15.06.2015 Views

An Introduction to the Ion-Optics of Magnet Spectrometers

An Introduction to the Ion-Optics of Magnet Spectrometers

An Introduction to the Ion-Optics of Magnet Spectrometers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>An</strong> <strong>Introduction</strong> <strong>to</strong> <strong>the</strong> <strong>Ion</strong>-<strong>Optics</strong> <strong>of</strong><br />

<strong>Magnet</strong> <strong>Spectrometers</strong><br />

U. Tokyo, RIKEN<br />

The 14 th RIBF Nuclear Physics Seminar<br />

Series <strong>of</strong> Three Lectures<br />

CNS, University <strong>of</strong> Tokyo<br />

February 27, 2006<br />

Georg P. Berg<br />

University <strong>of</strong> Notre Dame


The Lecture<br />

Series<br />

1 st Lecture: 2/27/06, 10:30 am: Formalism <strong>of</strong> ion-optics optics and design<br />

<strong>of</strong> a complete system<br />

2 nd Lecture: 2/27/06, 1:30 pm: <strong>Ion</strong>-optical optical elements, design, systems<br />

3 rd Lecture: 2/27/06, 3:00 pm: Experiments with dispersion matched<br />

high resolution spectrometers


1st Lecture<br />

1 st Lecture: 2/27/06, 10:30 – 11:30 am: Formalism and ion-optical optical elements<br />

• Motivation, references, remarks (4 - 8)<br />

• The driving forces (9)<br />

• Definitions & first order formalism (10 - 16)<br />

• Phase space ellipse, emittance, measurement (17 - 27)<br />

• Higher orders, Taylor expansion (28 - 30)<br />

• Solving <strong>the</strong> equation <strong>of</strong> motion (31)<br />

• Design and construction <strong>of</strong> a Fragment Separa<strong>to</strong>r (32 - 43)


Motivation<br />

• Manipulate charged particles (β +/− , ions, like p,d,α, ΗΙ)<br />

• Beam lines systems<br />

• <strong>Magnet</strong>ic & electric analysis/ separation (Experiments!)<br />

• (Acceleration <strong>of</strong> ions, not covered in <strong>the</strong>se lectures)


Who needs ion-optics optics ?<br />

• A group <strong>of</strong> accelera<strong>to</strong>r physicists are using it <strong>to</strong> build machines<br />

<strong>to</strong> provide high energetic ion beam for research and applications!<br />

• Many physicists using accelera<strong>to</strong>rs, beam lines and magnet system<br />

(or <strong>the</strong>ir data) needs some knowledge <strong>of</strong> ion-optics.<br />

• This lecture series is an introduction <strong>to</strong> <strong>the</strong> last group and I will<br />

discuss some applications used by nuclear physicists.


Introduc<strong>to</strong>ry remarks<br />

• <strong>Introduction</strong> for physicists Focus on ion-optical definitions, and <strong>to</strong>ols that<br />

are useful for physicist working with spectrometers.<br />

• Light optics can hardly be discussed without lenses & optical instruments<br />

ion-optics requires knowledge <strong>of</strong> ion-optical elements.<br />

• <strong>An</strong>alogy between Light <strong>Optics</strong> and <strong>Ion</strong>-<strong>Optics</strong> is useful but limited.<br />

• <strong>Ion</strong>-optical & magnet design <strong>to</strong>ols needed <strong>to</strong> understand electro-magnet systems.<br />

<strong>Ion</strong>-optics is not even 100 years old and (still) less intuitive than optics developed<br />

since several hundred years<br />

His<strong>to</strong>rical remarks:<br />

Ru<strong>the</strong>rford, 1911, discovery <strong>of</strong> a<strong>to</strong>mic nucleus<br />

Galileo<br />

Telescope 1609 <br />

<strong>Optics</strong> in Siderus Nuncius 1610


Basic <strong>to</strong>ols <strong>of</strong> <strong>the</strong> trade<br />

• Geometry, drawing <strong>to</strong>ols, CAD drafting program (e.g. Au<strong>to</strong>Cad)<br />

• Linear Algebra (Matrix calculations), first order ion-optics (e.g. TRANSPORT)<br />

• Higher order ion-optics code <strong>to</strong> solve equation <strong>of</strong> motion, e.g. COSY Infinity,<br />

GIOS, RAYTRACE (his<strong>to</strong>ric)<br />

• Electro-magnetic field program (solution <strong>of</strong> Maxwell’s Equations),<br />

(e.g. finite element (FE) codes, 2d & 3d: POISSON, TOSCA, MagNet)<br />

• Properties <strong>of</strong> incoming charged particles and design function <strong>of</strong> electro-magnetic<br />

facility, beam, reaction products (e.g. kinematic codes, charge distributions <strong>of</strong><br />

heavy ions, energy losses in targets, detec<strong>to</strong>rs, etc, e.g. LISE++ for fragment<br />

separa<strong>to</strong>rs)<br />

• Many o<strong>the</strong>r specialized programs, e.g. for accelera<strong>to</strong>r design (e.g. synchrotrons,<br />

cyclotrons) or gas-filled systems, are not covered in this lecure series.


Literature<br />

• <strong>Optics</strong> <strong>of</strong> Charged Particles, Hermann Wollnik, Academic Press, Orlando, 1987<br />

• The <strong>Optics</strong> <strong>of</strong> Charged Particle Beams, David.C Carey, Harwood Academic<br />

Publishers, New York 1987<br />

• Accelera<strong>to</strong>r Physics, S.Y. Lee, World Scientific Publishing, Singapore, 1999<br />

• TRANSPORT, A Computer Program for Designing Charged Particle Beam<br />

Transport Systems, K.L. Brown, D.C. Carey, Ch. Iselin, F. Rotacker,<br />

Report CERN 80-04, Geneva, 1980<br />

• Computer-Aided Design in <strong>Magnet</strong>ics, D.A. Low<strong>the</strong>r, P. Silvester, Springer 1985


<strong>Ion</strong>s in static or quasi-static static electro-magnetic fields<br />

Lorentz Force<br />

For ion acceleration electric forces are used.<br />

(1)<br />

q = electric charge<br />

B = magn. induction<br />

E = electric field<br />

v = velocity<br />

For momentum analysis <strong>the</strong> magnetic force is preferred because <strong>the</strong><br />

force is always perpendicular <strong>to</strong> B. Therefore v, p and E are constant.<br />

Force in magnetic dipole B = const: p = q B ρ<br />

p = mv = momentum<br />

Dipole field B<br />

perpendicular<br />

.<br />

<strong>to</strong> paper plane<br />

Object (size x 0 )<br />

Radius<br />

ρ<br />

p+δp<br />

p<br />

x<br />

Note: Dispersion δx/δp<br />

used in magnetic analysis,<br />

e.g. <strong>Spectrometers</strong>, magn.<br />

Separa<strong>to</strong>rs,<br />

ρ = bending radius<br />

Βρ = magn. rigidity<br />

General rule:<br />

Scaling <strong>of</strong> magnetic system<br />

in <strong>the</strong> linear region results<br />

in <strong>the</strong> same ion-optics


Definition <strong>of</strong> BEAM for ma<strong>the</strong>matical formulation <strong>of</strong> ion-optics<br />

optics<br />

What is a beam, what shapes it,<br />

how do we know its properties ?<br />

• Beam parameters, <strong>the</strong> long list<br />

• Beam rays and distributions<br />

• Beam line elements, paraxial lin. approx.<br />

higher orders in spectrometers<br />

• System <strong>of</strong> diagnostic instruments<br />

Not <strong>to</strong> forget: A<strong>to</strong>mic charge Q<br />

Number <strong>of</strong> particles n


Code TRANSPORT:<br />

(x, Θ, y, Φ, 1, dp/p)<br />

(1, 2, 3, 4, 5, 6 )<br />

Convenient “easy <strong>to</strong> use” program<br />

for beam lines with paraxial beams<br />

Not defined in <strong>the</strong> figure are:<br />

dp/p = rel. momentum<br />

l = beam pulse length<br />

Defining a RAY<br />

central ray<br />

<strong>Ion</strong>-optical<br />

element<br />

All parameters are relative<br />

<strong>to</strong> “central ray”<br />

Code: COSY Infinity:<br />

(x, a, y, b, l, δ K , δ m , δ z )<br />

Needed for complex ion-optical systems including several<br />

charge states<br />

different masses<br />

velocities (e.g. Wien Filter)<br />

higher order corrections<br />

Not defined in <strong>the</strong> figure are:<br />

δ K = dK/K = rel. energy<br />

δ m = dm/m = rel. energy<br />

δ z = dq/q = rel. charge change<br />

a = p x /p 0<br />

b = p y /p 0<br />

All parameters are relative<br />

<strong>to</strong> “central ray” properties<br />

Note: Notations in <strong>the</strong> Literature is not consistent! Sorry, nei<strong>the</strong>r will I be.


TRANSPORT<br />

Coordinate System<br />

<br />

Ray at initial<br />

Location 1


6x6 Matrix<br />

representing<br />

optic element<br />

(first order)<br />

Transport <strong>of</strong> a ray<br />

<br />

(2)<br />

<br />

Ray after<br />

element at<br />

Location t<br />

<br />

Ray at initial<br />

Location 0<br />

Note: We are not building<br />

“random” optical elements.<br />

Many matrix elements = 0<br />

because <strong>of</strong> symmetries, e.g.<br />

mid-plane symmetry


TRANSPORT matrices <strong>of</strong> a<br />

Drift and a Quadrupole<br />

For reference <strong>of</strong> TRANSPORT code and formalism:<br />

K.L. Brown, F. Rothacker, D.C. Carey, and Ch. Iselin,<br />

TRANSPORT: A computer program for designing<br />

charged particle beam transport systems, SLAC-91,<br />

Rev. 2, UC-28 (I/A), also: CERN 80-04 Super Pro<strong>to</strong>n<br />

Synchrotron Division, 18 March 1980, Geneva,<br />

Manual plus Appendices available on Webpage:<br />

ftp://ftp.psi.ch/psi/transport.beam/CERN-80-04/<br />

David. C. Carey, The optics <strong>of</strong> Charged Particle Beams,<br />

1987, Hardwood Academic Publ. GmbH, Chur Switzerland


6x6 Matrix<br />

representing<br />

first optic element<br />

(usually a Drift)<br />

Transport <strong>of</strong> a ray<br />

though a system <strong>of</strong><br />

beam line elements<br />

<br />

x n = R n R n-1 …R 0 x 0<br />

(3)<br />

<br />

Ray at final<br />

Location n<br />

<br />

Ray at initial<br />

Location 0<br />

(e.g. a target)<br />

Complete system is represented by<br />

one Matrix R system = R n R n-1 …R 0<br />

(4)


Wollnik, p. 16<br />

(x|a) = 0<br />

Point-<strong>to</strong>-point focusing<br />

(a|x) = 0 “Telescope”<br />

Parallel-<strong>to</strong>-parallel focusing<br />

Geometrical interpretation<br />

<strong>of</strong> some TRANSPORT<br />

matrix elements<br />

Achromatic system:<br />

R 16 = R 26 = 0<br />

(x|x) = 0<br />

Parallel-<strong>to</strong>-point focusing<br />

(a|a) = 0<br />

Point-<strong>to</strong>-parallel focusing<br />

Focusing Function<br />

(x|a) Wollnik<br />

= dx/dΘ physical meaning<br />

= (x|Θ) RAYTRACE<br />

= R 12 TRANSPORT


Defining a BEAM Ellipse Area = π(det σ) 1/2<br />

is called “Phase space”<br />

Emittance:<br />

ε = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ σ 11 σ 22 -(σ 12 ) 2 (5)<br />

2 dimensional cut x-Θ is shown<br />

Emittance ε is constant for<br />

fixed energy & conservative<br />

forces (Liouville’s Theorem)<br />

Warning:<br />

This is a ma<strong>the</strong>matical abstraction <strong>of</strong> a beam:<br />

It is your responsibility <strong>to</strong> verify it applies <strong>to</strong> your beam<br />

Note: ε shrinks (increases) with<br />

acceleration (deceleration); Dissipative<br />

forces: ε increases in gases; electron,<br />

s<strong>to</strong>chastic, laser cooling<br />

Attention:<br />

Space charge effects occur when <strong>the</strong> particle density is high,<br />

so that particles repel each o<strong>the</strong>r


Equivalence<br />

<strong>of</strong> Transport <strong>of</strong><br />

ONE Ray ⇔ Ellipse<br />

Defining <strong>the</strong> σ Matrix representing a Beam


The 2-dimensional 2<br />

case ( x, Θ )<br />

Ellipse Area = π(det σ) 1/2<br />

Emittance ε = (det σ) 1/2 is constant<br />

for fixed energy & conservative<br />

forces (Liouville’s Theorem)<br />

Note: ε shrinks (increases) with<br />

acceleration (deceleration);<br />

Dissipative forces: ε increases in<br />

gases; electron, s<strong>to</strong>chastic, laser<br />

cooling<br />

σ = ⎛σ 11 σ 21 ⎫<br />

⎝σ 21 σ 22 ⎭<br />

σ −1 = 1/ε 2 ⎛σ 22 −σ 21 ⎫<br />

⎝−σ 21 σ 11 ⎭<br />

Exercise 1:<br />

Show that:<br />

2 dimensional cut x-Θ is shown<br />

Real, pos. definite<br />

symmetric σ Matrix<br />

σσ −1 = ⎛1 0 ⎫<br />

⎝ 0 1⎭<br />

Inverse Matrix<br />

= I (Unity Matrix)<br />

2-dim. Coord. vec<strong>to</strong>rs<br />

(point in phase space)<br />

X =<br />

⎛x ⎫<br />

X T = (x Θ)<br />

⎝Θ⎭<br />

Ellipse in Matrix notation:<br />

X T σ −1 X = 1<br />

(6)<br />

Exercise 2: Show that Matrix notation<br />

is equivalent <strong>to</strong> known Ellipse equation:<br />

σ 22 x 2 −2σ 21 x Θ + σ 11 Θ 2 = ε 2


Courant-Snyder Notation<br />

In <strong>the</strong>ir famous “Theory <strong>of</strong> <strong>the</strong> Alternating Synchrotron” Courant and Snyder used a<br />

Different notation <strong>of</strong> <strong>the</strong> σ Matrix Elements, that are used in <strong>the</strong> Accelera<strong>to</strong>r Literature.<br />

For you r future venture in<strong>to</strong> accelera<strong>to</strong>r physics here is <strong>the</strong> relationship between <strong>the</strong><br />

σ matrix and <strong>the</strong> betatron amplitude functions α, β, γ or Courant Snyder parameters<br />

σ =<br />

⎛σ 11 σ 21 ⎫<br />

⎝σ 21 σ 22 ⎭<br />

= ε<br />

⎛ β −α ⎫<br />

⎝−α γ ⎭


Transport <strong>of</strong> 6-dim 6<br />

σ Matrix<br />

Consider <strong>the</strong> 6-dim. ray vec<strong>to</strong>r in TRANSPORT: X = (x, Θ, y, Φ, l, dp/p)<br />

Ray X 0 from location 0 is transported by a 6 x 6 Matrix R <strong>to</strong> location 1 by: X 1 = RX 0<br />

(7)<br />

Note: R maybe a matrix representing a complex system (3) is : R = R n R n-1 …R 0<br />

Ellipsoid in Matrix notation (6), generized <strong>to</strong> e.g. 6-dim. using σ Matrix: X 0<br />

T<br />

σ 0<br />

−1<br />

X 0 = 1<br />

Inserting Unity Matrix I = RR -1 in equ. (6) it follows X 0<br />

T<br />

(R T R T-1 ) σ 0<br />

−1<br />

(R -1 R) X 0 = 1<br />

from which we derive (RX 0 ) T (Rσ 0 R T ) -1 (RX 0 ) = 1<br />

(6)<br />

(8)<br />

The equation <strong>of</strong> <strong>the</strong> new ellipsoid after transformation becomes X 1<br />

T<br />

σ 1<br />

−1<br />

X 1 = 1<br />

(9)<br />

where σ 1 = Rσ 0 R T (10)<br />

Conclusion: Knowing <strong>the</strong> TRANSPORT matrix R that transports one<br />

ray through an ion-optical system using (7) we can now also transport<br />

<strong>the</strong> phase space ellipse describing <strong>the</strong> initial beam using (10)


The transport <strong>of</strong> rays and phase ellipses<br />

in a Drift and focusing Quadrupole, , Lens<br />

Focus<br />

Focus<br />

2.<br />

Lens 2<br />

3.<br />

Lens 3<br />

Matching <strong>of</strong> emittance and acceptance


Increase <strong>of</strong> Emittance ε<br />

due <strong>to</strong> degrader<br />

Focus<br />

for back-<strong>of</strong>-<strong>the</strong>-envelop discussions!<br />

A degrader / target increases <strong>the</strong><br />

emittance ε due <strong>to</strong> multiple scattering.<br />

The emittance growth is minimal when<br />

<strong>the</strong> degrader in positioned in a focus<br />

As can be seen from <strong>the</strong> schematic<br />

drawing <strong>of</strong> <strong>the</strong> horizontal x-Theta<br />

Phase space.


Emittance ε measurement<br />

by moving viewer method<br />

The emittance ε is an important<br />

parameter <strong>of</strong> a beam. It can be<br />

determined by measurements<br />

<strong>of</strong> x max<br />

at 3 locations<br />

Viewer V1 V2 V3<br />

Beam<br />

⎯⏐⎯⎯⎯⏐⎯⎯⎯⎯⏐⎯→<br />

L 1 L 2<br />

L = Distances between viewers<br />

( beam pr<strong>of</strong>ile moni<strong>to</strong>rs)<br />

σ 11 + 2 L 1 σ 12 + L 2<br />

(x max (V2)) 2 = 1 σ 22<br />

(11)<br />

(x max (V3)) 2 = σ 11 + 2 (L 1 + L 2 )σ 12 + (L 1 + L 2 ) 2 σ 22<br />

where σ 11 = (x max (V1)) 2<br />

Emittance:<br />

ε = √ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ σ 11 σ 22 -(σ 12 ) 2<br />

(12)<br />

Discuss practical aspects<br />

No ellipse no ε? Phase space!


Emittance ε measurement<br />

by tuning a quadrupole<br />

Lee, p. 55<br />

The emittance ε can also be<br />

determined with a quadrupole<br />

and a viewer at distance L.<br />

x max =<br />

σ 11 (1 + σ 12 L/ σ 11 − L g) + (εL) 2 /σ 22<br />

(13)<br />

g =<br />

dBz/dx ∗ l<br />

Bρ<br />

(Quadr. field strength<br />

l = eff. field length)<br />

(14)<br />

L = Distance between quadrupole and<br />

beam pr<strong>of</strong>ile moni<strong>to</strong>r<br />

Take minimum 3 measurements <strong>of</strong><br />

x max (g) and determine Emittance ε


IUCF, K600 Spectrometer<br />

Diagnostics in focal plane<br />

<strong>of</strong> spectrometer<br />

Typical in focal plane <strong>of</strong><br />

Modern <strong>Spectrometers</strong>:<br />

Two position sensitive<br />

Detec<strong>to</strong>rs:<br />

Horizontal: X1, X2<br />

Vertical: Y1, Y2<br />

Fast plastic scintilla<strong>to</strong>rs:<br />

Particle identification<br />

Time-<strong>of</strong>-Flight<br />

Measurement with IUCF K600<br />

Spectrometer illustrates from <strong>to</strong>p<br />

<strong>to</strong> bot<strong>to</strong>m: focus near, downstream<br />

and upstream <strong>of</strong><br />

X1 detec<strong>to</strong>r, respectively


Kinematic affect in K600<br />

spectrum with impurities


Higher order beam aberrations<br />

Example Octupole<br />

(S-shape in x-Θ plane<br />

3 rays in focal plane<br />

1.<br />

2.<br />

3.<br />

Detec<strong>to</strong>r X1 X2<br />

T 126<br />

T 1222<br />

1.<br />

2.<br />

3.<br />

O<strong>the</strong>r Example:<br />

Sextupole T 122<br />

C-shape in x-Θ plot


Effect <strong>of</strong> 2 nd order aberrations<br />

Saturation <strong>of</strong><br />

Grand Raiden<br />

at 450 MeV<br />

(3He,t)


,l<br />

(15)<br />

Taylor expansion<br />

Note: Several notations are in use for<br />

6 dim. ray vec<strong>to</strong>r & matrix elements.<br />

R nm<br />

= (n|m)<br />

TRANSPORT RAYTRACE<br />

Notation<br />

Linear (1 st order)TRANSPORT Matrix R nm<br />

Remarks:<br />

• Midplane symmetry <strong>of</strong> magnets<br />

reason for many matrix element = 0<br />

• Linear approx. for “well” designed<br />

magnets and paraxial beams<br />

• TRANSPORT code calculates 2 nd order<br />

by including Tmno elements explicitly<br />

• TRANSPORT formalism is not suitable<br />

<strong>to</strong> calculate higher order ( >2 ).


(15)<br />

Solving <strong>the</strong> equations<br />

<strong>of</strong> Motion<br />

Methods <strong>of</strong> solving <strong>the</strong> equation <strong>of</strong> motion:<br />

1) Determine <strong>the</strong> TRANSPORT matrix.<br />

2) Code RAYTRACE slices <strong>the</strong> system in small<br />

sections along <strong>the</strong> z-axis and integrates numerically<br />

<strong>the</strong> particle ray through <strong>the</strong> system.<br />

3) Code COSY Infinity uses Differential Algebraic<br />

techniques <strong>to</strong> arbitrary orders using matrix<br />

representation for fast calculations


Design <strong>of</strong> a Fragment Separa<strong>to</strong>r Define <strong>the</strong> purpose and design parameters<br />

This step in <strong>the</strong> design determines what <strong>the</strong> instrument will be able <strong>to</strong> do:<br />

Particle type, energy, acceptances<br />

Now you need a good “concept”


Schematic Layout<br />

<strong>of</strong> an<br />

Achromatic <strong>Magnet</strong><br />

System


<strong>An</strong> Achromatic<br />

Energy Selection System<br />

(ESS in Pro<strong>to</strong>n Therapy<br />

Facility)<br />

R 16 = R 26 = 0


Achromatic magnet separa<strong>to</strong>r with Wedge<br />

↓ “Wedge” = 0.1 mm “Si=detec<strong>to</strong>r”<br />

A<br />

^<br />

E-loss in WEDGE ΔE ~ Z 2 /v 2<br />

Iso<strong>to</strong>pes with different Z have<br />

different velocities v<br />

Therefore A/Z selection in B<br />

B<br />

Figure from Experimental Techniques at NSCL, MSU, Th. Baumann, 8/2/2002<br />

Effect <strong>of</strong> “Wedge” ⇒<br />

Note:<br />

For large dp/p) <strong>the</strong><br />

degrader should be<br />

Wedge-shaped <strong>to</strong><br />

res<strong>to</strong>re achromaticity<br />

effected by degrader<br />

with constant thickness


A1900 MSU/NSCL Fragment Separa<strong>to</strong>r<br />

Ref. B.Sherrill, MSU


Design <strong>of</strong> a Fragment Separa<strong>to</strong>r 1 st order envelop <strong>of</strong> beam line & magnet system<br />

Calculated with<br />

TRANSPORT<br />

This study determines <strong>the</strong> ion-optics & required fields:<br />

Dispersion, envelops with dp=0, 2.6%<br />

Horz. & vert. Good-field regions, Field Lengths, Strengths


TRIμP an achromatic secondary beam separa<strong>to</strong>r<br />

SH = Slits<br />

Q = Quadrupoles<br />

B = Dipoles<br />

Section B<br />

Wedge/ΔE-Si<br />

Design parameters<br />

Section A<br />

ΔE-Si detec<strong>to</strong>r<br />

meter


TRIμP ion-optics<br />

optics<br />

This study determines <strong>the</strong> final performance including higher orders:<br />

Details <strong>of</strong> rays, focal plane image<br />

Write “Specifications” for manufacturer


TRIμP<br />

<strong>Magnet</strong> Installation &Alignment<br />

December 2003


Intermediate, dispersive Focal<br />

Plane<br />

BEAM


Commissioning<br />

( TRIμP Production <strong>of</strong> clean radioactive beam <strong>of</strong> 21 Na)<br />

Production <strong>of</strong> 21 Na via H( 21 Ne,n) 21 Na with<br />

21<br />

Ne 7+ beam at 43MeV/nucleon using<br />

<strong>the</strong>TRIμP Separa<strong>to</strong>r, KVI Groningen.


The First Users at <strong>the</strong><br />

TRIμP Separa<strong>to</strong>r<br />

Precision measurement <strong>of</strong> GTbranching<br />

ratio in 21 Na b + decay<br />

21<br />

Na<br />

b +<br />

0.0004%<br />

94.98%<br />

5.02%<br />

352 keV<br />

21<br />

Ne<br />

g<br />

Lynda Achouri (See proposal <strong>to</strong> this PAC)<br />

Jean-Claude <strong>An</strong>gélique<br />

both LPC, CAEN, France


End Lecture 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!