29.06.2015 Views

Thermal-Hydraulic Performance of Printed Circuit Heat Exchanger in ...

Thermal-Hydraulic Performance of Printed Circuit Heat Exchanger in ...

Thermal-Hydraulic Performance of Printed Circuit Heat Exchanger in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Thermal</strong>-<strong>Hydraulic</strong> <strong>Performance</strong> <strong>of</strong><br />

<strong>Pr<strong>in</strong>ted</strong> <strong>Circuit</strong> <strong>Heat</strong> <strong>Exchanger</strong><br />

<strong>in</strong> Supercritical CO 2 Cycle<br />

K. Nikit<strong>in</strong>, Y. Kato, L. Ngo<br />

Research Laboratory for Nuclear Reactors<br />

Tokyo Institute <strong>of</strong> Technology


Study Incentives<br />

o Supercritical CO 2 cycle demonstrates some advantages<br />

<strong>in</strong> comparison to He cycle<br />

- higher cycle efficiency (Y. Kato, 2003),<br />

- better turbomach<strong>in</strong>ery (Y. Muto, 2003),<br />

- power generation cost is expected to be smaller.<br />

o High efficiency recuperator is a crucial component <strong>of</strong><br />

supercritical CO 2 cycle. The targeted recuperator<br />

effectiveness is as high as 95%.<br />

o PCHE is a promis<strong>in</strong>g heat exchanger because it<br />

- is able to withstand the pressure up to 50 MPa and the temperature up<br />

to 700 o C (reliability ),<br />

- has a high compactness and high efficiency (cost reduction).<br />

PCHE = <strong>Pr<strong>in</strong>ted</strong><br />

<strong>Circuit</strong><br />

<strong>Heat</strong><br />

<strong>Exchanger</strong><br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 2


What is the PCHE?<br />

<br />

<br />

<br />

Fluid flow channels are etched chemically on metal<br />

plates.<br />

- Typical plate: thickness = 1.6mm,<br />

width = 600mm, length = 1200mm,<br />

- Channels have semi-circular pr<strong>of</strong>ile with<br />

1-22 mm diameter.<br />

Etched plates are stacked and diffusion bonded<br />

together to fabricate a block<br />

The blocks are then welded together to form the<br />

complete heat exchanger core<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 3


Construction <strong>of</strong> PCHEs<br />

Plate stack<strong>in</strong>g<br />

Diffusion bond<strong>in</strong>g<br />

the bond strength is achieved by<br />

pressure, temperature, time <strong>of</strong> contact,<br />

and cleanl<strong>in</strong>ess <strong>of</strong> the surfaces<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 4


Advantages <strong>of</strong> PCHE<br />

Photo-etch<strong>in</strong>g technology:<br />

Micro channels with smaller hydraulic diameter D h :<br />

Pressure capability<br />

PD<br />

<strong>in</strong> excess <strong>of</strong> 50 MPa.<br />

= h<br />

.<br />

Compact size (L)(<br />

) or Higher efficiency (98%).<br />

L =<br />

Dh<br />

4 j<br />

Pr<br />

2/3<br />

No plate-f<strong>in</strong> braz<strong>in</strong>g:<br />

Manufactur<strong>in</strong>g cost reduction.<br />

N<br />

σ<br />

2t<br />

( T<br />

where<br />

o<br />

−Ti<br />

)<br />

N = .<br />

∆T<br />

LMTD<br />

Diffusion bond<strong>in</strong>g technology:<br />

Ma<strong>in</strong>ta<strong>in</strong> parent material strength:<br />

Extreme temperature from cryogenic up to 700 o C.<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 5


From HEATRIC homepage<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 6


Experimental Facility<br />

Oil Separator<br />

<strong>Heat</strong>er<br />

Cooler<br />

Compressor<br />

PCHE (3kW)<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 7


Experimental Loop<br />

Cooler 2<br />

∆P<br />

CO 2 tank<br />

FR<br />

T<br />

PCHE<br />

T,P<br />

T,P<br />

∆P<br />

T<br />

FR<br />

Compressor<br />

Pressure<br />

Reducer<br />

Cooler 1<br />

Oil<br />

Separator<br />

<strong>Heat</strong>er 1 <strong>Heat</strong>er 2<br />

T :thermocouple, P :pressure meter, ∆P :differential pressure meter, FR : flow rate meter<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 8


PCHE Test Section<br />

Dimension <strong>of</strong> 896 x 76 x 71 mm and a dry mass <strong>of</strong> 40 kg<br />

Channel geometry (mm) Area, (m 2 )<br />

Channels<br />

number, n<br />

Diameter,<br />

D<br />

Active<br />

length, L<br />

<strong>Hydraulic</strong><br />

diameter, D h<br />

<strong>Heat</strong><br />

transfer, A<br />

Free flow, A c<br />

Hot side 144 1.69 1062<br />

1.03<br />

0.664<br />

64 0.00016<br />

Cold<br />

side<br />

66 1.69 1170<br />

1.03<br />

0.336<br />

36 0.000074<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 9


Experimental Conditions<br />

Pressure, MPa<br />

No. 1 2 3 4 5<br />

Cold<br />

side<br />

6.5 7.4 8.5 9.5 10.2<br />

Hot side 2.2 2.5 2.8 3.0 3.3<br />

Temperature,<br />

o<br />

C<br />

Cold<br />

side<br />

90-108<br />

Hot side 280-300<br />

Flow rate, kg/h - From 40 to 80 with 5 kg/h <strong>in</strong>crement<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 10


Overall <strong>Heat</strong> Transfer Coefficient, U<br />

‣ LMTD method:<br />

where<br />

U<br />

1 ( Q )<br />

2<br />

c<br />

+ Qh<br />

=<br />

Qc<br />

= Wc<br />

( hc<br />

,<br />

)<br />

( Th,<br />

i<br />

− Tc,<br />

o<br />

) − ( Th,<br />

o<br />

− Tc,<br />

i<br />

)<br />

, o<br />

− hc<br />

i<br />

Ah<br />

FG<br />

ln (<br />

Q = W h − h )<br />

[ T − T ) /( T − T )]<br />

h,<br />

i<br />

c,<br />

o<br />

h,<br />

o<br />

c,<br />

i<br />

h<br />

h( h, o h,<br />

i<br />

1500<br />

A - <strong>Heat</strong> transfer area, 0.664 m 2<br />

C<br />

p<br />

, J/(kg*K)<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

Hot side<br />

Cold side<br />

P, MPa:<br />

10.2<br />

6.5<br />

3.3<br />

2.2<br />

F G<br />

- Geometric factor, 0.9624<br />

h, c - hot, cold side<br />

o, i - outlet, <strong>in</strong>let<br />

120 160 200 240 280<br />

CO 2<br />

temperature, o C<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 11


<strong>Heat</strong> Loss Estimation (1)<br />

Total value:<br />

1) From outer surface temperature <strong>of</strong> PCHE <strong>in</strong>sulator<br />

Q<br />

loss<br />

= ∑<br />

i=<br />

1,10<br />

A<br />

<strong>in</strong>s<br />

i<br />

[<br />

4 4<br />

εσ ( T − T ) + h ( T − T )] ≈ 110 ~ 120 [ ]<br />

s, i surr conv , i s,<br />

i surr<br />

W<br />

2) From heat balance<br />

Q<br />

loss<br />

= Q h<br />

− Q c<br />

<strong>Heat</strong> loss, [W]<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

From heat balance<br />

Pressure range, [MPa]<br />

6.5-2.2<br />

7.4-2.5<br />

8.5-2.8<br />

9.5-3.0<br />

10.2-3.3<br />

90<br />

40 50 60 70 80 90<br />

Flow rate, [kg/h]<br />

From outer surface temperature<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 12


<strong>Heat</strong> Loss Estimation (2)<br />

Effect on the outlet temperatures:<br />

3) From 2D FLUENT CFD calculations (with(2)/without(1) heat loss)<br />

(1) (2)<br />

4) From the heat loss compensation experiments<br />

PCHE<br />

PCHE−surf<br />

Insulator Q ≈ 0<br />

<strong>Heat</strong>ers<br />

T<br />

k<br />

k<br />

= Tnear−heater−surf<br />

loss<br />

∆T<br />

Thot<br />

, out +∆Thot<br />

, out<br />

Tcold<br />

, out +∆Tcold<br />

, out<br />

'<br />

hot, out<br />

: Whot<br />

× ∫ Cp(<br />

P(<br />

T ), T ) dT = −0.35Qloss;<br />

∆Tcold,<br />

out<br />

: Wcold<br />

× ∫ Cp(<br />

P(<br />

T ), T ) dT = −0.<br />

65<br />

T<br />

T<br />

hot , out<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 13<br />

cold , out<br />

Q<br />

'<br />

loss


Overall heat transfer coefficient, U<br />

U, [W/m 2 K]<br />

650<br />

600<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

Pressure, [MPa]<br />

6.5-2.2<br />

7.4-2.5<br />

8.5-2.8<br />

9.5-3.0<br />

10.2-3.3<br />

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

Reynolds number × 10 -3<br />

U =<br />

3<br />

( 18.6 ± 6.8) + (0.105±<br />

0.002) × Re, 2×<br />

10 < Re < 6×<br />

10<br />

3<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 14


Pressure factor, f P<br />

0.07<br />

Pressure factor, f P<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

hot side<br />

cold side<br />

Pressure range, [MPa]<br />

6.5-2.2<br />

7.4-2.5<br />

8.5-2.8<br />

9.5-3.0<br />

10.2-3.3<br />

0.02<br />

2 4 6 8 10 12<br />

Reynolds number × 10 -3<br />

−6<br />

−8<br />

3<br />

3<br />

f P ,<br />

= ( 0.032±<br />

0.002) −(1.01×<br />

10 ± 6×<br />

10 ) × Re, 2×<br />

10 ≤ Re≤6×<br />

10<br />

hot<br />

−6<br />

−8<br />

3<br />

3<br />

f P ,<br />

= ( 0.066±<br />

0.001) −(1.11×<br />

10 ± 7×<br />

10 ) × Re, 6×<br />

10 ≤ Re≤12×<br />

10<br />

cold<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 15


PCHE cross-section<br />

section<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 16


Head loss <strong>in</strong> PCHE<br />

∆p<br />

=<br />

ρg∆H<br />

=<br />

115 o 100 o<br />

∑<br />

m<br />

ρ K<br />

m<br />

b<br />

U<br />

2<br />

2<br />

m<br />

+<br />

∑<br />

m<br />

ρ 0.316Re<br />

m<br />

−0.25<br />

loss <strong>in</strong> elbows + loss <strong>in</strong> a straight pipe<br />

La<br />

U<br />

md 2<br />

2<br />

m<br />

I. K b =K 1 *K 2 *K 3<br />

from <strong>Hydraulic</strong> Eng<strong>in</strong>eer<strong>in</strong>g, A.<br />

II.<br />

from <strong>Hydraulic</strong> Eng<strong>in</strong>eer<strong>in</strong>g, A. Lencastre, , 1987<br />

from JSME Textbook, 2003<br />

III. CFD FLUENT<br />

:<br />

∆<br />

p calc<br />

∆p<br />

− ∆p<br />

exp<br />

exp<br />

= 14 − 37%<br />

2⎛θ<br />

⎞<br />

4⎛θ<br />

⎞<br />

∆p K = 0.946s<strong>in</strong> ⎜ ⎟ + 2.047s<strong>in</strong> ⎜ ⎟<br />

:<br />

calc<br />

− ∆pexp<br />

= 6 − 32%<br />

b<br />

⎝ 2 ⎠ ⎝ 2 ⎠<br />

∆pexp<br />

: N/A yet<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 17


Effectiveness:<br />

PCHE’s Effectiveness<br />

Q&<br />

η =<br />

Q &<br />

max<br />

C<br />

=<br />

C<br />

c<br />

m<strong>in</strong><br />

( Tc , o<br />

−Tc<br />

, i)<br />

( T −T<br />

)<br />

h , i<br />

c , i<br />

1.000<br />

Effectiveness, η<br />

0.995<br />

0.990<br />

0.985<br />

0.980<br />

0.975<br />

0.970<br />

Pressure range, [MPa]<br />

10.2-3.3<br />

9.5-3.0<br />

8.5-2.8<br />

7.4-2.5<br />

6.5-2.2<br />

0.965<br />

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

Reynolds number × 10 -3<br />

PCHE’s effectiveness reaches value up to 98.7%.<br />

1% <strong>of</strong> recuperator effectiveness the gas turb<strong>in</strong>e cycle efficiency 0.6%<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 18


MUSE Code Simulation<br />

‣Developed for plate-f<strong>in</strong> heat<br />

exchanger,<br />

‣Use Wavy f<strong>in</strong> plate heat<br />

exchanger model,<br />

‣This model is the most similar<br />

model to our tested PCHE.<br />

Various plate-f<strong>in</strong> models<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 19


Experimental data & MUSE Calculations<br />

700<br />

600<br />

Experimental Data<br />

U, [W/m 2 K]<br />

500<br />

400<br />

300<br />

200<br />

40 50 60 70 80 90<br />

Flow rate, [kg/h]<br />

The different slopes may be due to:<br />

MUSE Calcualtions<br />

- Difference <strong>of</strong> PCHE from wavy f<strong>in</strong> model,<br />

- Neglect <strong>of</strong> cross flow <strong>in</strong> the distributor sections.<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 20


Conclusions<br />

‣ The overall heat transfer coefficient and pressure loss factor <strong>of</strong> o<br />

PCHE were <strong>in</strong>vestigated both experimentally and numerically; the<br />

empirical correlations are proposed.<br />

‣ The method to take <strong>in</strong>to account the heat loss for overall heat<br />

transfer coefficient estimations has been established.<br />

‣ The overall heat transfer coefficient varies from 300 to 650<br />

W/m 2 K while the heat transfer effectiveness reaches up to 98.7 %.<br />

‣ PCHE might be judged as a promis<strong>in</strong>g compact heat exchanger<br />

for the high efficiency recuperator.<br />

‣ The experimental data are currently used for CFD FLUENT<br />

code verification and develop<strong>in</strong>g the new heat exchanger type.<br />

2005/1/5 Tokyo Institute <strong>of</strong> Technology 21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!