16.06.2015 Views

Click here to download the abstract booklet in pdf format - MT19 - Infn

Click here to download the abstract booklet in pdf format - MT19 - Infn

Click here to download the abstract booklet in pdf format - MT19 - Infn

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

waveforms, and two different heaters were used <strong>to</strong> heat <strong>the</strong><br />

jacket or <strong>the</strong> helium. The sample was equipped with many<br />

<strong>the</strong>rmal-hydraulic (<strong>the</strong>rmometers and mass-flow meters)<br />

and electrical (Hall probes and voltage taps) sensors, <strong>to</strong><br />

acquire as wide as possible an experimental database,<br />

aimed at gett<strong>in</strong>g a benchmark for <strong>the</strong> validation of <strong>the</strong><br />

THELMA code. THELMA is a computer <strong>to</strong>ol for <strong>the</strong> analysis<br />

of CICC pro<strong>to</strong>types and magnets, recently developed and<br />

presently under validation. Start<strong>in</strong>g from <strong>the</strong> object<br />

geometry, its CICC data and <strong>the</strong> waveforms of forced<br />

current and external heat<strong>in</strong>g power, THELMA can compute<br />

<strong>the</strong> current distribution among <strong>the</strong> cable elements used <strong>to</strong><br />

represent <strong>the</strong> cable, tak<strong>in</strong>g <strong>in</strong><strong>to</strong> account <strong>the</strong>ir<br />

superconduct<strong>in</strong>g behaviour, as well as <strong>the</strong> temperature and<br />

<strong>the</strong> magnetic field distribution. The paper deals with <strong>the</strong><br />

application of THELMA <strong>to</strong> some representative tests on<br />

BBIII and presents <strong>in</strong> detail <strong>the</strong> analysis sett<strong>in</strong>g-up, <strong>the</strong><br />

results, its critical aspects and limits. A comparison is<br />

shown between <strong>the</strong> measured and <strong>the</strong> computed<br />

waveforms of <strong>the</strong> electromagnetic and <strong>the</strong> <strong>the</strong>rmalhydraulic<br />

data.<br />

MOA05PO03<br />

The effect of geometry and location of suspension<br />

coils on magnetic levitation force for an<br />

electromagnetic suspension of a superconduct<strong>in</strong>g<br />

sp<strong>here</strong><br />

C. He, Q. Wang, Institute of Electrical Eng<strong>in</strong>eer<strong>in</strong>g, CAS.<br />

In this paper, we present <strong>the</strong> calculation of magnetic<br />

levitation force of superconduct<strong>in</strong>g sp<strong>here</strong> suspended by<br />

coils. The <strong>in</strong>fluence on magnetic levitation force due <strong>to</strong><br />

geometrical dimensions and relative locations of coils is<br />

analyzed. Theoretical computational results have been<br />

discussed by comparison with numerical simulation results.<br />

By <strong>the</strong> work it is a possible approach <strong>to</strong> achieve a stable<br />

suspension of superconduct<strong>in</strong>g sp<strong>here</strong>.<br />

MOA05PO04<br />

Model<strong>in</strong>g of Magnetic Force Control Device Based on<br />

<strong>the</strong> Inverse Magne<strong>to</strong>strictive Effect<br />

S. Cao, B. Wang, J. Zheng, W. Huang, Y. Sun, L. Weng,<br />

Hebei University of Technology.<br />

A device us<strong>in</strong>g <strong>the</strong> <strong>in</strong>verse magne<strong>to</strong>strictive effect of<br />

magne<strong>to</strong>strictive materials (such as Terfenol-D) is called a<br />

magne<strong>to</strong>strictve sensor. Magne<strong>to</strong>strictve sensors have<br />

high energy coupl<strong>in</strong>g fac<strong>to</strong>rs and fast response. Thus, <strong>the</strong><br />

sensors have a wide range of applications <strong>in</strong> hydrophones,<br />

<strong>to</strong>rque sensor, displacement and force sensor, etc. The<br />

difficulty for <strong>the</strong> sensors, however, lies <strong>in</strong> <strong>the</strong> hysteretic<br />

nonl<strong>in</strong>earity <strong>in</strong><strong>here</strong>nt <strong>to</strong> Terfenol-D. To design and use <strong>the</strong><br />

sensors, it is necessary <strong>to</strong> establish an accurate model of<br />

Terfenol-D. The l<strong>in</strong>ear piezomagnetic equations (Clark,<br />

1980) and related model<strong>in</strong>g techniques (Fenn & Gerver,<br />

1994; Kle<strong>in</strong>ke & Uras, 1996) provide adequate<br />

characterization of Terfenol-D sens<strong>in</strong>g performance <strong>in</strong><br />

quasi-l<strong>in</strong>ear regimes, hysteresis models for characteriz<strong>in</strong>g<br />

Terfenol-D sens<strong>in</strong>g performance are still lack<strong>in</strong>g. To<br />

address this problem, this paper first presents a hysteresis<br />

model of Terfenol-D, and <strong>the</strong>n uses <strong>the</strong> model <strong>to</strong> found a<br />

magnetic force model for a magnetic force device (Ueno,<br />

Qiu and Tani, 2004). In <strong>the</strong> model<strong>in</strong>g of Terfenol-D, <strong>the</strong><br />

magnetization of Terfenol-D is quantified under a magnetic<br />

field and a stress field. The field-<strong>in</strong>duced component of<br />

magnetization is quantified with <strong>the</strong> ferromagnetic<br />

hysteresis model (Jiles & A<strong>the</strong>r<strong>to</strong>n, 1986). The stress<strong>in</strong>duced<br />

component of magnetization is modeled with <strong>the</strong><br />

law of approach (Jiles,1995). It is found that <strong>the</strong> model<br />

results are <strong>in</strong> a good agreement with <strong>the</strong> experimental<br />

data.<br />

MOA05PO05<br />

Property of Mechanical Heat Generation <strong>in</strong>side <strong>the</strong><br />

Superconducti<strong>in</strong>g Coil <strong>in</strong>stalled <strong>in</strong> MAGLEV Inner<br />

Vessel<br />

Y. Yosh<strong>in</strong>o, Hach<strong>in</strong>ohe National College of Technology; A.<br />

Iwabuchi, T. Suzuki, Iwate University; H. Se<strong>in</strong>o, Railway<br />

Technical Research Institute.<br />

n <strong>the</strong> JR MAGLEV system, tra<strong>in</strong>s are operated by <strong>the</strong><br />

electromagnetic force between ground coils and on-board<br />

superconduct<strong>in</strong>g magnets (SCMs). However, SCMs are<br />

vibrated by <strong>the</strong> electromagnetic disturbance dur<strong>in</strong>g <strong>the</strong> tra<strong>in</strong><br />

runs. This phenomenon <strong>in</strong>creases <strong>the</strong> mechanical heat<br />

load <strong>in</strong>side <strong>the</strong> <strong>in</strong>ner vessel <strong>in</strong>stalled with a<br />

superconduct<strong>in</strong>g coil (SC- coil). One of <strong>the</strong> mechanical<br />

heat load is generated by <strong>the</strong> friction caused by <strong>the</strong> relative<br />

microscopic slips between fasteners and <strong>the</strong> SC-coil. The<br />

purpose of this study is <strong>to</strong> clear <strong>the</strong> mechanical heat<br />

generation <strong>in</strong>side <strong>the</strong> SC-coil. A frictional test was<br />

performed under frett<strong>in</strong>g conditions aga<strong>in</strong>st immers<strong>in</strong>g SCcoil<br />

samples <strong>in</strong> liquid helium. Especially, we focused on <strong>the</strong><br />

<strong>in</strong>terface of <strong>the</strong> polyimide films which coated epoxy res<strong>in</strong>impregnated<br />

SC-w<strong>in</strong>d<strong>in</strong>g wires. Reciprocat<strong>in</strong>g slid<strong>in</strong>gs were<br />

provided between <strong>the</strong> fixed and vibrat<strong>in</strong>g specimens with<br />

<strong>the</strong> maximum peak-<strong>to</strong>-peak amplitude less than 30 microns<br />

by a vibration genera<strong>to</strong>r. Specimens were vibrated up <strong>to</strong><br />

<strong>the</strong> frequency of 300 Hz. As a result, <strong>the</strong> mechanical heat<br />

generation <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g of <strong>the</strong> number of<br />

polyimide films.<br />

MOA05PO06<br />

Rotation Loss Model<strong>in</strong>g <strong>in</strong> Superconduct<strong>in</strong>g Magnet<br />

Bear<strong>in</strong>g<br />

I. Masaie, K. Demachi, M. Uesaka, The University of<br />

Tokyo.<br />

In superconduct<strong>in</strong>g magnet bear<strong>in</strong>gs t<strong>here</strong> are 3 major<br />

physics problems, AC Loss, non-l<strong>in</strong>ear motion and irregular<br />

trap field of <strong>the</strong> superconduc<strong>to</strong>r. The effect of AC Loss and<br />

non-l<strong>in</strong>ear motion is reduced through <strong>the</strong> manufactur<strong>in</strong>g<br />

techniques and <strong>the</strong> control systems. However <strong>the</strong> angular<br />

velocity loss <strong>in</strong>creases as <strong>the</strong> rotation velocity <strong>in</strong>creases or<br />

<strong>the</strong> irregular trap field is enhanced. We have considered<br />

that <strong>the</strong> angular velocity loss come of <strong>the</strong> Lorentz force<br />

between <strong>the</strong> irregular trap field of <strong>the</strong> superconduc<strong>to</strong>r and<br />

<strong>the</strong> current <strong>in</strong>duced by <strong>the</strong> irregular field. Thus far <strong>the</strong> loss<br />

has been evaluated <strong>in</strong> our computer simulation method. In<br />

this study, we devised <strong>the</strong> rotation loss model<strong>in</strong>g <strong>in</strong> terms<br />

of <strong>the</strong> motion equation, and <strong>the</strong> model is demonstrated by<br />

<strong>the</strong> computer simulation and our experiment.<br />

MOA05PO07<br />

The study on <strong>the</strong> electromagnetic characteristics of <strong>the</strong><br />

pilot-plant-scale l<strong>in</strong>ear electromagnetic stirrer us<strong>in</strong>g<br />

f<strong>in</strong>ite element method<br />

M-K. Song, Vec<strong>to</strong>r Fields Korea. Inc.; S-J. Lee, E.E. Dept.<br />

Uiduk University; J-P. Park, Research Institute of Industrial<br />

Science & Technology.<br />

Withdrawn.<br />

MOA05PO08<br />

The study on <strong>the</strong> electromagnetic characteristics of<br />

square type EMC molds us<strong>in</strong>g f<strong>in</strong>ite element method<br />

M-K. Song, Vec<strong>to</strong>r Fields Korea. Inc.; S-J. Lee, E.E. Dept.<br />

Uiduk University; B-M. Moon, J-S. Sh<strong>in</strong>, KERI.<br />

Withdrawn.<br />

MOA05PO09<br />

Computational Simulation of <strong>the</strong> <strong>in</strong>teraction between<br />

PM and HTS bulk<br />

M. Qiu, G.H. Yang, L.Z. L<strong>in</strong>, Institute of Electrical<br />

MT-19 2005, Genova 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!