16.06.2015 Views

Click here to download the abstract booklet in pdf format - MT19 - Infn

Click here to download the abstract booklet in pdf format - MT19 - Infn

Click here to download the abstract booklet in pdf format - MT19 - Infn

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

cyl<strong>in</strong>drical with a <strong>to</strong>lerance of 10mm with respect <strong>to</strong> an<br />

overall system diameter of 22m. The shape of <strong>the</strong> <strong>to</strong>roid<br />

can only be controlled by <strong>in</strong>stall<strong>in</strong>g <strong>the</strong> 8 coils <strong>in</strong> <strong>the</strong>ir<br />

<strong>the</strong>oretical elliptical shape us<strong>in</strong>g high strenght bolt<strong>in</strong>g, and<br />

<strong>the</strong>n release <strong>the</strong> structure under its self weight. This paper<br />

presents <strong>the</strong> concepts of <strong>the</strong> assembly of <strong>the</strong> <strong>to</strong>roid,<br />

highlights <strong>the</strong> FEA calculations performed <strong>to</strong> predict <strong>the</strong><br />

shape, summarizes <strong>the</strong> <strong>to</strong>ol<strong>in</strong>g required and reviews <strong>the</strong><br />

experience ga<strong>in</strong>ed dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation.<br />

POSTER SESSION 13:30 – 15:30<br />

ENERGY STORAGE (II)<br />

THA09PO01<br />

Manufactur<strong>in</strong>g and Test<strong>in</strong>g of a 200 kJ Nb-Ti mSMES<br />

M. Fabbri, A. Morandi, F. Negr<strong>in</strong>i, P.L. Ribani, Department<br />

of Electrical Eng<strong>in</strong>eer<strong>in</strong>g, University of Bologna; R. Penco,<br />

M. Perrella, Ansaldo Supercondut<strong>to</strong>ri.<br />

Withdrawn.<br />

THA09PO02<br />

Breakdown Characteristics <strong>in</strong> Vacuum for a<br />

Conduction-Cooled HTS SMES<br />

J. Lee, H-G. Cheon, S-H. Kim, Gyeonsang National<br />

University; S-M. Baek, Changwon college; H-J. Kim, K-C.<br />

Seong, KERI.<br />

The commercial application of many HTS coil, however,<br />

requires refrigeration at temperatures below 77 K, <strong>in</strong> order<br />

<strong>to</strong> take advantage of a greater critical current density of<br />

HTS and reduce considerably <strong>the</strong> size and weight of <strong>the</strong><br />

system. The magnet is operated <strong>in</strong> vacuum condition.<br />

Thus, for <strong>the</strong> development of <strong>the</strong> coil, cryogenic <strong>in</strong>sulation<br />

design should be established <strong>to</strong> accomplish m<strong>in</strong>iaturization<br />

that is a big advantage of HTS SMES. Recently, research<br />

and development concern<strong>in</strong>g application of <strong>the</strong> conductioncooled<br />

HTS SMES that is easily movement are actively<br />

progress<strong>in</strong>g <strong>in</strong> Korea. Electrical <strong>in</strong>sulation under cryogenic<br />

temperature is a key and an important element <strong>in</strong> <strong>the</strong><br />

application of this apparatus. However, <strong>the</strong> behaviors of<br />

<strong>in</strong>sula<strong>to</strong>rs for cryogenic conditions <strong>in</strong> air or vacuum are<br />

virtually unknown. In this paper, we present and discuss<br />

very fist results <strong>in</strong> this field, focused on several <strong>in</strong>sula<strong>to</strong>rs<br />

such as Al2O3 and AIN which have high <strong>the</strong>rmal<br />

conductivity and electrical. We summary <strong>the</strong> <strong>in</strong>sulation<br />

fac<strong>to</strong>rs of a coil for HTS SMES. And we experiment <strong>the</strong><br />

spacer configure effect <strong>in</strong> <strong>the</strong> dielectric flashover<br />

characteristics. Before we experiment <strong>the</strong> spacer configure<br />

effect, we have been <strong>in</strong>vestigated a surface flashover with<br />

several <strong>in</strong>sula<strong>to</strong>rs as well as breakdown <strong>in</strong> air and vacuum.<br />

From <strong>the</strong> results, we confirm that our research established<br />

basic data <strong>in</strong> <strong>the</strong> <strong>in</strong>sulation design of <strong>the</strong> coil.<br />

THA09PO03<br />

On-L<strong>in</strong>e Measurement of Real Parts of Eigenvalues <strong>in</strong><br />

Multi-Mach<strong>in</strong>e Power System by Use of<br />

Superconduct<strong>in</strong>g Magnetic Energy S<strong>to</strong>rage<br />

T. Yonezu, T. Nitta, The University of Tokyo; Y. Shirai, A.<br />

Nakamaru, Kyo<strong>to</strong> University; K. Shibata, The Kansai<br />

Electric Power Co., Inc.<br />

Small signal stability of power systems is evaluated by<br />

eigenvalues of state equations derived from system<br />

models. The eigenvalues are currently given by off-l<strong>in</strong>e<br />

computer analyses. However, parameters of power<br />

systems used <strong>in</strong> <strong>the</strong> computation may not be obta<strong>in</strong>ed<br />

accurately. If <strong>the</strong> eigenvalues can be measured directly<br />

from operat<strong>in</strong>g power systems, it will contribute <strong>to</strong> make<br />

power systems more stable and more economical than<br />

<strong>the</strong>y are now. T<strong>here</strong>fore, on-l<strong>in</strong>e measurement of <strong>the</strong><br />

eigenvalues by use of Superconduct<strong>in</strong>g Magnetic Energy<br />

S<strong>to</strong>rage (SMES) has been proposed. The eigenvalues of<br />

power systems can be measured by analyz<strong>in</strong>g <strong>the</strong> output<br />

power of genera<strong>to</strong>rs and transmission l<strong>in</strong>es for small power<br />

changes generated by SMES. It can give small power<br />

changes without affect<strong>in</strong>g operat<strong>in</strong>g conditions of <strong>the</strong> power<br />

systems. For <strong>the</strong> waveforms of power changes from<br />

SMES, s<strong>in</strong>usoidal signals and chirp signals have been<br />

studied. In case of s<strong>in</strong>usoidal signals, <strong>the</strong> imag<strong>in</strong>ary parts<br />

of <strong>the</strong> eigenvalues can be measured <strong>in</strong> any power systems.<br />

However, <strong>the</strong> real parts of <strong>the</strong>m can be measured only <strong>in</strong><br />

one-mach<strong>in</strong>e <strong>in</strong>f<strong>in</strong>ite bus system. A new method us<strong>in</strong>g<br />

power change of s<strong>in</strong>usoidal waveform for measurement of<br />

<strong>the</strong> real parts of <strong>the</strong> eigenvalues of multi-mach<strong>in</strong>e power<br />

system will be described <strong>in</strong> <strong>the</strong> paper. Some simulations<br />

were carried out <strong>in</strong> order <strong>to</strong> exam<strong>in</strong>e <strong>the</strong> method by use of<br />

analogue type power system simula<strong>to</strong>rs. The results of<br />

simulations will be also described.<br />

THA09PO04<br />

Design of HTS Magnets for a 600 kJ SMES<br />

W-S. Kim, S. Lee, S-Y. Hahn, Korea Electrical Eng<strong>in</strong>eer<strong>in</strong>g<br />

and Science Research Institute; S-Y. Kwak, H-K. Jung,<br />

Seoul National University; K-D. Choi, J-H. Han, Korea<br />

Polytechnic University; J-K. Lee, Woosuk University; K-C.<br />

Seong, Korea Electrotechnology Research Institute.<br />

Development of a 600 kJ SMES system is <strong>in</strong> progress by<br />

Korean Electric Research Institute (KERI). High<br />

temperature superconduct<strong>in</strong>g wires are go<strong>in</strong>g <strong>to</strong> be used<br />

for <strong>the</strong> w<strong>in</strong>d<strong>in</strong>gs of <strong>the</strong> system, and <strong>the</strong> design of <strong>the</strong> HTS<br />

w<strong>in</strong>d<strong>in</strong>gs for <strong>the</strong> system is presented <strong>in</strong> this paper. We<br />

considered BSCCO-2212 wire for <strong>the</strong> HTS w<strong>in</strong>d<strong>in</strong>gs which<br />

is preferred <strong>in</strong> lower temperature environment <strong>to</strong> BSCCO-<br />

2223 wire. The operat<strong>in</strong>g temperature of <strong>the</strong> w<strong>in</strong>d<strong>in</strong>g was<br />

decided <strong>to</strong> be 20K which will be accomplished by<br />

conduction cool<strong>in</strong>g method us<strong>in</strong>g cryo-coolers. Four<br />

stacked BSCCO-2212 wire were used for design process<br />

of <strong>the</strong> HTS w<strong>in</strong>d<strong>in</strong>gs, and <strong>the</strong> objective function of <strong>the</strong><br />

optimal process was <strong>the</strong> <strong>to</strong>tal amount of <strong>the</strong> HTS wire. This<br />

HTS w<strong>in</strong>d<strong>in</strong>gs is go<strong>in</strong>g <strong>to</strong> be applied <strong>to</strong> <strong>the</strong> SMES system<br />

whose purpose is stabilization of <strong>the</strong> power grid.<br />

THA09PO05<br />

Design study of a 54MJ class magnet of a SMES for<br />

Power System Stabilization<br />

H. Hayashi, T. Nagafuchi, Kyushu Electric Power Co., Inc.;<br />

S. Okitsu, K. Takeuchi, Hitachi Ltd.<br />

We have developed a SMES system for power system<br />

stabilization, aim<strong>in</strong>g at reduc<strong>in</strong>g <strong>the</strong> costs of <strong>the</strong> system.<br />

The multi-pole solenoid coils of Bi2212 conduc<strong>to</strong>r for <strong>the</strong><br />

100MW/54MJ class SMES was designed with <strong>the</strong> rated<br />

current of 3kA and maximum magnetic field of 10T. Our<br />

study revealed that <strong>the</strong> maximum magnetic field applied <strong>to</strong><br />

<strong>the</strong> magnet is effective <strong>to</strong> reduce <strong>the</strong> magnet size and<br />

volume, and <strong>in</strong> terms of magnetic stress applied <strong>to</strong> <strong>the</strong><br />

Bi2212 conduc<strong>to</strong>r and <strong>the</strong> support structure. The AC loss<br />

ma<strong>in</strong>ly depend<strong>in</strong>g on histeresis loss was also calculated.<br />

Thus, <strong>the</strong> authors confirmed <strong>the</strong> possibility of 54MJ class<br />

SMES’s magnet for power system stabilization <strong>in</strong> a power<br />

system.<br />

THA09PO06<br />

Heat transfer properties of a conduction cooled<br />

pro<strong>to</strong>type LTS pulse coil for UPS-SMES<br />

A. Kawagoe, H. Yamamuro, F. Sumiyoshi, Kagoshima<br />

University; T. Mi<strong>to</strong>, H. Chikaraishi, T. Baba, NIFS; T.<br />

Henmi, Gradient University for Advanced Studies; K.<br />

Okumura, R. Abe, Technova Inc.; M. Iwakuma, Kyushu<br />

141 MT-19 2005, Genova

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!