12.06.2015 Views

Tran - DESY Theory workshop 2008

Tran - DESY Theory workshop 2008

Tran - DESY Theory workshop 2008

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Indirect Signatures of Gravitino Dark Matter<br />

with Broken R-Parity<br />

David <strong>Tran</strong><br />

Physik-Department T30d<br />

Technische Universität München<br />

Dark Matter at the Crossroads<br />

<strong>DESY</strong>, Hamburg<br />

October 1, <strong>2008</strong><br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Outline<br />

Based on<br />

A. Ibarra and D. <strong>Tran</strong>, Phys.Rev.Lett.100:061301,<strong>2008</strong> [arXiv:0709:4593 [astro-ph]]<br />

A. Ibarra and D. <strong>Tran</strong>, JCAP 0807:002,<strong>2008</strong> [arXiv:0804.4596 [astro-ph]]<br />

1 Gravitino Dark Matter<br />

2 Gamma Rays<br />

3 Positrons<br />

4 Antiprotons<br />

5 Antideuterons<br />

6 Conclusions<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Outline<br />

Based on<br />

A. Ibarra and D. <strong>Tran</strong>, Phys.Rev.Lett.100:061301,<strong>2008</strong> [arXiv:0709:4593 [astro-ph]]<br />

A. Ibarra and D. <strong>Tran</strong>, JCAP 0807:002,<strong>2008</strong> [arXiv:0804.4596 [astro-ph]]<br />

1 Gravitino Dark Matter<br />

2 Gamma Rays<br />

3 Positrons<br />

4 Antiprotons<br />

5 Antideuterons<br />

6 Conclusions<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Gravitino Dark Matter with Broken R-Parity<br />

Our scenario: The gravitino is the lightest supersymmetric particle,<br />

small violation of R-parity<br />

Detailed motivation → See Michael Grefe’s talk<br />

Reconciles clash between supersymmetric dark matter, leptogenesis<br />

and Big Bang nucleosynthesis<br />

The gravitino is an excellent dark matter candidate, but is usually<br />

assumed to be experimentally undetectable<br />

That is not necessarily true!<br />

R-parity violation can make gravitino dark matter accessible to indirect<br />

detection!<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Indirect Detection<br />

Even for gravitino lifetimes far in excess of the age of the Universe,<br />

the decay products may be observable due to the huge amount of<br />

dark matter<br />

Look for anomalous signatures in rare, low background cosmic-ray<br />

species and spectra of freely propagating particles:<br />

Gamma rays<br />

Positrons<br />

Antiprotons<br />

Antideuterons<br />

Neutrinos → Talk by Michael Grefe<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Outline<br />

1 Gravitino Dark Matter<br />

2 Gamma Rays<br />

3 Positrons<br />

4 Antiprotons<br />

5 Antideuterons<br />

6 Conclusions<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

The diffuse extragalactic gamma-ray spectrum was measured by<br />

EGRET<br />

A first analysis of the extragalactic spectrum gave a power law<br />

spectrum [P. Sreekumar et al. 1998]<br />

A more recent re-analysis revealed a clear excess over the power law<br />

behavior at energies above ∼ 1 GeV [A.W. Strong, I.V. Moskalenko, O. Reimer<br />

2004]<br />

E 2 dJ/dE [GeV cm -2 s -1 sr -1 ]<br />

10 -6<br />

10 -7<br />

0.1 1 10 100<br />

E [GeV]<br />

Interpretation of this excess in terms of dark matter annihilation or<br />

decay?<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Two contributions to the gamma-ray spectrum from gravitino decay:<br />

The signal from gravitino decays in the Milky Way halo<br />

A redshifted signal from extragalactic sources<br />

The halo contribution has an angular dependence on the line of sight<br />

The extragalactic contribution gives an isotropic signal<br />

The intensity of the two contributions is of the same order, with the<br />

halocomponent being slightly dominant<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Calculate decay rates from supergravity Lagrangian<br />

The model is highly constrained: gravitino interactions are<br />

completely fixed by symmetries<br />

b<br />

µ<br />

p<br />

ρ, a<br />

= − i δ ab γ µ [/p, γ ρ ]<br />

4M P<br />

→ Very predictive scenario from the particle physics point of view<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Light gravitino: m 3/2 < m W<br />

Injection spectrum is a monochromatic line from ψ 3/2 → γν at<br />

E = 1 2 m 3/2<br />

ν<br />

ψ 3/2<br />

˜γ<br />

γ<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Spectrum for light gravitino, m 3/2 = 10GeV:<br />

E 2 dJ/dE [GeV (cm 2 s str) -1 ]<br />

10 -6<br />

10 -7<br />

0.1 1 10<br />

E [GeV]<br />

[G. Bertone, W. Buchmüller, L. Covi, A. Ibarra 2007]<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Heavier gravitino: m 3/2 > m W , m Z<br />

ν<br />

˜Z 0<br />

ψ 3/2<br />

Z 0<br />

l ∓<br />

˜W ∓<br />

ψ 3/2<br />

W ±<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Heavier gravitino: m 3/2 > m W , m Z<br />

ψ 3/2 → Z 0 ν<br />

ψ 3/2 → W ± l ∓<br />

ψ 3/2 → hν<br />

are kinematically allowed<br />

Only two free parameters: m 3/2 , τ 3/2 (under assumption of gaugino<br />

mass universality at the GUT scale, neglecting Higgs channel)<br />

10 0 Wτ<br />

100 1000<br />

Branching Ratio<br />

10 -1<br />

10 -2<br />

Zν τ<br />

hν τ<br />

γν τ<br />

10 -3<br />

m 3/2 [GeV]<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Fragmentation of the gauge bosons produces photons in the<br />

gamma-ray energy range, primarily from pion decay<br />

ν<br />

˜Z 0<br />

ψ 3/2<br />

˜W ∓<br />

Z 0<br />

l ∓<br />

ψ 3/2<br />

W ±<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Fragmentation of the gauge bosons produces photons in the<br />

gamma-ray energy range, primarily from pion decay<br />

ν<br />

˜Z 0<br />

ψ 3/2<br />

˜W ∓<br />

Z 0<br />

l ∓<br />

ψ 3/2<br />

W ±<br />

Determining the energy spectrum is a very complicated problem →<br />

use Monte Carlo simulation<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Spectrum for heavier gravitino:<br />

E 2 dJ/dE [GeV cm -2 s -1 sr -1 ]<br />

10 -7<br />

10 -6 0.1 1 10 100<br />

E [GeV]<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Spectrum for heavier gravitino:<br />

E 2 dJ/dE [GeV cm -2 s -1 sr -1 ]<br />

10 -7<br />

10 -6 0.1 1 10 100<br />

[A. Ibarra, DT 2007]<br />

E [GeV]<br />

m 3/2 = 150 GeV, τ 3/2 = 1.3 × 10 26 s.<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Spectrum for heavier gravitino:<br />

E 2 dJ/dE [GeV cm -2 s -1 sr -1 ]<br />

10 -7<br />

10 -6 0.1 1 10 100<br />

[A. Ibarra, DT 2007]<br />

E [GeV]<br />

m 3/2 = 150 GeV, τ 3/2 = 1.3 × 10 26 s.<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Spectrum for heavier gravitino:<br />

E 2 dJ/dE [GeV cm -2 s -1 sr -1 ]<br />

10 -7<br />

10 -6 0.1 1 10 100<br />

[A. Ibarra, DT 2007]<br />

E [GeV]<br />

m 3/2 = 150 GeV, τ 3/2 = 1.3 × 10 26 s.<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Spectrum for heavier gravitino:<br />

E 2 dJ/dE [GeV cm -2 s -1 sr -1 ]<br />

10 -7<br />

10 -6 0.1 1 10 100<br />

[A. Ibarra, DT 2007]<br />

E [GeV]<br />

m 3/2 = 150 GeV, τ 3/2 = 1.3 × 10 26 s.<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Spectrum for heavier gravitino:<br />

E 2 dJ/dE [GeV cm -2 s -1 sr -1 ]<br />

10 -7<br />

10 -6 0.1 1 10 100<br />

[A. Ibarra, DT 2007]<br />

E [GeV]<br />

m 3/2 = 150 GeV, τ 3/2 = 1.3 × 10 26 s.<br />

The monochromatic line is very characteristic and more strongly<br />

suppressed in the case of neutralino dark matter<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Gamma-Ray Spectrum<br />

Together with the assumed power law background, the angular<br />

dependence of the predicted spectrum is mild enough to be easily<br />

compatible with the EGRET results<br />

The predicted anisotropy and the presence of the line may be tested<br />

by GLAST<br />

The line may also be detectable by Cerenkov telescopes in galaxies<br />

such as M31<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Outline<br />

1 Gravitino Dark Matter<br />

2 Gamma Rays<br />

3 Positrons<br />

4 Antiprotons<br />

5 Antideuterons<br />

6 Conclusions<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Positron Fraction<br />

Fragmentation of the gauge bosons also produces positrons and<br />

antiprotons → Important consistency check, but may also produce<br />

interesting signatures<br />

Complicated antimatter propagation due to diffusion and energy loss<br />

→ loss of directional and spectral information<br />

The astrophysics of propagation involves many uncertainties about<br />

properties of the interstellar medium<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Positron Fraction<br />

Propagation is modeled using a cylindrical two-layer diffusion zone<br />

Diffusion-loss equation can be solved semi-analytically<br />

10<br />

5<br />

V c<br />

z [kpc]<br />

0<br />

Earth<br />

-5<br />

-10<br />

-20 -15 -10 -5 0 5 10 15 20<br />

r [kpc]<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Positron Fraction<br />

Experiments usually measure the positron fraction<br />

HEAT measured an excess in the positron fraction that cannot be<br />

explained by standard production and propagation models<br />

HEAT 94/95/00<br />

Positron fraction e + /(e + + e − )<br />

0.1<br />

Background only<br />

0.01<br />

1 10 100 1000<br />

T [GeV]<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Positron Fraction<br />

Experiments usually measure the positron fraction<br />

HEAT measured an excess in the positron fraction that cannot be<br />

explained by standard production and propagation models<br />

Positron fraction e + /(e + + e − )<br />

0.1<br />

HEAT 94/95/00<br />

AMS-01 98<br />

CAPRICE 94<br />

MASS 91<br />

Background only<br />

0.01<br />

1 10 100 1000<br />

T [GeV]<br />

Preliminary results from PAMELA seem to support an excess of<br />

positrons at higher energies!<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Positron Fraction<br />

Using the EGRET excess to fix m 3/2 , τ 3/2 predicts a bump in the<br />

positron fraction in just the right energy range<br />

Positron fraction e + /(e + + e − )<br />

0.1<br />

HEAT 94/95/00<br />

AMS-01 98<br />

CAPRICE 94<br />

MASS 91<br />

Background only<br />

0.01<br />

1 10 100 1000<br />

T [GeV]<br />

[A. Ibarra, DT <strong>2008</strong>]<br />

m 3/2 = 150 GeV, τ 3/2 = 1.3 × 10 26 s, M2 propagation model.<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Positron Fraction<br />

Using the EGRET excess to fix m 3/2 , τ 3/2 predicts a bump in the<br />

positron fraction in just the right energy range<br />

HEAT 94/95/00<br />

AMS-01 98<br />

CAPRICE 94<br />

MASS 91<br />

0.1<br />

Positron fraction e + /(e + + e − )<br />

Isothermal<br />

Moore et al.<br />

NFW<br />

Background only<br />

0.01<br />

1 10 100 1000<br />

T [GeV]<br />

[A. Ibarra, DT <strong>2008</strong>]<br />

m 3/2 = 150 GeV, τ 3/2 = 1.3 × 10 26 s, M2 propagation model.<br />

Excellent agreement with the positron fraction measured by HEAT!<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Positron Fraction<br />

The presence of the bump is not very sensitive to the astrophysical<br />

parameters<br />

Positron fraction e + /(e + + e − )<br />

0.1<br />

M2<br />

HEAT 94/95/00<br />

AMS-01 98<br />

CAPRICE 94<br />

MASS 91<br />

Background only<br />

M1, MED<br />

0.01<br />

1 10 100 1000<br />

T [GeV]<br />

[A. Ibarra, DT <strong>2008</strong>]<br />

m 3/2 = 150 GeV, τ 3/2 = 1.3 × 10 26 s, NFW profile.<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Positron Fraction<br />

The coincidence of parameters is very intriguing...<br />

The anomalies in gamma-rays and positrons are related in this<br />

model – interpreting one of them in terms of decaying gravitinos<br />

“predicts” the existence of the other<br />

HEAT 94/95/00<br />

AMS-01 98<br />

CAPRICE 94<br />

MASS 91<br />

0.1<br />

Positron fraction e + /(e + + e − )<br />

M2<br />

Background only<br />

E 2 dJ/dE [GeV cm -2 s -1 sr -1 ]<br />

10 -6<br />

10 -7<br />

0.1 1 10 100<br />

M1, MED<br />

0.01<br />

1 10 100 1000<br />

T [GeV]<br />

E [GeV]<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Outline<br />

1 Gravitino Dark Matter<br />

2 Gamma Rays<br />

3 Positrons<br />

4 Antiprotons<br />

5 Antideuterons<br />

6 Conclusions<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Antiproton Spectrum<br />

Theoretical calculations describe the measured antiproton spectrum<br />

quite well<br />

→ No need for new physics in the antiproton spectrum (?)<br />

p – flux (m -2 sr -1 sec -1 GeV -1 )<br />

10 -2<br />

2<br />

3<br />

4<br />

1<br />

5<br />

1<br />

2<br />

3<br />

4<br />

5<br />

10 -1 10 -1 1 10<br />

Cosmic Ray P – David <strong>Tran</strong> Indirect Signatures of Gravitino Dark Matter with Broken R-Parity<br />

BESS(95+97)<br />

BESS(93)<br />

IMAX<br />

CAPRICE<br />

Bottino<br />

Bergstrom<br />

Biebar<br />

Mitsui λ(R,β)<br />

Mitsui λ(R)<br />

10 -3<br />

Kinetic Energy (GeV)


The Antiproton Spectrum<br />

Similar propagation mechanism as in the case of positrons<br />

We neglect effects of reacceleration and tertiary contributions<br />

Huge uncertainties due to degeneracies in the determination of the<br />

propagation parameters<br />

Primary antiproton flux can vary by two orders of magnitude for<br />

parameters compatible with the Boron-to-Carbon ratio<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Antiproton Spectrum<br />

Primary top-of-atmosphere antiproton spectrum:<br />

10 1 0.1 1 10 100<br />

Antiproton flux [GeV -1 m -2 s -1 sr -1 ]<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

MAX<br />

MED<br />

MIN<br />

BESS 95+97<br />

BESS 95<br />

IMAX 92<br />

CAPRICE 94<br />

CAPRICE 98<br />

Φ = 500 MV<br />

10 -4<br />

[A. Ibarra, DT <strong>2008</strong>]<br />

T [GeV]<br />

m 3/2 = 150 GeV, τ 3/2 = 1.3 × 10 26 s, different sets of propagation<br />

parameters.<br />

Dangerous overproduction of antiprotons → for MED, MAX<br />

parameters, the model is probably not phenomenologically viable<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Antiproton Spectrum<br />

The minimal case:<br />

Antiproton flux [GeV -1 m -2 s -1 sr -1 ]<br />

10 -1<br />

10 -2<br />

10 0 0.1 1 10<br />

Background<br />

BESS 95+97<br />

BESS 95<br />

IMAX 92<br />

CAPRICE 94<br />

CAPRICE 98<br />

Signal<br />

Total<br />

10 -3<br />

Φ = 500 MV<br />

[A. Ibarra, DT <strong>2008</strong>]<br />

T [GeV]<br />

Together with the background, the flux is a factor ∼ 2 too large<br />

Is that enough to rule out the model?<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Outline<br />

1 Gravitino Dark Matter<br />

2 Gamma Rays<br />

3 Positrons<br />

4 Antiprotons<br />

5 Antideuterons<br />

6 Conclusions<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


The Antideuteron Spectrum<br />

No cosmic-ray antideuterons have been detected yet, only upper<br />

limits exist<br />

Antideuterons may form by coalescence of an antineutron-antiproton<br />

pair that lies very closely together in momentum space<br />

Spectral shape of background and dark matter signal are different at<br />

low energies<br />

Detection of a single antideuteron at low energies could provide<br />

important clue<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Outline<br />

1 Gravitino Dark Matter<br />

2 Gamma Rays<br />

3 Positrons<br />

4 Antiprotons<br />

5 Antideuterons<br />

6 Conclusions<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Nice Features of Decaying Gravitino Dark Matter<br />

The gravitino is theoretically very well motivated<br />

Gravitino dark matter with broken R-parity reconciles thermal<br />

leptogenesis, primordial nucleosynthesis and supersymmetric dark<br />

matter<br />

Very few free parameters → predictive scenario that can “easily” be<br />

falsified experimentally<br />

May explain two anomalies simultaneously in a natural way, although<br />

the model was not invented for this purpose<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Overview of the Indirect Signatures<br />

For the MIN propagation model, we get these possible signatures of<br />

gravitino decay<br />

EGRET<br />

HEAT 94/95/00<br />

E 2 dJ/dE [(cm 2 str s) -1 GeV]<br />

Positron fraction e + /(e + + e − )<br />

0.1<br />

10 -6<br />

10 -7<br />

0.1 1 10 100<br />

E [GeV]<br />

0.01<br />

1 10 100 1000<br />

T [GeV]<br />

10 -1 BESS 95+97<br />

0.1 1 10<br />

Antiproton flux [GeV -1 m -2 s -1 sr -1 ]<br />

10 -2<br />

φ F = 500 MV<br />

10 -3<br />

T [GeV]<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity


Conclusions<br />

Gravitino dark matter with broken R-parity is an attractive scenario<br />

The antiproton flux is an important constraint and potentially<br />

dangerous for the model<br />

It will be interesting to refine the analysis using a more realistic<br />

propagation model<br />

GLAST and PAMELA (AMS-02?) will soon provide clarification on<br />

the existence of the anomalies and their interpretation in terms of<br />

new physics<br />

Collider searches at the LHC for low-energy supersymmetry and<br />

direct detection experiments will provide complementary information<br />

We will soon be able to test this scenario!<br />

David <strong>Tran</strong><br />

Indirect Signatures of Gravitino Dark Matter with Broken R-Parity

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!