19.06.2015 Views

van't Hoff factor

van't Hoff factor

van't Hoff factor

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The (approximate)<br />

van’t <strong>Hoff</strong> <strong>factor</strong><br />

A very important consideration for the colligative properties<br />

See also the handout:<br />

http://www.roanestate.edu/faculty/condon/handouts/vanthoff.html


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

The van’t <strong>Hoff</strong> <strong>factor</strong> is extreamly important when one makes<br />

calculations involving colligative properties. Recall that in<br />

colligative properties the nature of the solute is not important,<br />

only the number of particles.


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

The van’t <strong>Hoff</strong> <strong>factor</strong> is extreamly important when one makes<br />

calculations involving colligative properties. Recall that in<br />

colligative properties the nature of the solute is not important,<br />

only the number of particles.<br />

Consider the situations indicated by the figures below.<br />

neutral<br />

molecule<br />

Na + ion<br />

Cl G ion<br />

}<br />

Water solutions


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

Consider the situations indicated by the figures below.<br />

As far as the solvent is concerned is there any difference?<br />

The neutral molecule and the NaCl are taking up the same<br />

number of positions.<br />

neutral<br />

molecule<br />

Na + ion<br />

Cl G ion<br />

}<br />

Water solutions


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

Consider the situations indicated by the figures below.<br />

As far as the solvent is concerned is there any difference?<br />

The neutral molecule and the NaCl are taking up the same<br />

number of positions. Shown, however are 12 neutral<br />

molecules but only 6 formula units of NaCl.<br />

neutral<br />

molecule<br />

Na + ion<br />

Cl G ion<br />

}<br />

Water solutions


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

Consider the situations indicated by the figures below.<br />

As far as the solvent is concerned is there any difference?<br />

The neutral molecule and the NaCl are taking up the same<br />

number of positions. Shown, however are 12 neutral<br />

molecules but only 6 formula units of NaCl.<br />

Thus, for NaCl the number of moles dissolved needs to be<br />

multiplied by 2!<br />

neutral<br />

molecule<br />

Na + ion<br />

Cl G ion<br />

}<br />

Water solutions


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

This <strong>factor</strong> of 2 for NaCl is the (approximate) van’t <strong>Hoff</strong> <strong>factor</strong>.<br />

This <strong>factor</strong>, given the symbol “i ”, is greater than 1 for all<br />

strong electrolytes.


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

This <strong>factor</strong> of 2 for NaCl is the (approximate) van’t <strong>Hoff</strong> <strong>factor</strong>.<br />

This <strong>factor</strong>, given the symbol “i ”, is greater than 1 for all<br />

strong electrolytes.<br />

i for NaCl = 2 Why? Because NaCl Na + + Cl G<br />

Thus each formal mole of NaCl yields 2 moles of ions in<br />

water.<br />

Consider other electrolytes:<br />

H 2 O


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

This <strong>factor</strong> of 2 for NaCl is the (approximate) van’t <strong>Hoff</strong> <strong>factor</strong>.<br />

This <strong>factor</strong>, given the symbol “i ”, is greater than 1 for all<br />

strong electrolytes.<br />

i for NaCl = 2 Why? Because NaCl Na + + Cl G<br />

Consider other electrolytes:<br />

H 2 O<br />

i for HCl = 2 HCl is a strong acid HCl + H 2 O ! H 3 O + + ClG


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

This <strong>factor</strong> of 2 for NaCl is the (approximate) van’t <strong>Hoff</strong> <strong>factor</strong>.<br />

This <strong>factor</strong>, given the symbol “i ”, is greater than 1 for all<br />

strong electrolytes.<br />

i for NaCl = 2 Why? Because NaCl Na + + Cl G<br />

Consider other electrolytes:<br />

H 2 O<br />

i for HCl = 2 HCl is a strong acid: HCl + H 2 O ! H 3 O + + ClG<br />

H<br />

i for NaOH = 2 NaOH is strong base: NaOH<br />

2 O<br />

Na + + OH G


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

This <strong>factor</strong> of 2 for NaCl is the (approximate) van’t <strong>Hoff</strong> <strong>factor</strong>.<br />

This <strong>factor</strong>, given the symbol “i ”, is greater than 1 for all<br />

strong electrolytes.<br />

i for NaCl = 2 Why? Because NaCl Na + + Cl G<br />

Consider other electrolytes:<br />

i for HCl = 2 HCl is a strong acid: HCl + H 2 O ! H 3 O + + ClG<br />

i for NaOH = 2 NaOH is strong base: NaOH Na + + OH G<br />

H<br />

i for Ca(OH) 2 = 3 a strong base: Ca(OH)<br />

2 O<br />

2 Ca 2+ + 2OHG<br />

H 2 O<br />

H 2 O


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

This <strong>factor</strong> of 2 for NaCl is the (approximate) van’t <strong>Hoff</strong><br />

<strong>factor</strong>. This <strong>factor</strong>, given the symbol “i ”, is greater than 1 for<br />

all strong electrolytes.<br />

i for NaCl = 2 Why? Because NaCl Na + + Cl G<br />

Consider other electrolytes:<br />

i for HCl = 2 HCl is a strong acid: HCl + H 2 O ! H 3 O + + ClG<br />

i for NaOH = 2 NaOH is strong base: NaOH Na + + OH G<br />

i for Ca(OH) 2 = 3 a strong base: Ca(OH) 2 Ca 2+ + 2OHG<br />

i for H 2 SO 4 = 2! 1st H is strong: H 2 SO 4 +H 2 O ! HSO 4 G +H 3 O +<br />

H 2 O<br />

H 2 O<br />

H 2 O<br />

H 2 O<br />

i for FeCl 3 = 4 all salts are strong: FeCl 3 Fe 3+<br />

+ 3Cl G


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

Summarizing the examples:<br />

i for NaCl = 2<br />

H<br />

NaCl<br />

2 O<br />

Na + + Cl G<br />

i for HCl = 2<br />

HCl + H 2 O ! H 3 O + + ClG<br />

i for NaOH = 2<br />

H<br />

NaOH Na + + OH G<br />

2 O<br />

i for Ca(OH) 2 = 3<br />

H<br />

Ca(OH) 2 Ca 2+ 2 O<br />

+ 2OHG<br />

i for H 2 SO 4 = 2 H 2 SO 4 +H 2 O ! HSO G 4 +H 3 O +<br />

H<br />

i for FeCl 3 = 4 FeCl 3 Fe 3+ + 3Cl G<br />

2 O<br />

H<br />

i for Na 2 S = 3 Na 2 S<br />

2 O<br />

2Na + + S 2G


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

Summarizing the examples:<br />

i for NaCl = 2<br />

H<br />

NaCl<br />

2 O<br />

Na + + Cl G<br />

i for HCl = 2<br />

HCl + H 2 O ! H 3 O + + ClG<br />

i for NaOH = 2<br />

H<br />

NaOH Na + + OH G<br />

2 O<br />

i for Ca(OH) 2 = 3<br />

H<br />

Ca(OH) 2 Ca 2+ 2 O<br />

+ 2OHG<br />

i for H 2 SO 4 = 2 H 2 SO 4 +H 2 O ! HSO G 4 +H 3 O +<br />

H<br />

i for FeCl 3 = 4 FeCl 3 Fe 3+ + 3Cl G<br />

2 O<br />

H<br />

i for Na 2 S = 3 Na 2 S<br />

2 O<br />

2Na + + S 2G<br />

But what about nonelectrolytes and weak electrolytes?<br />

These are all approximately 1.


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

Summarizing the examples:<br />

i for NaCl = 2<br />

H<br />

NaCl<br />

2 O<br />

Na + + Cl G<br />

i for HCl = 2<br />

HCl + H 2 O ! H 3 O + + ClG<br />

i for NaOH = 2<br />

H<br />

NaOH Na + + OH G<br />

2 O<br />

i for Ca(OH) 2 = 3<br />

H<br />

Ca(OH) 2 Ca 2+ 2 O<br />

+ 2OHG<br />

i for H 2 SO 4 = 2 H 2 SO 4 +H 2 O ! HSO G 4 +H 3 O +<br />

H<br />

i for FeCl 3 = 4 FeCl 3 Fe 3+ + 3Cl G<br />

2 O<br />

H<br />

i for Na 2 S = 3 Na 2 S<br />

2 O<br />

2Na + + S 2G<br />

But what about nonelectrolytes and weak electrolytes?<br />

These are all approximately 1.<br />

CH 3 OH (methanol an organic) i = 1<br />

CH 3 COOH (a weak acid) i = 1<br />

CH 3 OCH 3 (dimethyl ether an organic) i = 1<br />

NH 3 (a weak base) i = 1


The van’t <strong>Hoff</strong> <strong>factor</strong><br />

Summarizing the examples:<br />

i for NaCl = 2<br />

H<br />

NaCl<br />

2 O<br />

Na + + Cl G<br />

i for HCl = 2<br />

HCl + H 2 O ! H 3 O + + ClG<br />

i for NaOH = 2<br />

H<br />

NaOH Na + + OH G<br />

2 O<br />

i for Ca(OH) 2 = 3<br />

H<br />

Ca(OH) 2 Ca 2+ 2 O<br />

+ 2OHG<br />

i for H 2 SO 4 = 2 H 2 SO 4 +H 2 O ! HSO G 4 +H 3 O +<br />

i for FeCl 3 = 4<br />

H<br />

FeCl 3 Fe 3+ 2 O<br />

+ 3Cl G<br />

i for Na 2 S = 3<br />

H<br />

Na 2 S 2Na + 2 O<br />

+ S 2G<br />

CH 3 OH (methanol an organic) i = 1<br />

CH 3 COOH (a weak acid) i = 1<br />

CH 3 OCH 3 (dimethyl ether an organic) i = 1<br />

NH 3 (a weak base) i = 1<br />

These <strong>factor</strong>s are approximate and the true values, due to<br />

other subtle effects, are slightly different. We will ignore<br />

these subtleties in General Chemistry.


The (approximate)<br />

van’t <strong>Hoff</strong> <strong>factor</strong><br />

Now that you know what the van’t <strong>Hoff</strong> <strong>factor</strong> is, proceed to<br />

the slideshow on the application of the van’t <strong>Hoff</strong> <strong>factor</strong>.<br />

THE END for the slideshow “The (approximate) van’t <strong>Hoff</strong><br />

<strong>factor</strong>”.<br />

See also the handout:<br />

http://www.roanestate.edu/faculty/condon/handouts/vanthoff.html

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!