12.06.2015 Views

H.Sung Cheon (천화성, 千和聖) - DESY Theory workshop 2008

H.Sung Cheon (천화성, 千和聖) - DESY Theory workshop 2008

H.Sung Cheon (천화성, 千和聖) - DESY Theory workshop 2008

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Doubly Coexisting<br />

Dark Matter Candidates<br />

in an Extended Seesaw Model<br />

H.<strong>Sung</strong> <strong>Cheon</strong> (천화성 <br />

Yonsei University, Seoul, S. Korea<br />

Collaborate with Sin Kyu Kang and C.S.Kim (arXiv:0807.0981)<br />

<strong>DESY</strong> THEORY WORKSHOP Sep. 29 - Oct. 2, <strong>2008</strong><br />

Dark Matter at the Crossroads<br />

<strong>DESY</strong>, Hamburg, Germany


http://antwrp.gsfc.nasa.gov/apod/ap060824.html<br />

The Matter of the Bullet Cluster : Collisionless DM


http://antwrp.gsfc.nasa.gov/apod/ap070820.html<br />

Dark Matter Core in the Abell 520 cluster :<br />

Unknown interaction between DM particles<br />

Credit: X-ray: NASA/CXC/UVic./A. Mahdavi et al. optical/lensing: CFHT/UVic./H. Hoekstra et al.


The only one kind of DM (ex : WIMP)<br />

is NOT enough to explain these<br />

all observations.


We consider two kinds of DM<br />

candidates which can be coexisted<br />

from an Extended Seesaw Model


Why is an Extended Seesaw Model?<br />

(S.K.Kang, C.S.Kim, Phys. Lett. , (2007) 248 [arXiv:hep-ph/0607072])


Why is an Extended Seesaw Model?<br />

(S.K.Kang, C.S.Kim, Phys. Lett. , (2007) 248 [arXiv:hep-ph/0607072])<br />

We have an another problem<br />

in our Universe.


Why there is more matter<br />

than antimatter<br />

in the present Universe?


JCAP 0805:004,<strong>2008</strong> (hep-ph/0710.2416)<br />

(H.<strong>Sung</strong> <strong>Cheon</strong>, Sin Kyu Kang, C.S.Kim)<br />

L = L SM +Y D ν D HN + M N NN +YNφS + m S SS + 1 2 (∂ µφ) 2 − 1 2 m2 φφ 2 − λ s<br />

4 φ4 − λH † Hφ 2 + h.c.<br />

L SM : the Standard model Lagrangian, H : Higgs doublet<br />

N : Heavy Majorana neutrino field, ϕ: Singlet Higgs field (SH)<br />

S : Singlet intermediate Majorana neutrino field (SMN)<br />

Our model is described by seven parameters : 1. dimensionless self coupling, λ s 2.the mass of ϕ,<br />

M ɸ , 3. dimensionless coupling of ϕ to the Higgs field, λ, 4, the mass of Heavy Majorana neutrino,<br />

M N, 5 the mass of S, M S, 6. Dirac Yukawa coupling, Y D, 7. Singlet Yukawa coupling, Y.


In order to guarantee the stability of the dark matter candidates,<br />

1. Z 2 symmetry is conserved<br />

2. Spontaneously symmetry break the EW gauge group<br />

<br />

After the spontaneously EW symmetry breaking, the singlet scalar<br />

dependent part of the scalar potential is given by<br />

V = 1 2 (m2 0 + λv2 EW)φ 2 + λ s<br />

4 φ4 + λv EW φ 2 h + h 2 φ2 h 2


Qing-Hong Cao, Ernst Ma, and Jose Wudka, C.P. Yuan,<br />

Multipartite Dark Matter, hep-ph/0711.3881<br />

They also introduce the two new fields, a new fermion, X, and a new scalar, S. and assume that<br />

the Z 2 ☓Z’ 2 symmetry conservation.<br />

Their Lagrangian is<br />

where,<br />

L = L S M + L D M<br />

+ L S D M + L int<br />

L χ DM = iχ ∂χ − m 1χ<br />

L S DM = 1 2 ∂ µS∂ µ S + 1 2 m2 2S 2 + 1 4 λ 1S 4 ,<br />

here, Λ is the new scale.<br />

L int = 1 2 λ 2H † HSS + λ 3<br />

Λ H† Hχχ + λ 4<br />

2Λ χχSS,<br />

They show that the lightest neutralino particle may relax the severe constraints on the<br />

parameter space of the MSSM through the X,X->S,S annihilation process


So we introduce two new terms of Qing-Hong Cao, Ernst Ma, and<br />

Jose Wudka, C.P. Yuan, hep-ph/0711.3881<br />

L = L 1DM + g 1<br />

Λ H† HS T S + g 2<br />

2Λ ST SΦΦ<br />

After breaking the EW gauge symmetry (In order to have acceptable particle<br />

masses), the Φ-dependent part of the scalar potential is given by<br />

V = 1 2 (m2 Φ 0 + λν 2 EW)Φ 2 + λ s<br />

4 Φ4 + λ 2 h2 Φ 2 + λν EW hΦ 2<br />

In addition we have the new effective interaction terms,<br />

L Int = −(m S<br />

0 − λ 2v EW<br />

2<br />

)S 2 + λ 2<br />

2v EW<br />

h 2 S 2 + λ 2 hS 2 + λ 3<br />

v EW<br />

S 2 Φ 2


We demand that<br />

In order to guarantee the stability of two dark matter candidates,<br />

✽ Z 2 ☓Z’ 2 Symmetry should be conserved<br />

Z 2 ☓Z’ 2 Symmetry<br />

<br />

ϕ<br />

<br />

<br />

Z 2 ☓Z’ 2 Symmetry is conserved.


Of course,<br />

this is NOT renormalizable.


Historically<br />

ν µ<br />

µ<br />

G F<br />

ν µ¯ν e<br />

e<br />

µ<br />

W −<br />

¯ν e<br />

e<br />

So, the electroweak theory is Renormalizable !!!


Effective terms of our model<br />

L = L 1DM + g 1<br />

Λ H† HS T S + g 2<br />

2Λ ST SΦΦ<br />

S<br />

h<br />

S<br />

Φ<br />

h<br />

S<br />

h<br />

S<br />

h<br />

S<br />

φ<br />

S<br />

Φ<br />

φ<br />

S<br />

φ<br />

S<br />

φ<br />

We introduce a New Heavy Scalar particle Φ


Before Spontaneously Symmetry Breaking<br />

L = L SM + K.E. +(Y D ¯νHN + Y s ¯NφS + h.c.)+MR N T N − m S S T S − 1 2 m2 φ φ2 − λ s<br />

4! φ4<br />

−<br />

λH † Hφ 2 + 1 2 m2 Φ Φ2 − λ e<br />

4! Φ4 − λ Φ H † HΦ 2 − λ a S T SΦ − λ b φφΦΦ<br />

φ<br />

: Singlet Scalar field (SH)<br />

Φ<br />

: New Heavy SM like {(+,+) parity} singlet scalar particle


Relic abundance in<br />

doubly coexisting DM model


Λ <br />

<br />

<br />

<br />

<br />

<br />

<br />

Λ ⩵<br />

Λ ⩵<br />

Λ ⩵<br />

⩵ Ε ⩵ Ε ⩵<br />

<br />

⩵ <br />

⩵ <br />

<br />

Λ <br />

<br />

<br />

<br />

<br />

<br />

Λ ⩵<br />

<br />

⩵ Ε ⩵ Ε ⩵<br />

<br />

⩵ <br />

⩵ <br />

Λ ⩵<br />

Λ ⩵<br />

<br />

The relation<br />

between λ 2 and<br />

mass of S<br />

which is chosen to<br />

be Ω CDM h 2 = 0.110<br />

<br />

<br />

Λ <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Λ ⩵<br />

Λ ⩵<br />

Λ ⩵<br />

⩵ Ε ⩵ Ε ⩵<br />

<br />

⩵ <br />

⩵ <br />

<br />

<br />

<br />

Λ ⩵<br />

Λ ⩵<br />

Λ <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Λ ⩵<br />

Λ ⩵<br />

Λ ⩵<br />

<br />

⩵ Ε ⩵ Ε ⩵<br />

<br />

⩵ <br />

⩵ <br />

<br />

Λ ⩵<br />

<br />

<br />

Ω S h 2 + Ω Φ h 2<br />

= Ω CDM h 2<br />

= 0.110 ± 0.006<br />

ɛ i = Ω ih 2<br />

Ω CDM h 2<br />

Λ <br />

<br />

<br />

Λ ⩵<br />

Λ <br />

<br />

Λ ⩵<br />

<br />

<br />

⩵ Ε ⩵ Ε ∼ <br />

<br />

⩵ <br />

⩵ <br />

<br />

<br />

<br />

Λ ⩵<br />

⩵ Ε ⩵ Ε ∼ <br />

<br />

⩵ <br />


First, we can relax the parameter space when S is one<br />

of dark matter candidates through the conserved<br />

Z2 ×Z ′ 2 symmetry and the enough<br />

S,S→ Φ, Φ annihilation cross section


The nucleon recoil experiment<br />

(Direct Dark Matter Search)


Feynman diagrams relevant to<br />

(a) S-nucleon elastic scattering<br />

(b) Φ-nucleon elastic scattering<br />

σ S ≈ λ2 2 |A n| 2<br />

π<br />

( m<br />

2<br />

∗<br />

m 4 h<br />

)<br />

,<br />

σ Φ = λ2 ν 2 EW |A n| 2<br />

4π<br />

( m<br />

2<br />

∗<br />

m 2 Φ m4 h<br />

)<br />

m ∗ = m S m n /(m S + m n )<br />

where<br />

. So far most experiments of direct detection<br />

assume that there exist the only one kind of dark matter, whereas we<br />

assume that two kinds of dark matter can be coexist. So in order to compare<br />

our results with experimental data we use a following relation,<br />

σ el<br />

(Cao, Ma, Wudka, Yuan)<br />

where is the σ el is the cross section of DM-nucleon elastic scattering and<br />

m 0<br />

is the mass of WIMP.<br />

= ɛ S<br />

σ S + ɛ Φ<br />

σ Φ<br />

m 0 m S m Φ


Σ <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

⩵ Ε ⩵ Ε ⩵<br />

<br />

⩵ <br />

⩵ <br />

Λ ⩵<br />

Λ ⩵<br />

<br />

<br />

Σ <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

⩵ Ε ⩵ Ε ⩵<br />

<br />

⩵ <br />

⩵ <br />

Λ ⩵<br />

Λ ⩵<br />

<br />

<br />

<br />

<br />

<br />

Σ <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

⩵ Ε ⩵ Ε ⩵<br />

<br />

⩵ <br />

⩵ <br />

Λ ⩵<br />

Λ ⩵<br />

Σ <br />

<br />

<br />

<br />

<br />

<br />

<br />

Λ ⩵<br />

<br />

Λ ⩵<br />

⩵ Ε ⩵ Ε ⩵<br />

<br />

⩵ <br />

⩵ <br />

Plots of the<br />

elastic cross<br />

section σ el as<br />

a function of m S<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Σ <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Λ ⩵<br />

⩵ <br />

Λ ⩵<br />

⩵ Ε ⩵ Ε ∼ <br />

<br />

⩵ <br />

Σ <br />

<br />

<br />

<br />

<br />

<br />

Λ ⩵<br />

<br />

<br />

Λ ⩵<br />

⩵ Ε ⩵ Ε ∼ <br />

<br />

⩵ <br />


Let us implicate for Higgs searches<br />

in LHC


Here we will search for only the case<br />

for 2m s < m h or 2m Φ < m h<br />

because LHC is unlikely place<br />

for the case of both 2m Φ > m h and 2m s > m h.


The invisible Higgs decay width is given at three level by<br />

√<br />

Γ H→φφ = λ2 v 2 EW<br />

1 − 4m2 S<br />

32πm h m 2 h<br />

Γ H→S,S = λ2 2m h<br />

8π<br />

(<br />

1 − 4m2 S<br />

m 2 h<br />

) 3/2


1.0<br />

a<br />

m ⩵120 GeV<br />

1.0<br />

b<br />

m ⩵90 GeV<br />

0.9<br />

0.8<br />

0.8<br />

m ⩵58 GeV<br />

R<br />

0.7<br />

m ⩵90 GeV<br />

R<br />

0.6<br />

0.6<br />

Λ 3 ⩵0.6<br />

0.5<br />

⩵0.110, Ε S ⩵1, Ε ∼ 0<br />

m h ⩵200 GeV<br />

0.4<br />

70 75 80 85 90 95 100<br />

m S<br />

0.4<br />

0.2<br />

0.0<br />

Λ 3 ⩵0.1<br />

⩵0.110, Ε S ⩵0.9, Ε ⩵ 0.1<br />

m h ⩵130 GeV<br />

54 56 58 60 62 64<br />

m S<br />

Plots of the ratio R as a function of m S . Here the shadowed region represents the<br />

forbidden due to XENON10 Dark Matter Experiment.<br />

(a) R = Br H→W + W − ,Z,Z,¯bb,¯ττ,¯cc(SM + S)<br />

Br H→W + W − ,Z,Z,¯bb,¯ττ,¯cc(SM)<br />

=<br />

Γ H,total (SM)<br />

Γ H→S,S +Γ H,total (SM) .<br />

(b)<br />

R =<br />

=<br />

Γ H,total (SM)<br />

Γ H→S,S +Γ H→Φ,Φ +Γ H,total (SM) . (2m S


If we assume 2m Φ < m h , we can observe the invisible<br />

Higgs signal in anywhere of the possible m S into dark<br />

matter candidate, even in 2m S ≥ m h , at LHC


DAMA experiment


DAMA experiment<br />

(R. Bernabei et al. [DAMA Collaboration], arXiv:0804.2741 [astro-ph])<br />

Recently, the DAMA collaboration announced the model independent annual<br />

modulation signature for dark matter particles in recoil scattering off NaI(Tl) detectors at<br />

the Gran Sasso Najtional Laboratory.<br />

Actually the DAMA had already found an annual modulation<br />

R. Bernabei et al., Phys. Lett. B 389 (1996) 757; R. Bernabei et al.,Phys. Lett. B 424 (1998) 195; R. Bernabei et al., Phys. Lett. B 450<br />

(1999) 448; P. Belli et al.Phys. Rev. D 61 (2000) 023512; R. Bernabei et al., Phys. Lett. B 480 (2000) 23;<br />

R. Bernabei et al., Phys. Lett. B 509 (2001) 197; R. Bernabei et al., Eur. Phys.<br />

J. C 23 (2002) 61; P. Belli et al., Phys. Rev. D 66 (2002) 043503; R. Bernabei et al., Il Nuovo Cim. A 112 (1999) 545; R. Bernabei et al.,<br />

Eur. Phys. J. C 18 (2000) 283; R. Bernabei el al., La Rivista del Nuovo Cimento 26 n.1 (2003) 1-73; R. Bernabei et al., Int. J. Mod. Phys. D<br />

13 (2004) 2127; R. Bernabei et al., Int. J. Mod. Phys. A 21 (2006) 1445; R. Bernabei et al., Eur. Phys. J. C 47 (2006) 263; R. Bernabei et<br />

al., Int. J. Mod. Phys. A 22 (2007) 3155; R. Bernabei et al., Eur. Phys. J. C 53 (<strong>2008</strong>) 205; R. Bernabei et al., Phys. Rev. D 77 (<strong>2008</strong>)<br />

023506; R. Bernabei et al., preprint ROM2F/<strong>2008</strong>/02, arXiv:0802.4336 [astro-ph].37;R. Bernabei et al., Phys. Lett. B408 (1997) 439; P.<br />

Belli et al., Phys. Lett. B460 (1999) 236; R. Bernabei et al., Phys. Rev. Lett. 83 (1999) 4918; P. Belli et al.,Phys. Rev. C60 (1999) 065501;<br />

R. Bernabei et al., Il Nuovo Cimento A112 (1999) 1541; R. Bernabei et al., Phys. Lett. B 515 (2001) 6; F. Cappella et al., Eur. Phys. J.-<br />

direct C14 (2002) 1; R. Bernabei et al., Eur. Phys. J. A 23 (2005) 7; R. Bernabei et al., Eur. Phys. J. A 24 (2005) 51;R. Bernabei et al.,<br />

Astrop. Phys. 4 (1995) 45; R. Bernabe


(P. Gondolo & G. Gelmini) and (F.J.Petriello & K.M. Zurek) found that<br />

there is a region of WIMP parameter space<br />

which can simultaneously accommodate DAMA experiment<br />

and the null results of the other direct dark matter detection experiments


P. Gondolo & G. Gelmini<br />

Phys. Rev. D 71, 123520 (2005) [arXiv:hep-ph/0504010]<br />

Range of WIMP masses m for which there is a compatible region between the DAMA<br />

modulation and the other experimental results at various stream heliocentric speeds vstr


F.J.Petriello & K.M. Zurek arXiv:0806.3989 [hep-ph],<br />

Christopher Savage, Graciela Gelmini, Paolo Gondolo, Katherine Freese,<br />

arXiv:0808.3607 [astro-ph]<br />

3GeV m DM 8GeV<br />

3 × 10 −41 cm 2 σ SI<br />

p 5 × 10 −39 cm 2<br />

F.J.Petriello & K.M. Zurek, <strong>2008</strong>


Our Model & DAMA experiment<br />

38<br />

a<br />

38<br />

b<br />

Log Σelnucleoncm 2 <br />

39<br />

40<br />

41<br />

42<br />

43<br />

Dotted : m h ⩵150 GeV<br />

Solid : m h ⩵120 GeV<br />

m S<br />

⩵80 GeV<br />

⩵0.11, Ε ⩵1, Ε S ∼0<br />

Λ 3 ⩵0.6<br />

Log Σelnucleoncm 2 <br />

39<br />

40<br />

41<br />

42<br />

43<br />

Red : Singlet DM model<br />

Dotted : Ε ⩵1, Ε S ∼0<br />

Blue : Ε ⩵0.5, Ε S ⩵0.5<br />

m h ⩵150 GeV, m S<br />

⩵80 GeV<br />

⩵0.11, Λ 3 ⩵0.6<br />

44<br />

2 4 6 8 10<br />

44<br />

2 4 6 8 10<br />

m GeV<br />

m GeV<br />

Here the shadowed region can accommodate DAMA and<br />

the other direct dark matter detection experiments.<br />

Fig-(a) : Same relic density -> same annihilation cross section -> same<br />

λ 2<br />

ratio<br />

M 4 h<br />

S. Andreas, T. Hambye and M. H. G. Tytgat, arXiv:0808.0255 [hep-ph].<br />

Fig-(b) :<br />

σ el<br />

m 0<br />

= ɛ S<br />

m S<br />

σ S + ɛ Φ<br />

m Φ<br />

σ Φ<br />

⇒ σ el ≈ ɛ φ σ φ


Conclusion


We consider coexisting two kinds of DM, Singlet fermion and Singlet<br />

scalar, from an Extended Seesaw Model.<br />

We expect to explain several problems of the observations into our<br />

model.<br />

Large scale (>>1 Mpc) : Standard CDM (WIMP)<br />

-> Singlet Fermion<br />

Small scale (< few Mpc) : The density problem of the center of<br />

galaxy & DAMA experiment<br />

-> Singlet Scalar (self-interacting DM : David N. Spergel and Paul J.<br />

Steinhardt )<br />

Abell 520 Cluster :<br />

1) Self-interacting<br />

2) Interaction between Singlet scalar and Singlet<br />

fermion (I notice that this case)


We consider coexisting two kinds of DM, Singlet fermion and Singlet<br />

scalar, from an Extended Seesaw Model.<br />

We expect to explain several problems of the observations into our<br />

model.<br />

Large scale (>>1 Mpc) : Standard CDM (WIMP)<br />

-> Singlet Fermion<br />

Small scale (< few Mpc) : The density problem of the center of<br />

galaxy I don’t & DAMA know whether experiment this suggestion is right or not because I<br />

-> didn’t Singlet check Scalar constraints (self-interacting (except DM DM density : David parameter N. Spergel and constraint) Paul J.<br />

Steinhardt and I ) don’t know what constraints we must consider. Here we<br />

considered just dark matter density parameter. So if you know<br />

what constraints we must Abell consider 520 Cluster here, : tell me them anytime,<br />

1) Self-interacting anywhere, I’m very welcome to that.<br />

2) Interaction complement@yonsei.ac.kr between Singlet scalar : My and e-mail Singletaddress<br />

fermion (I notice that this case)


I have an<br />

another problem


Brain Hierarchy Problem<br />

(H.S.<strong>Cheon</strong>, <strong>DESY</strong> <strong>workshop</strong>, <strong>2008</strong>)<br />

Language ability Brain<br />

(not brane)<br />

Other abilities Brain<br />

(not brane)<br />

in English, even in Korean<br />

too low scale<br />

(DE or Axion or<br />

neutrino scale)<br />

Normal scale<br />

(EW scale)<br />

e −2Ht<br />

(H.S.<strong>Cheon</strong>, http://charm.phys.nthu.edu.tw/~cheung/summer2004/HS<strong>Cheon</strong>.ppt, 2004)<br />

When you ask or teach me something, please can you speak slowly?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!