29.06.2015 Views

Liquid Metal Cooled Fast Reactors: Worldwide Overview Worldwide ...

Liquid Metal Cooled Fast Reactors: Worldwide Overview Worldwide ...

Liquid Metal Cooled Fast Reactors: Worldwide Overview Worldwide ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Liquid</strong> <strong>Metal</strong> <strong>Cooled</strong><br />

<strong>Fast</strong> <strong>Reactors</strong>:<br />

<strong>Worldwide</strong> <strong>Overview</strong><br />

www.inl.gov<br />

Alexander Stanculescu<br />

17-20 April 2012


<strong>Fast</strong>!<br />

Source: Astérix le Gaulois (René Goscinny, Albert Uderzo)<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

2


Thermal vs. <strong>Fast</strong><br />

fission in fissile<br />

capture in fertile<br />

LWRs use low enr U,<br />

HWRs even nat U<br />

• Fuel temperature increase ⇒<br />

Doppler broadening<br />

⇒ Loss of reactivity<br />

• Loss of liquid coolant<br />

⇒ loss of moderator<br />

⇒ loss of reactivity<br />

fission in fissile<br />

fissile to fertile concentration<br />

fission/capture and neutron multiplicity<br />

BREEDING<br />

• Locally positive void effect<br />

• Doppler effect smaller<br />

• Fuel expansion ⇒ loss of reactivity<br />

• Power increase ⇒ loss of reactivity<br />

• Not in most reactive geometry<br />

• Smaller β eff ⇒ less margin to prompt<br />

criticality<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong> <strong>Metal</strong>s:<br />

Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

3


Another Way to Show <strong>Fast</strong> Reactor<br />

Breeding Potential<br />

Isotope<br />

235<br />

U<br />

239<br />

Pu<br />

233<br />

U<br />

Spectrum Thermal <strong>Fast</strong> Thermal <strong>Fast</strong> Thermal <strong>Fast</strong><br />

σ f (barn) 582 1.81 743 1.76 531 2.79<br />

σ c (barn) 101 0.52 270 0.46 46 0.33<br />

α=σ c /σ f 0.17 0.29 0.36 0.26 0.09 0.12<br />

ν 2.42 2.43 2.87 2.94 2.49 2.53<br />

η=νσ f /σ a<br />

Neutron Multiplicity<br />

2.07 1.88 2.11 2.33 2.29 2.27<br />

β eff (pcm) 650 210 280<br />

Breeding Requires η = ν<br />

1 + α > 2<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong> <strong>Metal</strong>s:<br />

Status And Perspectives, Pisa, Italy 17-20 April 2012 4


… and Minor Actinides Utilization Potential<br />

Isotope<br />

Thermal<br />

α = σ c / σ f<br />

<strong>Fast</strong><br />

235<br />

U 0.22 0.29<br />

238 U 8.3 7.5<br />

239<br />

Pu 0.58 0.3<br />

240<br />

Pu 396.6 1.6<br />

241<br />

Pu 0.40 0.19<br />

242<br />

Pu 65.5 1.8<br />

237<br />

Np 63 5.3<br />

241<br />

Am 100 7.4<br />

243 Am 111 8.6<br />

244<br />

Cm 16 1.4<br />

245<br />

Cm 0.15 0.18<br />

α = σ c<br />

σ f<br />

is more favorable to minor actinides<br />

fission in the fast spectrum.<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong> <strong>Metal</strong>s:<br />

Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

5


<strong>Fast</strong> <strong>Reactors</strong> (FRs) Offer Great Potential<br />

Increased uranium utilization<br />

– High fission neutron yield per neutron absorbed in 239 Pu in a fast<br />

spectrum<br />

– At 2–3% fuel cycle losses and 100–200 GWd/t burnup it is possible to<br />

fission more than 80% of the natural uranium resources<br />

– FR thermal efficiency ~ 0.4 (~ 0.3 for a thermal reactor)<br />

amount of energy that can be recovered per unit uranium mass is<br />

greater<br />

Higher nuclear power growth rates with available resources<br />

thanks to fissile material breeding<br />

– Advanced denser fuels (carbide, nitride and metal) have higher<br />

breeding potential compared to oxide fuels, allowing even higher<br />

nuclear power growth rates<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong> <strong>Metal</strong>s:<br />

Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

6


FRs Offer Great Potential (cont’d)<br />

Utilization of used fuel and reduction of waste<br />

– Long-lived minor actinides ( 237 Np, 241 Am, 242 Am, 243 Am and 244 Cm), posing<br />

radiological hazard in the repository, are produced in thermal reactors since<br />

Σ cap ˃ Σ fiss<br />

– MA are produced at a lower rate in FRs, due to smaller Σ cap /Σ fiss , and even<br />

utilized through fission<br />

In FRs, even with multiple recycle, the Pu isotopic composition can be<br />

maintained at a nearly constant value<br />

Potential for thorium fuel cycle 233 U breeding with low 232 U content<br />

– 232 U contamination (strong source of γ radiation) in a thorium-fuelled thermal<br />

reactor: 2000 - 4000 ppm, vs. 500 -1000 ppm in FR<br />

Utilization of fission products and other radioactive isotopes<br />

– Production of fission products having commercial value in the FR cycle, e.g.<br />

137<br />

Cs (~31% of total Cs yield); 90 Sr (~60% of total Sr yield; Pd (produced nearly<br />

free of radioactive contamination); Rh and Ru (both radioactive but decaying to<br />

acceptable levels within a few years); 212 Pb; 212 Bi; 223 Ra; 227 Ac<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 7


<strong>Fast</strong> Reactor Coolants<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 8


Conclusion<br />

Sustainability<br />

and breeding<br />

recycle used fuel utilization<br />

fast reactor indispensable<br />

For long-term sustainable nuclear power closed fuel cycle<br />

with fast reactors will constitute the main nuclear energy<br />

system<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 9


WORLDWIDE CLOSE TO 400 FR-YEARS CUMULATED OPERATION<br />

China<br />

– CEFR (23 MWe) July 2010<br />

India<br />

– FBTR (13 MWe) 1985<br />

– PFBR (500 MWe) 2011/12<br />

Japan<br />

– Joyo (140 MWth) 1977<br />

– Monju (280 MWe) 1994,<br />

May 2010<br />

Russia (USSR)<br />

– BR10 (8 MWth) 1958 – 2003<br />

– BOR60 (12 MWe) 1968<br />

– BN350 (130 MWe) 1972 – 99<br />

– BN600 (600 MWe) 1980<br />

– BN800 (870 MWe) ~2013<br />

EU (D, F, UK)<br />

– Rapsodie (40 MWth) 1967 – 83<br />

USA<br />

– DFR (15 MWe) 1959 – 77<br />

– KNK-II (20 MWe) 1972 – 91<br />

– Phénix (250 MWe) 1973 – 2010<br />

– PFR (250 MWe) 1974 – 94<br />

– SNR300 (300 MWe) not started<br />

– Superphénix (1200 MWe) 1986 – 98<br />

– EFR Proj. (1580 MWe), cancelled 98<br />

– EBR-I (a few 100s We) 1951 – 64<br />

– EBR-II (20 MWe) 1961 – 1998<br />

– FFTF (400 MWth) 1980 – 1996<br />

– CRBR Proj.(380 MWe), cancelled 83<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong> <strong>Metal</strong>s:<br />

Status And Perspectives, Pisa, Italy 17-20 April 2012 10


Phénix<br />

2010 shut down > 35 yrs<br />

Technology demonstrator<br />

and R&D support<br />

1999 – 2002 plant<br />

renovations and safety<br />

upgrades 720 EFPD<br />

lifetime extension to support<br />

French long-lived radioactive<br />

waste management<br />

programme<br />

2003 – 2009 satisfactory/better than satisfactory operation broke<br />

own grid connection time in 2007, operating cycle length, & electrical<br />

production run without shutdown records<br />

2009 – 2010 end-of-life tests at low and zero power (core physics,<br />

thermal hydraulics, fuel issues, investigations of the 1989/1990 negative<br />

reactivity transients) V&V&Q of FR data, codes, methodologies<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 11


Superphénix<br />

7 Sep 1985 first criticality<br />

14 Jan 1986 first grid connection<br />

Storage drum sodium leak, first reactor shutdown period May 1987 –<br />

January 1989<br />

Air intake in argon circuit causing primary sodium oxidation beyond<br />

allowable limits, second reactor shutdown period July 1990 – July 1994<br />

20 April 1998 shutdown by government order<br />

8.3 TW el ×h produced<br />

53 months of normal operation (disregarding unplanned outages due to<br />

incidents)<br />

– 8 months start-up tests<br />

– 34 months of power production<br />

– 11 months of planned outages for refuelling, in-service inspection<br />

and maintenance<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 12


Superphénix, cont’d<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 13


FBTR<br />

In operation since Oct 1985 over 330 GWh (th)/10 GWh (el)<br />

Efforts to attain design thermal power target (40 MW for original MOX<br />

fuelled core) P th increased from 11 MW [initial (Pu-U)C core<br />

rating] to 19 MW [(Pu-U)C with lower Pu/U]<br />

165 GWd/t Mark I fuel peak BU, no failure<br />

Several system upgrades and modifications additional 12 full<br />

power years expected<br />

FBTR’s mission<br />

– Irradiation tests for Indian Pressurized Heavy Water <strong>Reactors</strong><br />

(PHWRs) and Prototype <strong>Fast</strong> Breeder Reactor (PFBR)<br />

– Physics and engineering experiments V&V&Q of FR data, codes,<br />

methodologies<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

14


Joyo<br />

2006 ANS Nuclear Historic Landmark Award"<br />

30 th anniversary on 24 April 2007<br />

Joyo’s mission sodium cooled FR development various<br />

irradiation tests and PIE successfully conducted<br />

During 15 th periodical inspection (2007) obstacle found in the in-vessel<br />

storage rack<br />

Restoration works:<br />

– Replacement of upper core structure<br />

– Retrieval of irradiation test device<br />

“MARICO-2” Development of<br />

sodium cooled FR in-vessel<br />

inspection and repair techniques<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 15


MONJU<br />

First criticality April 1994<br />

8 December 1995<br />

sodium-leak incident in<br />

the sec. coolant system,<br />

shutdown<br />

8 May 2010 restart after<br />

more than 14 yrs and<br />

comprehensive reviews of<br />

the validity of fast breeder<br />

reactor development in<br />

Japan<br />

-Verification of entire plant safety and soundness<br />

-Plant modification work against sodium leakage<br />

-Improvement of the anti-seismic margins<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 16


BOR-60<br />

1968: start of operation<br />

2009: second lifetime extension till 2014<br />

Small number of unscheduled shutdowns (1 -2 events per year)<br />

Bor-60 experimental and power reactor<br />

– Fuel and material irradiation tests<br />

– Safety, I&C, and sodium technology experimental programs<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong> <strong>Metal</strong>s:<br />

Status And Perspectives, Pisa, Italy 17-20 April 2012 17


BN-350<br />

750 MW th (200 MW el ) and water desalination<br />

First criticality 29 November 1972<br />

Power operation 16 July 1973<br />

Initially, derated operation (design thermal rating 1000 MW) due to<br />

unsatisfactory operation of the steam generators<br />

Excessive heat rating of the fuel rods and considerable shape variation<br />

of core structural components core modernization & new<br />

structural materials solved problems<br />

Availability of stand-by components (six loops) & ability to operate with<br />

3-5 loops ensured stable operation of the plant repair and<br />

replacement work on steam generators carried out without shutting<br />

down the reactor<br />

Shutdown June 1994<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 18


BN-600<br />

26 February 1980 first criticality<br />

8 April 1980 grid connection<br />

December 1981 full power (600 MW el )<br />

As of 31 December 2009<br />

– Power operation exceeded 206,000 hrs<br />

– Over 112.5 TW el ×h produced<br />

Lifetime extended to 31 March 2020<br />

>30 years successful operation<br />

Sodium cooled FR technology attained industrial maturity<br />

Replacement and repair of sodium components, including pumps and<br />

steam generators mastered<br />

Once personnel is trained to master specific features of sodium<br />

technology, these features have no significant influence on safety and<br />

operational parameters of the power plant<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong> <strong>Metal</strong>s:<br />

Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

19


EBR-II<br />

November 1963 first criticality<br />

August 1964 grid connection<br />

Demonstration sodium cooled FR power plant (62.5 MW th / 19 MW el )<br />

Demonstrate closed fuel cycle for U alloy fuel<br />

Fuels and materials irradiation tests<br />

Safety experiments (decay heat removal, operation in transient<br />

overpower conditions, and run-beyond-cladding-breach modes)<br />

Integral <strong>Fast</strong> Reactor (IFR) test bed (U-Pu alloy fuel) 1984 – 1994<br />

Actinide irradiation tests of actinide burning<br />

Shutdown 1994 due to the termination of the DOE FR development<br />

program<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 20


FFTF<br />

Sodium cooled loop-type experimental FR (400 MW th ) to develop and<br />

test advanced fuels and materials<br />

First criticality 9 February 1980<br />

Full power operation 21 December 1980<br />

Operated safely and successfully as an irradiation facility till late<br />

1992<br />

Driver assemblies routinely reached peak burnups of 90 – 100<br />

000 MWd/t with only one fuel failure out of ~40 000 fuel pins<br />

1987 – 1992 core demonstration test (6 blanket and 10 driver<br />

assemblies), cladding and wrapper made from low-swelling alloy HT-<br />

9, 238 000 MWd/t peak burnups without failure<br />

Endurance tests to obtain cladding breaches: pins easily identified<br />

(using EBR-II gas-tag method)<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong> <strong>Metal</strong>s:<br />

Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

21


FFTF, cont’d<br />

Plant tests to study passive safety characteristics of oxide-fuelled sodium<br />

cooled FR (static and dynamic tests over a broad range of power, flow<br />

and temperature conditions, including demonstration of stable operation<br />

at low power under natural circulation cooling conditions)<br />

Development and testing of passive safety enhancement device GEM<br />

(gas expansion module) to offset the excess reactivity in ULOF<br />

conditions<br />

GEM effectiveness demonstrated: primary pumps stopped at 50% power<br />

(200 MWt) normal control-rod scram response disabled GEMs<br />

and inherent core reactivity feedback effects took the reactor sub-critical<br />

with only a short 85°C rise in sodium outlet temperature<br />

Primary & secondary pumps operated for over 200’000 hrs, no major<br />

maintenance required<br />

IHX thermal performance unchanged from initial values<br />

Electromagnetic pumps required little maintenance except for one that<br />

developed a pin-hole leak (flow tube deformation due to sodium<br />

freeze/thaw cycles & cavitation/erosion at high sodium flow; promptly &<br />

easily replaced<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 22


PFR<br />

250 MW el (600 MW th ), sodium cooled, MOX fuelled, stainless steel<br />

clads, mechanical centrifugal pumps, highly-rated tube-in-shell SGs<br />

3 March 1974 first criticality<br />

31 March 1994 final shutdown<br />

Operating history of PFR conveniently divided into two decades:<br />

- 1974 – 1984: electrical output limited, mainly because of a series of<br />

leaks in the tube-to-tubeplate welds of the SGs (12% highest load<br />

factor in 1978)<br />

- 1984 – 1994: SG weld problems solved, plant performance<br />

improvement (56.5% load factor in the final year of operation); 18-<br />

month outage in 1991/92 due to oil leakage from a primary pump<br />

bearing into primary sodium<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong> <strong>Metal</strong>s:<br />

Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

23


Looking Ahead: <strong>Fast</strong> Reactor R&D&D<br />

Renewed interest in nuclear energy (?)<br />

Sustainability ⇒ spent fuel utilization and breeding returning to centre stage<br />

⇒ fast reactor necessary linchpin<br />

<strong>Fast</strong> reactor deployment likely to be accelerated<br />

– Restart in May 2010 of the industrial prototype Monju (Japan)<br />

– Commissioning, at the time horizon 2011 – 2023, of power fast reactors<br />

in India (7 PFBRs, 3.5 GWe total capacity)<br />

– SVBR-100 (Pb-Bi cooled) commissioning planned ~2023 (joint venture<br />

between Rosatom and RUSAL)<br />

– Planned construction ~2020 of the prototype fast reactor ASTRID<br />

(France)<br />

– Construction projects in China, India, Russia, Japan and the Republic of<br />

Korea<br />

Experimental fast reactor construction projects<br />

– Belgian government approval for MYRRHA construction<br />

– Construction of MBIR replacing BOR-60 in Dimitrovgrad<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

24


First Criticality of China’s 25 Mwe Experimental<br />

<strong>Fast</strong> Reactor (CEFR) 26 July 2010<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong> <strong>Metal</strong>s:<br />

Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

25


PFBR, Kalpakkam: Erection of Vessels<br />

Safety vessel into reactor vault<br />

Main vessel into safety vessel<br />

Inner vessel into main vessel<br />

Handling of SV by heavy duty crane<br />

Grid plate into main vessel<br />

Thermal baffle into main vessel<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 26


PFBR, Kalpakkam: Erection of Roof Slab<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 27


Russia’s BN-800, Beloyarsk Site, Sept 2008<br />

Commissioning Planned ~2013<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 28


Requirements for Next (Advanced)<br />

LMFR Prototype (e.g. ASTRID)<br />

Sustainability<br />

– Efficient uranium utilization (closed fuel cycle)<br />

– Improve ultimate radioactive waste form (decay heat, radiotoxic inventory…)<br />

– Enhanced non-proliferation<br />

Robust safety demonstration matching at least Gen III safety criteria<br />

– Enhanced prevention of severe core damage<br />

– Practical exclusion of large energy release in hypothetical core meltdown<br />

– Contain the risk due to sodium’s chemical reactivity<br />

– Robustness to external hazards<br />

Economic competitiveness<br />

– Reduction of capital cost and investment risk to about Gen III level<br />

– Improved plant operability (ISI&R, target of 90% availability, …)<br />

– Long lifetime (60 years)<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

29


NEW GENERATION OF SFR<br />

ASTRID (~2020)<br />

– 600 MWe<br />

– Test-bed for innovation<br />

(systems, technologies)<br />

– Capability for materials<br />

and fuel testing<br />

– Advanced recycle modes<br />

demonstrations<br />

(U/Pu, MA)<br />

– Improved U utilization<br />

– Improved waste form<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong> <strong>Metal</strong>s:<br />

Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

30


GEN IV SFR: JAEA SODIUM COOLED FAST<br />

REACTOR (JSFR)<br />

Power<br />

Parameter<br />

Specifications<br />

3570 MWt / 1500 MWe<br />

Number of loops 2<br />

Primary sodium outlet<br />

temperature and flow rate<br />

550 / 395 °C<br />

3.24 x 10 7 kg/h/loop<br />

Secondary<br />

pump<br />

SG<br />

Secondary sodium<br />

temperature and flow rate<br />

Main steam temperature<br />

and pressure<br />

Feed water temperature<br />

and flow rate<br />

520 / 335 ° C<br />

2.70 x 10 7 kg/h/loop<br />

497 °C<br />

19.2 MPa<br />

240 °C<br />

5.77 x 10 6 kg/h<br />

Plant efficiency ~42%<br />

Fuel type<br />

TRU-MOX<br />

Breeding ratio Break even (1.03), 1.1, 1.2<br />

Cycle length<br />

26 months or less, 4 batches<br />

Integrated<br />

Pump-IHX<br />

Reactor Vessel<br />

Reactor Core<br />

Courtesy H. Negishi, JAEA<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 31


GEN IV SFRs: Small (SMFR) and<br />

Medium Size (KALIMER)<br />

SMFR<br />

KALIMER<br />

AHX<br />

Chimney<br />

PDRC<br />

piping<br />

IHTS<br />

piping<br />

Steam<br />

Generator<br />

IHX<br />

DHX<br />

PHTS<br />

pump<br />

Reactor<br />

core<br />

IHTS<br />

pump<br />

Source: Dohee Hahn, KAERI<br />

In-vessel core<br />

catcher<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 32


GEN IV SFR Design Data<br />

Design Parameters JSFR KALIMER SMFR<br />

Power Rating, MWe 1,500 600 50<br />

Thermal Power, MWth 3,570 1,525 125<br />

Plant Efficiency, % 42 42 ~38<br />

Core outlet coolant temperature, o C 550 545 ~510<br />

Core inlet coolant temperature, o C 395 370 ~355<br />

Main steam temperature, o C 503 495 480<br />

Main steam Pressure, MPa 16.7 16.5 20<br />

Cycle length, years 1.5-2.2 1.5 30<br />

Fuel reload batch, batches 4 4 1<br />

Core Diameter, m 5.1 3.5 1.75<br />

Core Height, m 1.0 0.9 1.0<br />

Fuel Type<br />

MOX<br />

(TRU bearing)<br />

<strong>Metal</strong><br />

(U-TRU-10%Zr<br />

Alloy)<br />

<strong>Metal</strong><br />

(U-TRU-<br />

10%Zr Alloy)<br />

Cladding Material ODS HT9M HT9<br />

Pu enrichment (Pu/HM), % 13.8 14.9 15.0<br />

Burn-up, GWd/t 150 79 ~87<br />

Breeding ratio 1.0–1.2 1.0 1.0<br />

Source: Dohee Hahn, KAERI<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

33


GEN IV LFR Reactor Concepts<br />

SSTAR (10 – 100 MWe) ELSY (600 MWe)<br />

CLOSURE HEAD<br />

CO2 OUTLET NOZZLE<br />

(1 OF 8)<br />

CO 2 INLET NOZZLE<br />

(1 OF 4)<br />

Pb-TO-CO 2 HEAT<br />

EXCHANGER (1 OF 4)<br />

CONTROL<br />

ROD<br />

DRIVES<br />

CONTROL<br />

ROD GUIDE<br />

TUBES AND<br />

DRIVELINES<br />

THERMAL<br />

BAFFLE<br />

FLOW SHROUD<br />

RADIAL REFLECTOR<br />

ACTIVE CORE AND<br />

FISSION GAS PLENUM<br />

FLOW DISTRIBUTOR<br />

HEAD<br />

GUARD<br />

VESSEL<br />

REACTOR<br />

VESSEL<br />

Source: A. Alemberti, AnsaldoNucleare<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

34


MYRRHA - Accelerator Driven System<br />

Accelerator<br />

(600 MeV - 4 mA proton)<br />

Reactor<br />

• Subcritical or Critical modes<br />

• 65 to 100 MWth<br />

Spallation Source<br />

Multipurpose<br />

Flexible<br />

Irradiation<br />

Facility<br />

Source: Hamid-Aït Abderrahim, SCK˃CEN<br />

<strong>Fast</strong><br />

Neutron<br />

Source<br />

Lead-Bismuth<br />

coolant<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 35


MYRRHA Reactor Layout<br />

Source: Hamid-Aït Abderrahim, SCK˃CEN<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012 36


MYRRHA Reactor Layout (Core)<br />

• k eff ≈0.95 (ADS mode)<br />

• 30-35 % MOX fuel<br />

• 7 In-Pile Section (IPS)<br />

positions<br />

Spallation window<br />

IPS<br />

Source: Hamid-Aït Abderrahim, SCK˃CEN<br />

Fuel Assemblies<br />

International Workshop on Innovative Nuclear <strong>Reactors</strong> <strong>Cooled</strong> by Heavy <strong>Liquid</strong><br />

<strong>Metal</strong>s: Status And Perspectives, Pisa, Italy 17-20 April 2012<br />

37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!