11.06.2015 Views

Sources of Errors in Trace Element and Speciation Analysis

Sources of Errors in Trace Element and Speciation Analysis

Sources of Errors in Trace Element and Speciation Analysis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Sources</strong> <strong>of</strong> <strong>Errors</strong> <strong>in</strong> <strong>Trace</strong> <strong>Element</strong> <strong>and</strong><br />

<strong>Speciation</strong> <strong>Analysis</strong><br />

Zoltan Mester,<br />

National Research Council <strong>of</strong> Canada, Institute for National Measurement St<strong>and</strong>ards<br />

Outl<strong>in</strong>e<br />

Def<strong>in</strong>itions<br />

<strong>Sources</strong> <strong>of</strong> errors <strong>in</strong> the analytical process<br />

Detection methods <strong>in</strong> trace element analysis<br />

<strong>Trace</strong> element measurement methods <strong>and</strong> the associated errors<br />

Summary<br />

TAQC-WFD, Budapest, November 2-4, 2006<br />

2<br />

Expression <strong>of</strong> an analytical result<br />

Value 1 ± Value 2<br />

Expression <strong>of</strong> an analytical result<br />

Value 1 ± Value 2<br />

Free <strong>of</strong> systematic error (bias)<br />

Uncerta<strong>in</strong>ty<br />

Free <strong>of</strong> systematic error (bias)<br />

Uncerta<strong>in</strong>ty<br />

Verification <strong>of</strong> traceability <strong>of</strong><br />

the results:<br />

• CRMs<br />

• Primary methods (or reference<br />

methods)<br />

Consideration <strong>of</strong> all sources <strong>of</strong> error<br />

<strong>of</strong> the analytical process:<br />

1. R<strong>and</strong>om errors: Method precision<br />

2. Correction <strong>of</strong> systematic errors<br />

Verification <strong>of</strong> traceability <strong>of</strong><br />

the results:<br />

• CRMs<br />

• Primary methods (or reference<br />

methods)<br />

Consideration <strong>of</strong> all sources <strong>of</strong> error<br />

<strong>of</strong> the analytical process:<br />

1. R<strong>and</strong>om errors: Method precision<br />

2. Correction <strong>of</strong> systematic errors<br />

3<br />

4<br />

1


Measur<strong>and</strong><br />

Particular quantity subject to measurement<br />

Measurement<br />

Set <strong>of</strong> operations hav<strong>in</strong>g the object <strong>of</strong> determ<strong>in</strong><strong>in</strong>g a value <strong>of</strong> a quantity<br />

Result <strong>of</strong> a measurement<br />

Value attributed to a measur<strong>and</strong>, obta<strong>in</strong>ed by measurement<br />

Uncerta<strong>in</strong>ty (<strong>of</strong> measurement)<br />

Parameter associated with the result <strong>of</strong> a measurement, that characterises the<br />

dispersion <strong>of</strong> the values that could reasonably be attributed to the<br />

Measur<strong>and</strong><br />

“Conventional” true value (assigned value, best estimate <strong>of</strong> the value, conventional<br />

value or reference value)<br />

Value attributed to a particular quantity <strong>and</strong> accepted, sometimes by convention, as<br />

hav<strong>in</strong>g an uncerta<strong>in</strong>ty appropriate for a given purpose.<br />

Error (<strong>of</strong> measurement)<br />

The result <strong>of</strong> a measurement m<strong>in</strong>us a true value <strong>of</strong> the measur<strong>and</strong><br />

Systematic error<br />

Mean that would result from an <strong>in</strong>f<strong>in</strong>ite number <strong>of</strong> measurements <strong>of</strong> the same<br />

measur<strong>and</strong> carried out under repeatability conditions m<strong>in</strong>us a true value <strong>of</strong> the<br />

measur<strong>and</strong><br />

5<br />

6<br />

Arithmetic mean<br />

x Arithmetic mean value <strong>of</strong> a sample <strong>of</strong> n results<br />

<strong>Sources</strong> <strong>of</strong> <strong>Errors</strong> <strong>in</strong> <strong>Trace</strong> <strong>Element</strong> <strong>and</strong> <strong>Speciation</strong> Analyses<br />

Sample St<strong>and</strong>ard Deviation<br />

s An estimate <strong>of</strong> the population st<strong>and</strong>ard deviation σ from a sample <strong>of</strong> n results.<br />

7<br />

8<br />

2


<strong>Sources</strong> <strong>of</strong> <strong>Errors</strong> <strong>in</strong> <strong>Trace</strong> <strong>Element</strong> <strong>and</strong> <strong>Speciation</strong> Analyses<br />

<strong>Sources</strong> <strong>of</strong> <strong>Errors</strong> <strong>in</strong> <strong>Trace</strong> <strong>Element</strong> <strong>and</strong> <strong>Speciation</strong> Analyses<br />

Perhaps…<br />

Perhaps it should be…<br />

<strong>Sources</strong> <strong>of</strong> <strong>Errors</strong> <strong>and</strong> Uncerta<strong>in</strong>ities <strong>in</strong> <strong>Trace</strong> <strong>Element</strong> <strong>and</strong> <strong>Speciation</strong><br />

Analyses<br />

9<br />

10<br />

(i)<br />

(ii)<br />

(iii)<br />

(iv)<br />

It is easy to recognize that <strong>in</strong>creas<strong>in</strong>g the complexity <strong>of</strong> an analytical protocol<br />

(i.e.: more steps dur<strong>in</strong>g the analytical process) <strong>in</strong>creases the chance <strong>of</strong> errors. In<br />

an ideal situation, analytical measurements would be done:<br />

<strong>in</strong>-situ, remov<strong>in</strong>g the issues related to sampl<strong>in</strong>g <strong>and</strong> sample <strong>in</strong>tegrity.<br />

Directly <strong>in</strong> the matrix even for solids, without extensive sample preparation such<br />

as leach<strong>in</strong>g, decomposition, etc.<br />

Us<strong>in</strong>g highly selective, absolute measurements, with the dynamic range <strong>of</strong> the<br />

measurement method extend<strong>in</strong>g from percentage to ppt levels, thus remov<strong>in</strong>g<br />

potential sources <strong>of</strong> error due to <strong>in</strong>terferences, calibration etc.<br />

without human <strong>in</strong>tervention, i.e., automated, remov<strong>in</strong>g the human variable from<br />

the system.<br />

(i)<br />

(ii)<br />

(iii)<br />

(iv)<br />

It is easy to recognize that <strong>in</strong>creas<strong>in</strong>g the complexity <strong>of</strong> an analytical protocol<br />

(i.e.: more steps dur<strong>in</strong>g the analytical process) <strong>in</strong>creases the chance <strong>of</strong> errors. In<br />

an ideal situation, analytical measurements would be done:<br />

<strong>in</strong>-situ, remov<strong>in</strong>g the issues related to sampl<strong>in</strong>g <strong>and</strong> sample <strong>in</strong>tegrity.<br />

Directly <strong>in</strong> the matrix even for solids, without extensive sample preparation such<br />

as leach<strong>in</strong>g, decomposition, etc.<br />

Us<strong>in</strong>g highly selective, absolute measurements, with the dynamic range <strong>of</strong> the<br />

measurement method extend<strong>in</strong>g from percentage to ppt levels, thus remov<strong>in</strong>g<br />

potential sources <strong>of</strong> error due to <strong>in</strong>terferences, calibration etc.<br />

without human <strong>in</strong>tervention, i.e., automated, remov<strong>in</strong>g the human variable from<br />

the system.<br />

11<br />

12<br />

3


Overview <strong>of</strong> the analytical process<br />

Overview <strong>of</strong> the analytical process<br />

Sampl<strong>in</strong>g<br />

Sample preparation<br />

Instrumental analysis<br />

Data evaluation<br />

Sampl<strong>in</strong>g<br />

Sample preparation<br />

Instrumental analysis<br />

Data evaluation<br />

Sampl<strong>in</strong>g <strong>and</strong> sample preparation are by far the largest<br />

contributors to measurement errors <strong>and</strong> uncerta<strong>in</strong>ty!!!!<br />

13<br />

14<br />

Contam<strong>in</strong>ation, sample loss<br />

-Sample Conta<strong>in</strong>er Material<br />

-Conta<strong>in</strong>er Transpiration<br />

-Stability <strong>of</strong> Metals at ppb Concentration Levels<br />

-Environmental Contam<strong>in</strong>ation<br />

-Contam<strong>in</strong>ation From Reagents<br />

-Contam<strong>in</strong>ation From the Analyst <strong>and</strong> Apparatus<br />

Overview <strong>of</strong> the analytical process<br />

Sampl<strong>in</strong>g<br />

Sample preparation<br />

Instrumental analysis<br />

Data evaluation<br />

15<br />

16<br />

4


Detection Technologies<br />

Optical<br />

Absorption, AA, GF-AA<br />

Emission, ICP, Flame<br />

Fluorescent,<br />

Mass spectrometry<br />

ICP<br />

GD<br />

MIP<br />

Atomic Absorption spectrometry (AA)<br />

Discovered <strong>in</strong> the late fifties<br />

Sh<strong>in</strong>e light specific for an element through an atom reservoir (flame or furnace)<br />

Light is absorbed by the ground state atoms <strong>of</strong> given element<br />

The absorption rate is proportional with the number <strong>of</strong> analyte atoms <strong>in</strong> the atom source<br />

17<br />

18<br />

AA<br />

FAST, (seconds per determ<strong>in</strong>ation)<br />

Low cost per analysis<br />

Low capital <strong>in</strong>vestment <strong>and</strong> low operat<strong>in</strong>g cost<br />

S<strong>in</strong>gle element determ<strong>in</strong>ation<br />

Easy to use<br />

Well understood <strong>in</strong>terferences (mature technique)<br />

Versatile<br />

Requires separate lamp for each element to be determ<strong>in</strong>ed<br />

Hollow Cathode (HCL) or Electrodeless Discharge Lamp (EDL)<br />

Interferences<br />

Technique Type <strong>of</strong> Interference Compensation Method<br />

Flame AA Ionization Ionization buffer<br />

Chemical Releas<strong>in</strong>g agent or nitrous -<br />

oxide-acetylene flame<br />

Physical<br />

Dilution, matrix match<strong>in</strong>g or<br />

method <strong>of</strong> additions<br />

19<br />

20<br />

5


Graphite Furnace Atomic Absorption (GF-AAS)<br />

Low detection limits for most elements<br />

parts per billion (μg/L)<br />

Slower then flame analysis<br />

M<strong>in</strong> per determ<strong>in</strong>ation<br />

S<strong>in</strong>gle element determ<strong>in</strong>ation<br />

Small sample volume (μL)<br />

Interferences<br />

Cost per analysis higher than Flame AA<br />

More technical experience needed<br />

Interferences<br />

Technique Type <strong>of</strong> Interference Compensation Method<br />

GFAA Molecular absorption background correction<br />

Matrix <strong>in</strong>terferences modifiers<br />

21<br />

22<br />

Special case <strong>of</strong> AA or AFS<br />

•Dedicated system for cold vapor Hg<br />

analysis<br />

•Detects ppt levels <strong>of</strong> Hg<br />

•High <strong>in</strong>tensity Hg lamp<br />

•Long path length cell<br />

•Solid state detector<br />

•Extremely sensitive but prone to matrix <strong>in</strong>terferences<br />

Inductively Coupled Plasma – Optical Emission Spectrometry<br />

• ICP is an argon gas discharge (~6-9000K)<br />

• Excites atoms <strong>in</strong> sample <strong>and</strong> Light be<strong>in</strong>g emitted. The emitted light is separated <strong>and</strong><br />

measured.<br />

• Wavelengths are characteristic <strong>of</strong> element<br />

• Intensity <strong>of</strong> light emitted is proportional to amount <strong>of</strong> element <strong>in</strong> the sample<br />

23<br />

24<br />

6


ICP-OES<br />

Fast or very fast analysis time<br />

Many elements <strong>in</strong> a few m<strong>in</strong>utes<br />

Low detection limits<br />

Parts per billion <strong>in</strong> axial view mode<br />

Wider dynamic range<br />

Over 3 times better than flame AA<br />

(Two view<strong>in</strong>g options)<br />

Cost per analysis<br />

Comparable to flame AA<br />

Lower than GF AA<br />

Some technical experience needed<br />

Interferences<br />

Technique Type <strong>of</strong> Interference Compensation Method<br />

ICP-OES Spectral Background correction<br />

or use <strong>of</strong> alternate<br />

analytical wavelengths<br />

Physical<br />

Internal st<strong>and</strong>ardization<br />

25<br />

26<br />

Spectrum <strong>of</strong> a high Ca conta<strong>in</strong><strong>in</strong>g matrix (red l<strong>in</strong>e) caus<strong>in</strong>g a slop<strong>in</strong>g<br />

background for the Cu 219.959 or Ge 219.871 l<strong>in</strong>es are used. Background<br />

correction is difficult at best <strong>in</strong> these situations.<br />

27<br />

Spectrum <strong>of</strong> a high concentration <strong>of</strong> Fe (red l<strong>in</strong>e) show<strong>in</strong>g a direct spectral overlap upon the B<br />

208.892 l<strong>in</strong>e <strong>and</strong> a w<strong>in</strong>g overlap on a B 208.959<br />

28<br />

7


W<strong>in</strong>g overlap <strong>in</strong>terference <strong>of</strong> Fe (red l<strong>in</strong>e) upon the Ba 233.527 nm l<strong>in</strong>e<br />

Overview <strong>of</strong> ICP-OES<br />

Detection limits not as good as GFAA or ICP-MS<br />

• Some specific applications require lower detection limits<br />

Some elements <strong>in</strong> l<strong>in</strong>e-rich area <strong>of</strong> spectrum<br />

• Thous<strong>and</strong>s <strong>of</strong> wavelengths for Fe<br />

• Rare earths (Dy, Eu, La, Ce)<br />

Interferences for particular elements<br />

• Transuranics (U, Am, Pu, Tc)<br />

Sensitivity for some elements not sufficient<br />

• Halogens<br />

Higher <strong>in</strong>itial <strong>in</strong>vestment than AA<br />

More gas consumption than AA<br />

• Requires ~16 L/m<strong>in</strong> <strong>of</strong> argon gas<br />

29<br />

30<br />

Advantages <strong>of</strong> ICP-OES<br />

Multielement technique<br />

Speed<br />

samples can be analyzed <strong>in</strong> seconds to m<strong>in</strong>utes<br />

Excellent l<strong>in</strong>ear dynamic range<br />

up to 100-1000 mg/L<br />

Detection limits moderate to excellent<br />

0.4 - 2 ug/L<br />

Interferences<br />

spectral <strong>in</strong>terferences controlled through <strong>in</strong>strument design / s<strong>of</strong>tware<br />

Plasma view: axial or radial<br />

axial view has lower DLs<br />

radial view has wider l<strong>in</strong>ear range <strong>and</strong> less <strong>in</strong>terferences<br />

Lower cost per (similar to AA)<br />

31<br />

32<br />

8


Nebulizers<br />

ICP-MS<br />

Same type <strong>of</strong> plasma source as <strong>in</strong> ICP-OES<br />

Ions are generated by <strong>in</strong>tense ICP ion source, separated <strong>and</strong> detected by a mass<br />

spectrometer<br />

33<br />

34<br />

Nebulizers<br />

The ma<strong>in</strong> function <strong>of</strong> the sample <strong>in</strong>troduction system is to generate a f<strong>in</strong>e aerosol <strong>of</strong><br />

the sample. It achieves this purpose with a nebulizer <strong>and</strong> a spray chamber<br />

Nebulizers generate an aerosol from the aqueous sample <strong>and</strong> spray chambers filter<br />

out heavy droplets <strong>and</strong> dampen noise.<br />

In general, nebulizers designed for use with ICP-OES are not recommended for<br />

ICP-MS 1-2% total dissolved solids (TDS) for OES <strong>and</strong> only 0.1-0.2% for MS<br />

Nebulizers<br />

Concentric design. In the concentric nebulizer,the solution is <strong>in</strong>troduced through a<br />

capillary tube to a low-pressure region created by a gas flow<strong>in</strong>g rapidly past the end <strong>of</strong><br />

the capillary.<br />

Concentric pneumatic nebulizers can provide excellent sensitivity <strong>and</strong> stability,<br />

particularly with clean solutions. However, the small orifices can be plagued by<br />

blockage problems, especially if large numbers <strong>of</strong> heavy matrix samples are<br />

aspirated<br />

35<br />

36<br />

9


Nebulizers<br />

Crossflow design. For samples that conta<strong>in</strong> a heavier matrix or small amounts <strong>of</strong><br />

undissolved matter, the crossflow design is probably the best option. With this<br />

design the argon gas is directed at right angles to the tip <strong>of</strong> a capillary tube, <strong>in</strong><br />

contrast to the concentric design, where the gas flow is parallel to the capillary.<br />

Spray chambers<br />

Crossflow nebulizers are generally not as efficient as concentric nebulizers<br />

at creat<strong>in</strong>g the very small droplets needed for ICP-MS analyses.<br />

37<br />

Schematic <strong>of</strong> a cyclonic spray chamber (shown<br />

with concentric nebulizer).<br />

38<br />

Spray chambers<br />

Ion source<br />

Schematic <strong>of</strong> a Scott double-pass spray chamber<br />

(shown with crossflow nebulizer<br />

39<br />

40<br />

10


Plasma<br />

41 42<br />

Plasma<br />

Mass analyzer is the region <strong>of</strong> the ICP mass spectrometer that<br />

separates the ions accord<strong>in</strong>g to their mass to charge ratio (m/z)<br />

43<br />

44<br />

11


Mass analyzers<br />

Quadrupole<br />

Quadrupole<br />

TOF (I<strong>in</strong>erar, ortogonal)<br />

Sector <strong>in</strong>struments<br />

Schematic <strong>of</strong> a quadrupole mass analyzer.<br />

45<br />

46<br />

Sensitivity comparison <strong>of</strong> a quadrupole operated at 3.0, 1.0,<br />

<strong>and</strong> 0.3 amu resolution (measured at 10% <strong>of</strong> its peak height)<br />

Quads are low res analyzers<br />

47<br />

Ions enter<strong>in</strong>g the quadrupole are slowed down by the filter<strong>in</strong>g process <strong>and</strong><br />

produce peaks with a pronounced tail or shoulder at the low-mass end.<br />

The abundance sensitivity for quadrupoles is always worse on the low mass side<br />

than on the high mass side <strong>and</strong> is typically 1 x 10 -6 at M - 1 <strong>and</strong> 1 x 10 -7 at M + 1<br />

48<br />

12


Sector <strong>in</strong>struments<br />

Schematic <strong>of</strong> a double-focus<strong>in</strong>g magnetic-sector ICP mass spectrometer<br />

49<br />

50<br />

• Why we need high mass resolution?<br />

Resolution required to resolve some common polyatomic <strong>in</strong>terferences<br />

from a selected group <strong>of</strong> isotopes.<br />

51<br />

52<br />

13


Q<br />

Ion transmission with a magneticsector <strong>in</strong>strument decreases as<br />

the resolution <strong>in</strong>creases.<br />

HR<br />

53<br />

54<br />

TOF (on-axis, ortogonal design)<br />

Schematic <strong>of</strong> an orthogonal acceleration TOF analyzer.<br />

55<br />

56<br />

14


m/z = 2Ut 2 /D 2<br />

Where (U) is the accelerat<strong>in</strong>g voltage, mass-to-charge ratios<br />

(m/z), time (t), length <strong>of</strong> the flight path (D)<br />

Schematic <strong>of</strong> an on-axis acceleration TOF analyzer.<br />

57<br />

58<br />

• Mass analyzer<br />

Resolution<br />

Quad 200-300<br />

TOF 2000-3000<br />

Sector 10,000<br />

Reflectron TOF MS design 59<br />

60<br />

15


Resolution required to resolve some common polyatomic <strong>in</strong>terferences<br />

from a selected group <strong>of</strong> isotopes.<br />

ICP-Mass Spectroscopy Overview<br />

Very fast analysis<br />

• Comparable to simultaneous ICP-OES<br />

Superior detection limits<br />

• Parts per trillion<br />

Semi-Quant analysis<br />

Isotope analysis<br />

Cost per analysis<br />

• Same as ICP-OES<br />

Some technical experience required<br />

61<br />

62<br />

Technique Type <strong>of</strong> Interference Compensation Method<br />

ICP-MS Mass Overlap Interelement correction,<br />

use <strong>of</strong> alternate mass<br />

values or higher mass<br />

Resolution<br />

Dynamic Reaction Cell<br />

Physical<br />

Internal St<strong>and</strong>ardization<br />

63<br />

64<br />

16


ICP MS<br />

Very fast analysis<br />

• Comparable to simultaneous ICP-OES <strong>and</strong> st<strong>and</strong>ard ICP-MS<br />

Superior detection limits<br />

• Up to parts per quadrillion<br />

• Removes isobaric <strong>and</strong> argon <strong>in</strong>terferences<br />

Cost per analysis<br />

• Slightly more than st<strong>and</strong>ard ICP-MS<br />

Some technical expertise required<br />

65<br />

66<br />

67 68<br />

17


Flame AA<br />

• A few elements per sample to analyze<br />

• 5 mL/m<strong>in</strong> sample consumption<br />

• Detection levels needed are <strong>in</strong> the sub-mg/L region<br />

GFAA<br />

• Detection levels <strong>of</strong> μg/L to sub- μg/L levels<br />

• 10-50 uL sample consumption<br />

<br />

ICP-OES<br />

• Several elements per sample (5+)<br />

• 1-5 mL/m<strong>in</strong> sample consumption<br />

• Detection levels are <strong>in</strong> the sub-mg/L <strong>and</strong> μg/L region<br />

ICP-MS<br />

• Detection levels <strong>of</strong> sub- μg/L to sub-ng/L levels<br />

• Typical 1-2 mL/m<strong>in</strong> sample consumption<br />

Can use low consumption nebulizers <br />

69<br />

Interferences <strong>in</strong> ICP MS<br />

Isobaric Interferences<br />

Polyatomic (Molecular) Interferences<br />

Doubly Charged Ion Interferences<br />

70<br />

Isobaric Interferences:<br />

Isobaric <strong>in</strong>terference is a result <strong>of</strong> equal mass isotopes <strong>of</strong> different elements present <strong>in</strong><br />

the sample solution. Low-resolution <strong>in</strong>struments (quad, TOF) cannot dist<strong>in</strong>guish<br />

between the isotopes. There are many examples <strong>in</strong> the <strong>in</strong>termediate mass regions<br />

where the second <strong>and</strong> third row transitions <strong>and</strong> the rare earths appear. There are no<br />

elemental s<strong>in</strong>gly charged isotopes that overlap with monoisotopic elements (9Be,<br />

23Na, 27Al, 45Sc, 55Mn, 75As, 89Y, 103Rh, 127I, 133Cs, 141Pr, 159Tb, 165Ho,<br />

169Tm, 197Au, <strong>and</strong> 232Th). For elements hav<strong>in</strong>g more than one isotope, the quickest<br />

fix may be to use another isotope <strong>of</strong> that element.<br />

Isobaric Interferences:<br />

If the <strong>in</strong>terference is from an isotope with roughly the same or lower peak <strong>in</strong>tensity, it is<br />

possible to perform a correction by measur<strong>in</strong>g the <strong>in</strong>tensity <strong>of</strong> another isotope <strong>of</strong> the<br />

<strong>in</strong>terfer<strong>in</strong>g element <strong>and</strong> subtract<strong>in</strong>g the appropriate correction factor from the <strong>in</strong>tensity<br />

<strong>of</strong> the <strong>in</strong>terfered isotope. If you are work<strong>in</strong>g with an unknown sample composition, a<br />

semi-quantitative analysis is suggested with low-resolution <strong>in</strong>struments us<strong>in</strong>g a quick<br />

scan <strong>of</strong> the sample <strong>and</strong> the rather sophisticated semi-quantitative programs available<br />

on current <strong>in</strong>strumentation.<br />

71<br />

72<br />

18


Polyatomic (Molecular) Interferences:<br />

Molecular <strong>in</strong>terferences are due to the recomb<strong>in</strong>ation <strong>of</strong> sample <strong>and</strong> matrix ions with Ar<br />

<strong>and</strong> other matrix components such as O, N, H, C, Cl, S, F, etc. The light elements (Li,<br />

Be, B) are not affected due to their small masses.<br />

Start<strong>in</strong>g with 39K, this type <strong>of</strong> <strong>in</strong>terference becomes a significant issue. For example,<br />

39K is <strong>in</strong>terfered with by 38ArH <strong>and</strong> 23Na16O. Some polyatomic <strong>in</strong>terferences can be<br />

avoided by elim<strong>in</strong>at<strong>in</strong>g certa<strong>in</strong> matrix elements such as the classic 40Ar35Cl<br />

<strong>in</strong>terference upon the monoisotopic element 75As, where the use <strong>of</strong> HCl <strong>in</strong> the sample<br />

preparation is to be avoided. The isotopes 56Fe, 39K, <strong>and</strong> 44Ca or 40Ca are all<br />

<strong>in</strong>terfered with by comb<strong>in</strong>ations <strong>of</strong> the Ar, O, <strong>and</strong> N isotopes.<br />

73<br />

Polyatomic (Molecular) Interferences:<br />

As we go to the heavier elements the major polyatomic <strong>in</strong>terferences come from<br />

isotopes that are 16 atomic mass units lower than the analyte isotope through<br />

molecular oxide (MO) <strong>in</strong>terference. The lanthanide element isotopes are especially<br />

prone to molecular oxide formation. The use <strong>of</strong> cool plasma techniques, reaction /<br />

collision cells, desolvation, <strong>and</strong> chromatographic separations -- to name a few<br />

approaches -- have resulted <strong>in</strong> reduction <strong>and</strong>, <strong>in</strong> some cases, complete elim<strong>in</strong>ation <strong>of</strong><br />

many polyatomic <strong>in</strong>terferences.<br />

74<br />

Polyatomic (Molecular) Interferences:<br />

The severity <strong>of</strong> the MO <strong>in</strong>terference can be reduced through reduction <strong>of</strong> the sample<br />

argon gas flow rate. Mass corrections may be an option <strong>in</strong> cases where the use <strong>of</strong> an<br />

alternate isotope is not an option. Polyatomic <strong>in</strong>terferences are particularly<br />

troublesome <strong>in</strong> the determ<strong>in</strong>ation <strong>of</strong> first row periodic table elements (K thru Se) due to<br />

the vast number <strong>of</strong> comb<strong>in</strong>ations <strong>of</strong> Ar with matrix components.<br />

Doubly Charged Ion Interferences:<br />

Doubly charged ion <strong>in</strong>terference is due to doubly charged element isotopes with twice<br />

the mass <strong>of</strong> the analyte isotope. For example, <strong>in</strong>terference from 206Pb++ (m/e = 103)<br />

upon 103Rh is likely at high Pb concentration levels. Reduction <strong>in</strong> the sample Ar will<br />

m<strong>in</strong>imize this <strong>in</strong>terference. Fortunately, this type <strong>of</strong> <strong>in</strong>terference is not as prom<strong>in</strong>ent <strong>in</strong><br />

Ar plasmas, but care should be exercised <strong>in</strong> matrices conta<strong>in</strong><strong>in</strong>g high levels <strong>of</strong> mid to<br />

heavy mass element isotopes. The alkal<strong>in</strong>e <strong>and</strong> rare earth elements form doubly<br />

charged ions to a extent that is greater, relative to the other elements.<br />

75<br />

76<br />

19


ICP MS background mass spectrum <strong>of</strong> high-purity water.<br />

77<br />

Common polyatomic spectral <strong>in</strong>terferences <strong>in</strong> ICP-MS.<br />

78<br />

Space Charge Effects:<br />

These effects are thought to occur at the MS <strong>in</strong>terface, the region between the<br />

skimmer tip <strong>and</strong> ion optics <strong>and</strong> <strong>in</strong> the ion optics region. The net result is a suppression<br />

<strong>of</strong> the signal <strong>in</strong> high concentrations <strong>of</strong> a matrix element. The k<strong>in</strong>etic energy <strong>of</strong> the ion<br />

element matrix affects the degree <strong>of</strong> suppression with larger masses (higher k<strong>in</strong>etic<br />

energy) caus<strong>in</strong>g more depression than lower masses. Due to differences between<br />

<strong>in</strong>struments <strong>in</strong> <strong>in</strong>terface <strong>and</strong> ion optic designs it is difficult to predict the conditions<br />

under which the effect is m<strong>in</strong>imal. Under 'cool plasma' conditions, this suppression<br />

effect is more pronounced. Keep the matrix element concentration at or below the 100<br />

µg/g!<br />

79<br />

How to elim<strong>in</strong>ate spectral <strong>in</strong>terferences?<br />

isobaric <strong>in</strong>terferences from isobaric element ions cannot be elim<strong>in</strong>ated easily<br />

solution: use an other isotope if you can<br />

Front end solutions (chromatography, hydride generation etc)<br />

polyatomic <strong>in</strong>terferences could be elim<strong>in</strong>ated by<br />

solution: cool plasma conditions<br />

<strong>in</strong>creased mass resolution<br />

gas phase chemistry<br />

80<br />

20


How to elim<strong>in</strong>ate spectral <strong>in</strong>terferences?<br />

Collision/Reaction Cell Technology<br />

isobaric <strong>in</strong>terferences from isobaric element ions cannot be elim<strong>in</strong>ated easily<br />

solution: use an other isotope if you can<br />

Front end solutions (chromatography, hydride generation etc)<br />

polyatomic <strong>in</strong>terferences could be elim<strong>in</strong>ated by<br />

solution: cool plasma conditions<br />

<strong>in</strong>creased mass resolution<br />

gas phase chemistry<br />

81<br />

82<br />

Examples <strong>of</strong> polyatomic <strong>in</strong>terferences:<br />

• 40Ar16O on the determ<strong>in</strong>ation <strong>of</strong> 56Fe<br />

• 38ArH on the determ<strong>in</strong>ation <strong>of</strong> 39K<br />

• 40Ar on the determ<strong>in</strong>ation <strong>of</strong> 40Ca<br />

• 40Ar40Ar on the determ<strong>in</strong>ation <strong>of</strong> 80Se<br />

• 40Ar35Cl on the determ<strong>in</strong>ation <strong>of</strong> 75As<br />

• 40Ar12C on the determ<strong>in</strong>ation <strong>of</strong> 52Cr<br />

• 35Cl16O on the determ<strong>in</strong>ation <strong>of</strong> 51V.<br />

Elim<strong>in</strong>ation <strong>of</strong> the ArO <strong>in</strong>terference with a dynamic reaction cell.<br />

83<br />

84<br />

21


Calibration<br />

“Collision/reaction cells have<br />

given a new lease on life to<br />

quadrupole mass analyzers used<br />

<strong>in</strong> ICP-MS.”<br />

85<br />

86<br />

External Calibration:<br />

Use this approach for matrices that are known <strong>and</strong> can be matched. The use <strong>of</strong><br />

<strong>in</strong>ternal st<strong>and</strong>ards is helpful <strong>in</strong> account<strong>in</strong>g for drift.<br />

Must know your sample composition! A semi-quantitative analysis us<strong>in</strong>g a scann<strong>in</strong>g<br />

approach for the entire mass range allows the analyst to predict <strong>in</strong>terferences<br />

<strong>and</strong> select <strong>in</strong>ternal st<strong>and</strong>ards <strong>and</strong> analyte isotopic masses.<br />

Perform <strong>in</strong>terference check analysis. Prepare for the variations <strong>in</strong> the matrix <strong>and</strong><br />

analyte composition <strong>and</strong> determ<strong>in</strong>e if corrections that have been built <strong>in</strong>to the<br />

procedure are capable <strong>of</strong> provid<strong>in</strong>g the required accuracy.<br />

External Calibration:<br />

Use this approach for matrices that are known <strong>and</strong> can be matched. The use <strong>of</strong><br />

<strong>in</strong>ternal st<strong>and</strong>ards is helpful <strong>in</strong> account<strong>in</strong>g for drift.<br />

Must know your sample composition! A semi-quantitative analysis us<strong>in</strong>g a scann<strong>in</strong>g<br />

approach for the entire mass range allows the analyst to predict <strong>in</strong>terferences<br />

<strong>and</strong> select <strong>in</strong>ternal st<strong>and</strong>ards <strong>and</strong> analyte isotopic masses.<br />

Perform <strong>in</strong>terference check analysis. Prepare for the variations <strong>in</strong> the matrix <strong>and</strong><br />

analyte composition <strong>and</strong> determ<strong>in</strong>e if corrections that have been built <strong>in</strong>to the<br />

procedure are capable <strong>of</strong> provid<strong>in</strong>g the required accuracy.<br />

Simple <strong>and</strong> cheap BUT prone to <strong>in</strong>terferences<br />

87<br />

88<br />

22


St<strong>and</strong>ard Additions:<br />

This approach is common with ICP-OES & ICP-MS.<br />

Could correct <strong>in</strong>terferences but not for <strong>in</strong>strument drift<br />

Isotope Dilution:<br />

Isotope dilution <strong>in</strong> mass spectrometry is a type <strong>of</strong> <strong>in</strong>ternal st<strong>and</strong>ardization. ID is a<br />

primary (def<strong>in</strong>itive) analytical method for the determ<strong>in</strong>ation <strong>of</strong> metals <strong>in</strong> a variety<br />

<strong>of</strong> sample types. (other primary analytical methods are gravimetry, titrimetry,<br />

coulometry, differential scann<strong>in</strong>g calorimetry) <strong>and</strong> nuclear magnetic resonance<br />

spectroscopy.<br />

Only applicable for multi isotope elements. (not for: 9Be, 23Na, 27Al, 45Sc, 55Mn,<br />

75As, 89Y, 103Rh, 127I, 133Cs, 141Pr, 159Tb, 165Ho, 169Tm, 197Au, <strong>and</strong><br />

232Th)<br />

ID could correct both for systematic <strong>and</strong> r<strong>and</strong>om errors <strong>in</strong> the analysis.<br />

But it is expensive <strong>and</strong> <strong>in</strong>volves complicated mathematics.<br />

89<br />

90<br />

Expression <strong>of</strong> an analytical result<br />

Value 1 ± Value 2<br />

Free <strong>of</strong> systematic error (bias)<br />

Verification <strong>of</strong> traceability <strong>of</strong><br />

the results:<br />

• CRMs<br />

• Primary methods (or reference<br />

methods)<br />

Uncerta<strong>in</strong>ty<br />

Consideration <strong>of</strong> all sources <strong>of</strong> error<br />

<strong>of</strong> the analytical process:<br />

1. R<strong>and</strong>om errors: Method precision<br />

2. Correction <strong>of</strong> systematic errors<br />

Thank you for your attention!<br />

91<br />

92<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!