10.06.2015 Views

HiSIM-SOI - TechConnect World

HiSIM-SOI - TechConnect World

HiSIM-SOI - TechConnect World

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Complete Surface-Potential Modeling Approach<br />

Implemented in the <strong>HiSIM</strong> Compact Model Family<br />

for Any MOSFET Type<br />

WCM in Boston<br />

15. June, 2011<br />

M. Miura-Mattausch, M. Miyake, H. Kikuchihara, U. Feldmann and H. J. Mattausch<br />

<strong>HiSIM</strong> Team, Hiroshima University<br />

<strong>HiSIM</strong> 1


Basic Device Equations<br />

s<br />

• Gradual-Channel Approximation<br />

• Charge-Sheet Approximation<br />

reduced to surface potential φ s<br />

<strong>HiSIM</strong> 2


Property of Surface-Potential Model<br />

Q(φ)<br />

=<br />

ν = μ E: velocity<br />

: mobility<br />

The surface potential consistently determines charges,<br />

capacitances and currents under all operating conditions.<br />

<strong>HiSIM</strong> 3


Relationship among Device Properties<br />

(at drain side)<br />

(at source side)<br />

<strong>HiSIM</strong> 4


Specific Feature of Surface-potential Model<br />

one equation for all bias conditions<br />

<strong>HiSIM</strong> 5


Model Extraction for 45nm Technology<br />

W g /L g =2μm/200nm<br />

W g /L g =2μm/40nm<br />

Measurement<br />

<strong>HiSIM</strong>2<br />

one model for any device sizes without binning<br />

<strong>HiSIM</strong> 6


Current Derivatives for 45nm Technology<br />

Measurement<br />

<strong>HiSIM</strong><br />

W g /L g =<br />

2μm/40nm<br />

Beyond the 45nm generation nonphysical effects<br />

are getting obvious.<br />

<strong>HiSIM</strong> 7


Universal Mobility<br />

V ds =0.1V<br />

impurity concentration<br />

carrier concentration<br />

carrier mobility<br />

<strong>HiSIM</strong> 8


Requirements for RF Applications<br />

Harmonic Distortions<br />

Non-Quasi-Static Effect<br />

Noise Characteristics<br />

<strong>HiSIM</strong> 9


Feature of Potential-Based Model<br />

Current Equation: I = qnμE<br />

All physical quantities are function of surface potentials.<br />

Solution of Poisson’s Equation<br />

Important RF characteristics are originated by<br />

the potential distribution along the channel.<br />

I-V characteristics reflect all important RF properties.<br />

Accurate parameter extraction for I-V characteristics<br />

is important.<br />

S. Matsumoto et al., IEIEC T E, E88-C, p. 247, 2005.<br />

S. Hosokawa et al., Ext. Abs. SSDM, pp. 20, 2003.<br />

M. Miura-Mattausch et al., IEEE TED, 2006.<br />

<strong>HiSIM</strong> 10


Descendant of MOSFET<br />

MG-MOSFET<br />

SOTB-MOSFET<br />

TFT<br />

<strong>SOI</strong>-MOSFET<br />

MOSFET<br />

HV-MOSFET<br />

MOS-Varactor<br />

IGBT<br />

<strong>HiSIM</strong> 11


<strong>HiSIM</strong> Family<br />

Bulk-MOSFET<br />

<strong>HiSIM</strong>2<br />

High-Voltage MOSFET<br />

<strong>HiSIM</strong>_HV<br />

<strong>SOI</strong> MOSFET<br />

<strong>HiSIM</strong>-<strong>SOI</strong><br />

Thin-Film Transistor<br />

Double-Gate MOSFET<br />

Insulated-Gate Bipolar Transistor<br />

<strong>HiSIM</strong>-TFT<br />

<strong>HiSIM</strong>-DG<br />

<strong>HiSIM</strong>-IGBT<br />

<strong>HiSIM</strong><br />

12


<strong>SOI</strong>-MOSFET Modeling<br />

many possible conditions<br />

Si<br />

Si substrate<br />

<strong>HiSIM</strong><br />

13


Poisson’s Equation + Gauss’s Law<br />

V<br />

φ<br />

φ<br />

gs fb s,<strong>SOI</strong><br />

b,<strong>SOI</strong><br />

s,<strong>SOI</strong><br />

Q+Q + Q + Q<br />

- V = φ -<br />

CFOX<br />

Qs,bulk<br />

= φs,bulk<br />

-<br />

CBOX<br />

1<br />

Q<br />

s,bulk<br />

+ Qdep<br />

= φ<br />

2<br />

b,<strong>SOI</strong><br />

-<br />

C<br />

i dep b,<strong>SOI</strong> s,bulk<br />

<strong>SOI</strong><br />

Three surface potentials are solved<br />

simultaneously by iteration.<br />

Q b,<strong>SOI</strong><br />

φ b.<strong>SOI</strong><br />

φ s.<strong>SOI</strong><br />

Calculation results<br />

<strong>HiSIM</strong><br />

14


Smooth Transition among Conditions<br />

T <strong>SOI</strong> T BOX Conditi<br />

on<br />

Device1 150 110 PD<br />

Device2 50 110 DD<br />

Device3 50 50 DD<br />

Device4 25 110 FD<br />

<strong>HiSIM</strong><br />

15


C-V Characteristics<br />

T <strong>SOI</strong> =150nm<br />

T BOX =110nm<br />

: <strong>HiSIM</strong>-<strong>SOI</strong><br />

: 2D-Device Sim.<br />

T <strong>SOI</strong> =50nm<br />

T BOX =110nm<br />

T <strong>SOI</strong> =50nm<br />

T BOX =50nm<br />

DEVICE1<br />

DEVICE2<br />

T <strong>SOI</strong> =25nm<br />

T BOX =110nm<br />

DEVICE3<br />

DEVICE4<br />

<strong>HiSIM</strong><br />

16


Potential Distribution in Thin-Body MOSFET<br />

device surface<br />

insulator<br />

Back surface potential is strongly dependent on T <strong>SOI</strong> .<br />

Consistent solution of Poisson’s equation<br />

<strong>HiSIM</strong><br />

17


Device 4: Thin-Body <strong>SOI</strong>-MOSFET<br />

back-gate bias V bs dependence<br />

V bs<br />

φ b.<strong>SOI</strong><br />

φ s.<strong>SOI</strong><br />

<strong>HiSIM</strong><br />

18


Floating-Body Effect<br />

φ b.<strong>SOI</strong> is unstable.<br />

symbol: 2D-Sim.<br />

line: <strong>HiSIM</strong>-<strong>SOI</strong><br />

<strong>SOI</strong><br />

bulk<br />

φ s.bulk<br />

φ b.<strong>SOI</strong><br />

φ s.<strong>SOI</strong><br />

BOX<br />

φ b.<strong>SOI</strong> reduction change from FD to PD<br />

<strong>HiSIM</strong><br />

19


Charge Accumulation<br />

Impact Ionization:<br />

• Include accumulation charge in the Poisson equation<br />

• Increase the surface potential φ s0.<strong>SOI</strong><br />

• Increase the inversion charge Q i according to V ds increase<br />

<strong>HiSIM</strong><br />

20


History Effect<br />

Transient Characteristics of the Floating-Body Effect<br />

Τ d : Time constant of Q h accumulation<br />

T d<br />

H. Toda et al., SSDM 2010.<br />

<strong>HiSIM</strong><br />

21


I d -V d Comparison with Measurements<br />

gds gds’ gds’’<br />

V sub = 0.0V V sub = 0.0V V sub = 0.0V V sub = 0.0V<br />

V sub = -1.5V V sub = -1.5V V sub = -1.5V V sub = -1.5V<br />

measurement<br />

<strong>HiSIM</strong>-<strong>SOI</strong><br />

<strong>HiSIM</strong><br />

22


I d -V d Characteristics as a function of N <strong>SOI</strong><br />

W g =0.25mm, L g =0.15mm<br />

N <strong>SOI</strong> (cm -3 ) = 1.0e16 2.0e16 5.0e16<br />

Vds<br />

Vds<br />

Vds<br />

Vds<br />

Vds<br />

Vds<br />

Ids<br />

Ids<br />

Ids<br />

Ids<br />

Ids<br />

Ids<br />

Ids<br />

1.0e17 2.0e17 5.0e17<br />

Ids<br />

Ids<br />

1.0e18 2.0e18 5.0e18<br />

Vds<br />

Vds<br />

Vds<br />

enhanced floating body effect with increased N <strong>SOI</strong><br />

<strong>HiSIM</strong> 23


Scalability Tests<br />

V th vs. N <strong>SOI</strong> for various V bs<br />

0.6<br />

V ds =0.05V, W g =10μm, L g =0.15 μm<br />

Threshold Voltage (V)<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

Vsub = 0 to -3V step -1.0V<br />

-0.4<br />

1.0e16 1.0e17 1.0e18 1.0e19<br />

N <strong>SOI</strong> (cm -3 )<br />

automatic FD PD shift<br />

<strong>HiSIM</strong><br />

24


<strong>HiSIM</strong>-<strong>SOI</strong><br />

- Considering all possible induced charges in the Poisson equation<br />

- Solving the Poisson equation iteratively<br />

- Deriving accurate analytical solution as initial values<br />

Solving the Poisson equation in a consistent way is<br />

only a possibility to model all different structures and<br />

conditions within one model framework.<br />

<strong>HiSIM</strong><br />

25


carrier concentration<br />

T si =10nm<br />

gate<br />

gate<br />

<strong>HiSIM</strong>-DG<br />

V gs =1V<br />

V ds =0V<br />

T si<br />

T si =20nm<br />

gate<br />

gate<br />

T si =40nm<br />

gate<br />

gate<br />

T si<br />

Body potential is floating.<br />

The floating body potential makes modeling difficult.<br />

<strong>HiSIM</strong> 26


Potential Dependence on T si and N sub<br />

N sub<br />

T Si<br />

φ s0 (V)<br />

φ s0 (V)<br />

<strong>HiSIM</strong> 27


C-V Characteristics<br />

Reduction of T si has only a small influence<br />

on the capacitance characteristics.<br />

<strong>HiSIM</strong> 28


Carrier Traps in TFT<br />

Source<br />

Gate<br />

Drain<br />

1.E-05<br />

Trap density<br />

small<br />

x<br />

y<br />

φ S0<br />

Poly-Si<br />

φ SL<br />

Id(A)<br />

1.E-07<br />

1.E-09<br />

large<br />

φ b0<br />

Display Substrate<br />

(Insulator)<br />

φ bL<br />

1.E-11<br />

Traps<br />

1.E-13<br />

-2 -1 0 1 2 3 4<br />

Vg(V)<br />

<strong>HiSIM</strong><br />

29


Modeling of Trap Density<br />

Grain Boundaries<br />

Poly-Si<br />

film<br />

Traps uniformly distributed<br />

in crystal Si<br />

Simplified Model for Density of States<br />

Log(Density of States)<br />

Tail States<br />

Donor-type<br />

Acceptor-type<br />

Log(Density of States)<br />

Donor-type<br />

⎛ EV<br />

− E<br />

g<br />

D<br />

E = gC1<br />

exp⎜<br />

⎝ Es<br />

( ) ⎟<br />

⎠<br />

⎞<br />

Acceptor-type<br />

⎛ E − EC<br />

⎞<br />

( E) = g exp ⎟<br />

⎠<br />

g<br />

A<br />

C1<br />

⎜<br />

⎝<br />

Es<br />

E V<br />

Deep States<br />

E C<br />

E V<br />

E C<br />

Add into the Poisson equation<br />

<strong>HiSIM</strong><br />

30


I-V characteristics<br />

6.0<br />

measurements<br />

simulations<br />

L=2μm<br />

1.E+00<br />

Ids(a.u.)<br />

4.0<br />

2.0<br />

L=2μm<br />

Ids(a.u.)<br />

1.E-02<br />

1.E-04<br />

1.E-06<br />

1.E-08<br />

measurements<br />

simulations<br />

0.0<br />

0 1 Vds(V) 2 3<br />

1.E-10<br />

-5 -3 -1 1 3 5<br />

Vgs(V)<br />

Ids(a.u.)<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

measurements<br />

simulations<br />

L=0.5μm<br />

Ids(a.u.)<br />

L=0.5μm<br />

1.E+00<br />

1.E-02<br />

1.E-04<br />

1.E-06<br />

1.E-08<br />

measurements<br />

simulations<br />

0.0<br />

0 1 Vds(V) 2 3<br />

1.E-10<br />

-5 -3 -1 1 3 5<br />

Vgs(V)<br />

S. Miyano et al., Proc. SISPAD, 2008.<br />

<strong>HiSIM</strong><br />

31


<strong>HiSIM</strong>-HV<br />

a few hundred volts > Bias Range > a few volts<br />

modeling<br />

MOSFET + Resistor<br />

<strong>HiSIM</strong> 32


Potential Drop in Drift<br />

symbol: <strong>HiSIM</strong>‐HV<br />

line: 2D‐Device<br />

N drift =10 17 cm ‐3 : low resistive<br />

N drift =10 16 cm ‐3 : high resistive<br />

: without resistance<br />

<strong>HiSIM</strong><br />

33


Specific Feature of HV MOSFET<br />

Rd = f(V gs , V ddp , model parameters)<br />

<strong>HiSIM</strong><br />

34


Current-Voltage Characteristics<br />

Relatively Low Breakdown Voltage<br />

Relatively High Breakdown Voltage<br />

Y. Oritsuki et al., IEEE TED, Oct. 2010; A. Tanaka et al, July, 2011.<br />

<strong>HiSIM</strong> 35


<strong>HiSIM</strong>-IGBT: Bias Range > 500V<br />

Schematic structure of a modern trench-IGBT<br />

Jn<br />

n - (base)<br />

Simplified circuit diagram of the <strong>HiSIM</strong>-IGBT model<br />

Consistent potential extension in <strong>HiSIM</strong>-IGBT is achieved by<br />

calculation based on Kirchhoff’s law.<br />

<strong>HiSIM</strong> 36


N base Dependence of I-V Characteristics<br />

M. Miyake et al., IEEE PESC, pp. 998-1003, June 2008.<br />

<strong>HiSIM</strong> 37


Summary<br />

<strong>HiSIM</strong> is a compact surface-potential-based MOSFET with<br />

a minimum number of approximations, due to its iterative<br />

surface-potential determination.<br />

<strong>HiSIM</strong> allows to preserve a consistent potential-based<br />

modeling in its extension to other integrated-device<br />

structures containing a MOSFET core.<br />

A compact-model family covering all integrated devices<br />

containing a MOSFET core and sharing the same modeling<br />

concepts could be developed.<br />

<strong>HiSIM</strong> 38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!