong>hydrological</strong> <strong>models</strong><br />

Rob Wilby, Department of Geography, Loughborough University (r.l.wilby@lboro.ac.uk)<br />

Loughborough University campus flash flood 28 June 2012<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Certa<strong>in</strong>ty (flood risk)<br />

Lecture theatre<br />

Source: Environment Agency<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Certa<strong>in</strong>ty (flood risk)<br />

Source: Adaptation Sub Committee (2011)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Certa<strong>in</strong>ty<br />

(atmospheric rivers)<br />

The 900 hPa specific humidity fields at 0600 UTC for the top 10<br />

w<strong>in</strong>ter flood events on the River Eden at Temple Sowerby (left)<br />

and AR location for top 10 w<strong>in</strong>ter floods <strong>in</strong> selected catchments.<br />

Source: Lavers et al. (2011)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


<strong>Uncerta<strong>in</strong>ty</strong> “hierarchy” (future risks)<br />

First order forc<strong>in</strong>gs<br />

Climate <strong>models</strong><br />

Regional consequences<br />

Downscal<strong>in</strong>g<br />

•Empirical<br />

•Dynamical<br />

Feedbacks<br />

•Land use<br />

•Adaptations<br />

Impact model<br />

•Structure<br />

•Parameters<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Typical f<strong>in</strong>d<strong>in</strong>g of assessments:<br />

“much greater tendency for <strong>in</strong>creas<strong>in</strong>g flood risk”<br />

GCMs under two emissions scenarios (A1B and A1B-2016-5-L), at four time horizons.<br />

The plots show the 25th, 50th, and 75th percentiles (represented by the boxes), and the<br />

maximum and m<strong>in</strong>imum values (shown by the extent of the whiskers).<br />

Source: Warren et al. (2010) from AVOID programme<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


National CCRA headl<strong>in</strong>e threats<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Hydrological model uncerta<strong>in</strong>ty <strong>in</strong> perspective<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Global water balance (Sv)<br />

BCCR-BCM2.0<br />

CCSM3<br />

CGCM3.1<br />

CNRM-CM3<br />

CSIRO-MK3.0<br />

ECHAM5-MPI-OM<br />

ECHO-G<br />

FGOALS-g1.0<br />

GFDL-CM2.0<br />

GISS-EH<br />

GISS-ER<br />

INM-CM3.0<br />

IPSL-CM4<br />

MIROC3.2<br />

MRI-CGCM2.3.2<br />

PCM-NCAR<br />

HadCM3<br />

HadGEM1<br />

Input uncerta<strong>in</strong>ty (GCMs)<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

-0.1<br />

E > P<br />

P > E<br />

„Ghost‟ moisture sources: Global annual mean residual of the atmospheric water balance (E – P – dw/dt)<br />

for CMIP3 climate <strong>models</strong>. One Sverdrup (Sv) is 10 6 m 3 s -1 or 31,600 km 3 yr -1 . Note that four climate<br />

<strong>models</strong> have residuals > 0.1 Sv. For comparison, observed atmospheric moisture transport from ocean to<br />

land is estimated to be 1.2 Sv. Data from Liepert and Previdi (2012).<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Evaluat<strong>in</strong>g „fitness‟ for <strong>hydrological</strong> tasks<br />

Pr<strong>in</strong>ciples for climate model evaluation<br />

1. Quantify the uncerta<strong>in</strong>ty <strong>in</strong> the observed data used for model<br />

evaluation (homogeneity, confidence <strong>in</strong>tervals, outliers)<br />

2. Compare like with like (grid to grid, scale to scale)<br />

3. Select <strong>in</strong>dicators of performance relevant to the <strong>in</strong>tended<br />

<strong>hydrological</strong> applications (extremes, low-frequency variability)<br />

4. Evaluate climate <strong>models</strong> relative to other components of<br />

<strong>hydrological</strong> uncerta<strong>in</strong>ty (impact model, weight<strong>in</strong>g)<br />

5. Test comb<strong>in</strong>ed climate, downscal<strong>in</strong>g and <strong>hydrological</strong> model<br />

skill us<strong>in</strong>g near-term applications (seasonal forecasts)<br />

Indicators for evaluation of climate model outputs from the perspective<br />

of <strong>hydrological</strong> applications. Source: Wilby (2010)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Z-score<br />

Trends consistent with GCMs?<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

1861 1871 1881 1891 1901 1911 1921 1931 1941 1951 1961 1971<br />

Dee<br />

Derwent<br />

Eden1<br />

Eden2<br />

Exe<br />

Itchen<br />

Medway<br />

Ouse<br />

Tee<br />

Teifi<br />

Thames<br />

Tyne<br />

Wensum<br />

Wharfe<br />

Wye<br />

Average<br />

Mann-Kendall test for significant trends (Z s ) <strong>in</strong> area-average w<strong>in</strong>ter ra<strong>in</strong>fall<br />

for 15 river bas<strong>in</strong>s <strong>in</strong> England and Wales. Source: Wilby (2006)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Time of day<br />

Time of day<br />

1988<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

2010<br />

Confound<strong>in</strong>g factors Glutton (observer practices)<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

Environment Agency water temperature measurement times at Glutton on the River Dove.<br />

The black l<strong>in</strong>e shows the mov<strong>in</strong>g average of 12 samples. A shift <strong>in</strong> sampl<strong>in</strong>g time of 2 hours<br />

between 1990s and 2000s equates to a warm<strong>in</strong>g of ~0.7°C. Source: Toone et al. (2011)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Confound<strong>in</strong>g factors (river regulation)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Cumulative discharge (km3)<br />

Cumulative discharge (km3)<br />

Confound<strong>in</strong>g factors (known unknowns)<br />

Q = (A.P.k) + (G.ΔT) – (A.E) ± S ± D<br />

Observed<br />

Modelled<br />

Q is the discharge (km 3 ),<br />

A is the bas<strong>in</strong> area (km 2 ),<br />

P is the annual precipitation (km),<br />

k is a scal<strong>in</strong>g factor,<br />

G is the total snow and glacier melt per year<br />

ΔT degree temperature change (km 3 /yr/°C),<br />

E is the annual evaporation total (km),<br />

S is upstream storage change (km 3 ),<br />

D is diversions for irrigation or effluent (km 3 ).<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Syr Darya to Aqjar<br />

1960 1970 1980 1990 2000 2010<br />

Observed Modelled<br />

Vakhsh to Darband<br />

1960 1970 1980 1990 2000 2010<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Confound<strong>in</strong>g factors (known unknowns)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Hydrological <strong>models</strong><br />

Input uncerta<strong>in</strong>ty<br />

Structure uncerta<strong>in</strong>ty<br />

1. Empirical/statistical<br />

2. Water balance<br />

3. Conceptual<br />

4. Physically based<br />

Parameter uncerta<strong>in</strong>ty<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Input uncerta<strong>in</strong>ty<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Mean daily discharge (m3/s)<br />

Snowmelt Runoff Model (SRM)<br />

Q n+1 = [C Sn · α n (T n + ΔT n ) S n + C R · P n ] A · v (1 – k n-1 ) + [Q n · r n+1 ]<br />

LapseRate<br />

Tcrit<br />

0.8<br />

3<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

01 02 03 04 05 06 07 08 09 10 11 12<br />

2<br />

1<br />

0<br />

01 02 03 04 05 06 07 08 09 10 11 12<br />

1200<br />

1000<br />

800<br />

Observed<br />

SRM<br />

DDF<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

01 02 03 04 05 06 07 08 09 10 11 12<br />

Cr<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

01 02 03 04 05 06 07 08 09 10 11 12<br />

Cs<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

01 02 03 04 05 06 07 08 09 10 11 12<br />

RCA<br />

1.5<br />

1<br />

0.5<br />

0<br />

01 02 03 04 05 06 07 08 09 10 11 12<br />

600<br />

400<br />

200<br />

0<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

Daily mean composite of observed<br />

and SRM discharges at Darband<br />

2001-2010<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Fraction of zone that is snow covered<br />

Input uncerta<strong>in</strong>ty (snow cover)<br />

1.0<br />

Zone 1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Zone 2<br />

Zone 3<br />

Zone 4<br />

Zone 5<br />

Zone 6<br />

Zone 7<br />

Zone 8<br />

0.0<br />

16-Mar 16-Apr 16-May 16-Jun 16-Jul 16-Aug 16-Sep<br />

Snow-cover duration curves (CDCs) for the upper Vakhsh bas<strong>in</strong> <strong>in</strong> 2010<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Daily Q (m3/s)<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Daily Q (m3/s)<br />

Jul<br />

Jan<br />

Aug<br />

Feb<br />

Sep<br />

Mar<br />

Oct<br />

Apr<br />

Nov<br />

May<br />

Dec<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

Input uncerta<strong>in</strong>ty (outcome)<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

Nasty (2001)<br />

Observed<br />

SRM<br />

Hot-dry<br />

Central<br />

Warm-wet<br />

1000<br />

500<br />

0<br />

3500<br />

Nicer (2003)<br />

3000<br />

Observed<br />

Observed and SRM<br />

estimates of daily discharge<br />

<strong>in</strong> the Naryn under present<br />

and changed climate for the<br />

2050s (hot-dry, central, and<br />

warm-wet).<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

SRM<br />

Hot-dry<br />

Central<br />

Warm-wet<br />

Source: EBRD (2011)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Source: Clark et l. (2008)<br />

Source: Freer et al. (2012)<br />

Framework for Understand<strong>in</strong>g<br />

Structural Errors (FUSE)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


PE (mm/day<br />

PE (mm/day<br />

PE (mm/day<br />

PE (mm/day<br />

Structural uncerta<strong>in</strong>ty (PE)<br />

14<br />

(A) Potential Evaporation 1961-1990<br />

14<br />

(B) Potential Evaporation 2020s<br />

12<br />

10<br />

8<br />

6<br />

Thornthwaite<br />

Blarney-Criddle<br />

Hamon<br />

Mass balance<br />

12<br />

10<br />

8<br />

6<br />

m<strong>in</strong><br />

q1<br />

median<br />

q3<br />

max<br />

4<br />

4<br />

2<br />

2<br />

0<br />

0<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

Month<br />

Month<br />

14<br />

(C) Potential Evaporation 2050s<br />

14<br />

(D) Potential Evaporation 2080s<br />

12<br />

12<br />

10<br />

10<br />

8<br />

6<br />

4<br />

2<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

Month<br />

0<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

Estimated PE for 1961-1990 based on the Thornthwaite, Blaney-Criddle and Hamon<br />

methods and observed temperatures. Mass balance estimates were calculated from<br />

reservoir (Kairakkum) <strong>in</strong>flows and outflows. Source: EBRD (2012)<br />

Month<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Cumulative likelihood<br />

Structural uncerta<strong>in</strong>ty (PE, GCM, emissions)<br />

1<br />

2020s 2050s 2080s<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 10 20 30 40 50 60 70<br />

Annual PE change (%)<br />

Cumulative likelihood distributions of annual PE <strong>in</strong>creases (% change with respect to the<br />

1961-1990 basel<strong>in</strong>e) projected by ensembles of PE estimation method, emission scenario,<br />

and GCM output (for the closest grid-po<strong>in</strong>ts to the Kairakkum reservoir).<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


surface<br />

evaporation<br />

soil moisture<br />

precipitation evaporation<br />

Parameter uncerta<strong>in</strong>ty<br />

soil moisture store<br />

reduced<br />

evaporation rate<br />

direct<br />

percolation<br />

total<br />

percolation<br />

saturation<br />

percolation<br />

abstraction<br />

effluent<br />

return<br />

unsaturated<br />

zone<br />

abstraction<br />

recharge<br />

saturated zone<br />

outflow<br />

channel flow<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO<br />

CATCHMOD lumped conceptual model


Parameter uncerta<strong>in</strong>ty (high identifiability)<br />

All data (1961-1990)<br />

Wettest year (1967/68)<br />

Driest year (1975/76)<br />

CATCHMOD direct percolation (DP) parameter<br />

for Thames bas<strong>in</strong>. Source: Wilby (2005)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Parameter uncerta<strong>in</strong>ty (low identifiability)<br />

All data (1961-1990)<br />

Wettest year (1967/68)<br />

Driest year (1975/76)<br />

CATCHMOD potential dry<strong>in</strong>g constant (PDC)<br />

parameter for Thames bas<strong>in</strong>. Source: Wilby (2005)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Parameter uncerta<strong>in</strong>ty (outcome)<br />

Observed and simulated runoff <strong>in</strong> the Lech bas<strong>in</strong>, Austria for the year 1975. Blue shad<strong>in</strong>g<br />

<strong>in</strong>dicates the range obta<strong>in</strong>ed from 20 different parameter sets. Source: Dobler et al. (submitted).<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Overview: Hydrological uncerta<strong>in</strong>ties<br />

<strong>in</strong> perspective (hydropower)<br />

Climate change<br />

scenarios<br />

Hydrological <strong>models</strong><br />

(REG WBM SRM)<br />

Upstream river<br />

regulation<br />

Hazards<br />

analysis<br />

Monthly/annual<br />

evaporation<br />

Monthly/annual<br />

flow factors<br />

Sedimentation<br />

data<br />

Reservoir<br />

safety<br />

Reservoir<br />

water balance<br />

Operat<strong>in</strong>g<br />

rule scenario<br />

Energy<br />

production<br />

model<br />

Refurbishment and<br />

upgrade scenarios<br />

Source: EBRD (2012)<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Hydrological hazard forecast<strong>in</strong>g<br />

(scientifically tractable risk reduction measure)<br />

Panjakent<br />

Fayzabad<br />

Somoniyon<br />

Rushan<br />

Locations of mudflows and reported flood<strong>in</strong>g 5 to 11 May 2011 compared with TRMM ra<strong>in</strong>fall<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO


Where the need is greatest<br />

<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Climate Change Research: An Integrated Approach<br />

6-17 August 2012 Institute for Mathematics Applied to Geosciences, NCAR, Boulder, CO

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!