08.06.2015 Views

CS 598: Spectral Graph Theory: Lecture 3 - Corelab

CS 598: Spectral Graph Theory: Lecture 3 - Corelab

CS 598: Spectral Graph Theory: Lecture 3 - Corelab

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>CS</strong> <strong>598</strong>: <strong>Spectral</strong> <strong>Graph</strong><br />

<strong>Theory</strong>. <strong>Lecture</strong> 3<br />

Extremal Eigenvalues and<br />

Eigenvectors of the Laplacian and<br />

the Adjacency Matrix.


Today<br />

• More on Courant-Fischer and Rayleigh<br />

quotients<br />

• Applications of Courant-Fischer<br />

• Adjacency matrix vs. Laplacian<br />

• Perron-Frobenius


Courant-Fischer Refresher (1)<br />

•<br />

<br />

<br />

<br />

k SR<br />

n ,dim( S ) k<br />

x S<br />

<br />

max<br />

min<br />

min<br />

max<br />

k SR<br />

n ,dim( S ) nk1<br />

x S<br />

T<br />

x Ax<br />

T<br />

x x<br />

T<br />

x Ax<br />

T<br />

x x


Sylvester’s Law of Inertia<br />

•<br />

<br />

<br />

max<br />

min<br />

k SR<br />

n ,dim( S ) k<br />

x S<br />

T<br />

x Ax<br />

T<br />

x x


Courant-Fischer Refresher (2)<br />

•<br />

<br />

k<br />

<br />

min<br />

S of dim k<br />

max<br />

xS<br />

T<br />

x Lx<br />

T<br />

x x<br />

<br />

k<br />

max<br />

S of dimnk1<br />

min<br />

xS<br />

T<br />

x Lx<br />

T<br />

x x


Courant-Fischer for Laplacian<br />

• Applying Courant-Fischer for the Laplacian<br />

we get :<br />

<br />

<br />

2<br />

max<br />

min<br />

x1,<br />

x0<br />

<br />

1<br />

0,<br />

v 1<br />

1<br />

T<br />

x Lx<br />

<br />

T<br />

x x<br />

min<br />

x1,<br />

x0<br />

T<br />

x Lx<br />

max max<br />

x0<br />

T<br />

x x x0<br />

S of dim k<br />

• Useful for getting bounds, if calculating spectra is cumbersome.<br />

• To get upper bound on λ2, just need to produce vector with small<br />

Rayleigh Quotient.<br />

• Similarly, t o get lower bound on λmax, just need to produce vector<br />

with large Rayleigh Quotient<br />

<br />

( i,<br />

j)<br />

E<br />

<br />

( i,<br />

j)<br />

E<br />

( x<br />

<br />

iV<br />

( x<br />

<br />

iV<br />

i<br />

i<br />

x<br />

x<br />

2<br />

i<br />

x<br />

x<br />

2<br />

i<br />

j<br />

j<br />

)<br />

)<br />

<br />

2<br />

2<br />

k<br />

<br />

min<br />

max<br />

xS<br />

T<br />

x Lx<br />

T<br />

x x


Example 1<br />

• Lemma1: Let G=(V,E) be a graph with some<br />

vertex w having degree d. Then<br />

max<br />

d<br />

• Lemma 2: We can also improve on that. Under<br />

same assumptions, we can show:<br />

max<br />

d 1<br />

Proof: see blackboard


Example 1<br />

• Lemma1: Let G=(V,E) be a graph with some<br />

vertex w having degree d. Then<br />

max<br />

d<br />

• Lemma 2: We can also improve on that. Under<br />

same assumptions, we can show:<br />

max<br />

d 1<br />

Lemma 2 is tight, take star graph (ex)


Example 2<br />

• The Path graph Pn on n vertices has<br />

<br />

2<br />

12<br />

<br />

2<br />

n<br />

• Already knew that, but this is easier and more<br />

general.<br />

Proof: see blackboard


Example 3<br />

•<br />

2<br />

<br />

2<br />

n


Example 3<br />

node 1<br />

node 2 node 3<br />

node 4<br />

node 5<br />

node 6 node 1<br />

0<br />

1 -1<br />

1 -1<br />

1 -1<br />

1<br />

1 1<br />

1 -1<br />

-1<br />

-1<br />

-1


• Lower bounds are harder, we will see<br />

some in two lectures (different<br />

technique)


Adjacency Matrix vs.<br />

Laplacian


Adjacency Matrix Refresher<br />

i<br />

G = {V,E}<br />

j<br />

1, if ( i,<br />

j)<br />

edge<br />

A ij<br />

<br />

0<br />

if no edge between i,<br />

j<br />

j<br />

• Unweighted graphs for simplicity<br />

i<br />

1<br />

A has n eigenvalues (counting multiplicities)<br />

{a1 a2 … an }


Adjacency Matrix vs. Laplacian for<br />

d-regular graphs<br />


Bounds on the Eigenvalues of<br />

Adjacency Matrix<br />


Bounds on the Eigenvalues of<br />

Adjacency Matrix<br />


Courant-Fischer for Adjacency<br />

Matrix Refresher<br />

<br />

k<br />

<br />

max<br />

S of dimk<br />

min<br />

xS<br />

T<br />

x Ax<br />

T<br />

x x<br />

<br />

1<br />

max<br />

x0<br />

T<br />

x<br />

x<br />

Ax<br />

x<br />

T<br />

• Will see next how to apply Courant-Fischer for the adjacency<br />

matrix to get another bound on the first eigenvalue as well as a<br />

relation to graph coloring


Bounding Adjacency Matrix<br />

Eigenvalues<br />

•<br />

<br />

1<br />

max<br />

x0<br />

T<br />

x<br />

x<br />

Ax<br />

x<br />

T


Bounding Adjacency Matrix<br />

Eigenvalues<br />


Chromatic Number<br />


Chromatic Number<br />


Adjacency Matrix: The Perron-<br />

Frobenius Theorem<br />


Adjacency Matrix: The Perron-<br />

Frobenius Theorem<br />

• Proof in 3 parts.<br />

• We next show<br />

Lemma 1: If all entries of an nxn<br />

matrix A are positive, then it has a positive<br />

eigenvector v with corresponding positive<br />

eigenvalue α, that is Av=αv.<br />

Geometric proof on blackboard


Adjacency Matrix: The Perron-<br />

Frobenius Theorem<br />


Adjacency Matrix: The Perron-<br />

Frobenius Theorem<br />


Laplacian: The Perron-Frobenius<br />

Theorem<br />

• <strong>Theory</strong> can also be applied to Laplacians and any<br />

matrix with non-positive off-diagonal entries. It<br />

involves the eigenvector with smallest eigenvalue.<br />

Perron-Frobenius for Laplacians:Let M be a matrix<br />

with non-positive off-diagonal entries s.t. the graph<br />

of the no-zero off-diagonal entries is connected.<br />

Then the smallest eigenvalue has multiplicity 1 and<br />

the corresponding eigenvector is strictly positive.<br />

Proof on blackboard.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!