10.06.2015 Views

presentation slides - TechConnect World

presentation slides - TechConnect World

presentation slides - TechConnect World

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Custom Micro/Nano System Development and Production<br />

for Telecom, Process Control, Life Sciences and Space<br />

LioniX BV<br />

PO Box 456<br />

7500 AL Enschede<br />

the Netherlands<br />

Phone: +31 (0)53 489 3827<br />

Fax: +31 (0)53 489 3601<br />

Mail: info@lionixbv.nl<br />

Website: www.lionixbv.nl<br />

Opto-fluidic Life Marker Chip for<br />

Extra-terrestrial Exploration<br />

Arne Leinse, Henk Leeuwis, Albert Prak, Rene Heideman<br />

LioniX BV<br />

Guus Borst<br />

Dutch Space BV<br />

James Walker<br />

JayWalker Technical Consulting, LLC<br />

1


Life Marker Chip<br />

• Goal<br />

– Search for molecular evidence of past or present life on Mars<br />

• How<br />

– In situ analysis using biosensing / bio-analytical technologies<br />

enabled by micro/nano systems technology<br />

The life marker chip for the Exomars mission 2


• Introduction to LioniX<br />

• Life Marker Chip on ExoMars rover<br />

• LMC analysis subsystem<br />

• LMC microfluidics<br />

• LMC integrated optics<br />

• Current challenges<br />

• Concluding remarks<br />

• Acknowledgements<br />

Overview<br />

3


LioniX Overview<br />

Develop/produce micro/nano-based products for (OEM) customers<br />

Customer space:<br />

•Telecom<br />

•Industrial Process Control<br />

•Life Sciences<br />

•Space Exploration<br />

Enschede, The Netherlands<br />

Dortmund, Germany<br />

Core technologies:<br />

•integrated optics<br />

•microfluidics<br />

•optofluidics (including surface functionalization)<br />

•MEMS<br />

LioniX offers ‘design for manufacturing’ and ‘horizontal integration’<br />

by partnering with foundries and suppliers of complementary<br />

technologies<br />

4


ExoMars Mission Schedule<br />

Life Marker Chip<br />

Courtesy of ESA<br />

5


Basis of the Life Marker Chip<br />

each site binds a different selective fluorescent biomarker dye<br />

parallel excitation (via integrated optics)<br />

parallel detection via camera<br />

Antibody microarray technology<br />

• attachment of thousands of probes<br />

in small area<br />

• small reaction volumes<br />

• higher reaction kinetics<br />

• potential for miniaturization and<br />

robotization<br />

Features<br />

1. Detect existent and extinct life<br />

2. Parallel multi-molecular detection<br />

3. No special external calibration<br />

4. Detection over broad molecular<br />

size range<br />

5. Sensitivity: From ppb to ppt<br />

6. Easy analysis<br />

7. Biotechnology industry support Typical image with one<br />

hundred different antibodies<br />

Courtesy of Mark Sims (LU) and<br />

Dave Cullen (CU)<br />

as well as positive and<br />

negative control<br />

Present-life biomarkers<br />

1. Whole cells,<br />

2. Cellular debris, biofilms<br />

3. Biopolymers<br />

Past-life biomarkers<br />

1. Aliphatic Hydrocarbons.<br />

2. Monocyclic hydrocarbons.<br />

3. Tricyclic hydrocarbons.<br />

4. Aromatic carotenoids.<br />

5. Hopanoids and other<br />

pentacycic triterpanes.<br />

6. PAHs.<br />

7. Lipids – Steroids.<br />

8. Porphyrins and<br />

maleimides.<br />

9. Aminoacids (aa) and<br />

nucleotides.<br />

10. Nucleotides and other<br />

metabolites<br />

11. Polymers<br />

6


• Space Flight Requirements<br />

Microsystem Challenges<br />

Compact, low mass, low reagent and energy consumption, robust<br />

(shock, radiation etc.)<br />

• Complicated fluidics in small chip sandwich<br />

Combination of innovative bellows pump and ‘hybrid’ selector valve<br />

• Leakproof bonding of microfluidic chip with integrated<br />

conductors and small tolerances<br />

New bonding technique<br />

• Integrated Laser-Induced Fluorescense system enabling<br />

dynamic/quantitive results<br />

Exploitation of planar waveguide evanescent field<br />

Flexible design features of TriPleX TM<br />

7


Analysis Sub-system<br />

Fluid I/F<br />

Fluid I/F<br />

preloaded with<br />

dry immunoassay chemistry<br />

Analysis system<br />

S-A1<br />

Conductivity sensor<br />

Assay<br />

chambers<br />

Single shot<br />

valve<br />

Buffer chamber<br />

V-A1<br />

0 0<br />

1<br />

1<br />

S-A2<br />

S-A3<br />

2<br />

2<br />

S-A4<br />

3<br />

3<br />

pad<br />

V-A3<br />

S-A5<br />

V-A2<br />

dissolution chambers<br />

optical I/F<br />

Bellows<br />

pump<br />

Late access I/F<br />

Pad, antibodies,<br />

lightsource<br />

Lightsource<br />

Front end electronics<br />

Power/data<br />

Mech.<br />

I/F<br />

Mech.<br />

I/F<br />

Thermal I/F<br />

multiple chambers enable assay of<br />

incompatible chemistries<br />

8


Assay chambers /<br />

Camera window<br />

Dissolution<br />

chambers<br />

Conductivity<br />

electronics<br />

Valve motor<br />

System Integration<br />

Fluid I/F<br />

Fluid I/F<br />

Analysis system<br />

S-A1<br />

Conductivity sensor<br />

Assay<br />

chambers<br />

Clamp for laserdiode<br />

LMC Analysis Subsystem<br />

Single shot<br />

valve<br />

Buffer chamber<br />

V-A1<br />

0 0<br />

1<br />

3<br />

V-A3<br />

2<br />

S-A2<br />

pad<br />

dissolution chambers<br />

S-A3<br />

S-A4<br />

S-A5<br />

2<br />

1<br />

3<br />

V-A2<br />

optical I/F<br />

Bellows<br />

pump<br />

Late access I/F<br />

Pad, antibodies,<br />

lightsource<br />

Lightsource<br />

Fluid storage, valve and pump<br />

Mech.<br />

I/F<br />

Mech.<br />

I/F<br />

Thermal I/F<br />

Front end electronics<br />

Power/data<br />

Rotary valve to<br />

control liquid flow<br />

Glass microfludics with channels,<br />

chambers and sensors<br />

Electronic Readout<br />

Laser<br />

Integrated Optics<br />

for Assay Readout<br />

9


Confluence of Microfluidics, Biotech, and Integrated Optics<br />

• Antibody microarray<br />

- competition assay format (3 chemistries)<br />

- predosed dried chemicals<br />

- single-use<br />

- 4 modules of 10x10 spots<br />

Analysis system<br />

Single shot<br />

valve<br />

Buffer chamber<br />

V-A1<br />

Fluid I/F<br />

S-A1<br />

Conductivity sensor<br />

1<br />

3<br />

V-A3<br />

2<br />

S-A2<br />

Fluid I/F<br />

S-A4<br />

Assay<br />

chambers<br />

0 0<br />

pad<br />

dissolution chambers<br />

S-A3<br />

S-A5<br />

2<br />

1<br />

3<br />

V-A2<br />

optical I/F<br />

Bellows<br />

pump<br />

Late access I/F<br />

Pad, antibodies,<br />

lightsource<br />

Lightsource<br />

Front end electronics<br />

Power/data<br />

Mech.<br />

I/F<br />

Mech.<br />

I/F<br />

Thermal I/F<br />

• Microfluidics based core system<br />

- micro channels: fluidic connections<br />

- micro chambers: reagents, array, buffer<br />

- micro sensors: electricial conductivity<br />

- planar optical waveguides: excitation of dyes<br />

- micro system integration: compact subsystem<br />

- hybrid selector valve<br />

• Integrated planar waveguides<br />

- Laser Induced Fluorescence (LIF)<br />

- excitation by ‘manifold’ substrate<br />

10


Microfluidic Chip<br />

1G-prototype<br />

52 mm<br />

16<br />

mm<br />

Dry reagent chambers<br />

Liquid front (EC) sensor<br />

Assay (reaction) chambers<br />

Buffer chamber<br />

Selection valve axis<br />

Liquid ports<br />

Contact pads<br />

EC sensors<br />

11


Buffer chamber<br />

(250 µm, 14.2 µL)<br />

Microfluidic Chip Sandwich Structure<br />

Etched micro<br />

channels (50 µm)<br />

chambers for<br />

reagent fiber pads<br />

(250 µm, 2.4 µL)<br />

Feed through<br />

(powder blasted)<br />

Specialized<br />

Wafer bond<br />

Fused silica<br />

top plate<br />

Fused silica<br />

bottom plate<br />

Viton seal<br />

Waveguide<br />

plate<br />

Selector<br />

valve axis<br />

Valve seat<br />

with channels<br />

Pre-processed<br />

sample input<br />

Assay chamber Clamping<br />

with reaction spots screws<br />

(0.8 µL)<br />

Waveguide<br />

with assay spots<br />

Total volume<br />

fluidic chip<br />

(32.7 µL)<br />

12


Fluidic Chip<br />

- electrodes and valve<br />

Valve rotor<br />

Fluidic chip with details of the access hole to the<br />

buffer chamber and a fluid front sensor<br />

Assembled valve<br />

13


Laser Induced Fluorescence (LIF) Detection<br />

Reaction Chamber<br />

<br />

<br />

<br />

array of 10x10 spots<br />

each spot functionalized for a specific target<br />

optically coupled with TriPleX TM waveguides<br />

Evanescent-field excitation<br />

of bound fluorescent dyes<br />

Parallel detection by camera electronics<br />

upper cladding is removed enabling strong<br />

evanescent field interaction<br />

14


TriPleX TM Waveguide Technology<br />

• low loss<br />

• small bending radius<br />

• good fiber coupling<br />

• transparancy from 400nm – 2500nm<br />

~100 nm<br />

2 m<br />

Si 3 N 4 : red layer<br />

SiO 2 : blue layer<br />

~1 m<br />

~1 m<br />

‘sensing’ geometry<br />

for Lab-on-a-Chip<br />

‘fiber-like’ geometry for data/telecom<br />

(polarization independent)<br />

Core of TriPleX TM :<br />

Si 3 N 4 / SiO 2 / Si 3 N 4<br />

‘design by geometry’<br />

15


Optical Chip and Fiber Connections<br />

• Multimode Interferometer<br />

• Core thickness tapering<br />

- 3 areas<br />

60/125 fiber<br />

(monitor)<br />

Monitor<br />

waveguide<br />

8 mW laserdiode,<br />

635 nm<br />

Sensing windows<br />

9/125 fiber<br />

(input)<br />

FAU<br />

(fiber array unit)<br />

Input<br />

waveguide<br />

MMI (1 x 11 splitter)<br />

Tapered area<br />

16


Concluding Remarks<br />

• Convergence of microfluidics-integrated optics-bio<br />

• Low-loss, wavelength-flexible waveguides enable<br />

compact, large-count fluorescent marker assay array<br />

• Surface functionalization is a key issue<br />

• Future developments in functionalization of microarrays<br />

will enable more application opportunities<br />

• LMC is an enabler for terrestrial applications<br />

17


Acknowledgements<br />

• Funding<br />

– Netherlands Space Office (NSO)<br />

– European Space Agency (ESA)<br />

Netherlands Space Office<br />

• LMC Team Leaders<br />

– Mark Sims, Leicester Univ. (UK)<br />

– Dave Cullen, Cranfield Univ. (UK)<br />

• LMC Instrument Team<br />

– Dutch Space (NL), Leicester University, Cranfield<br />

University, Magna Parva (UK), Kayser Italia, SSTL<br />

(UK), and Imperial College (UK)<br />

The life marker chip for the Exomars mission 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!