01.07.2015 Views

PHOTOVOLTAIC TECHNOLOGIES (ET4377): INSTRUCTION 2 ...

PHOTOVOLTAIC TECHNOLOGIES (ET4377): INSTRUCTION 2 ...

PHOTOVOLTAIC TECHNOLOGIES (ET4377): INSTRUCTION 2 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>PHOTOVOLTAIC</strong> <strong>TECHNOLOGIES</strong> (<strong>ET4377</strong>): <strong>INSTRUCTION</strong> 2<br />

LIGHT MANAGEMENT<br />

Question 1:<br />

Solar simulator spectra and External Quantum Efficiency<br />

P() (10 9 Wm -2 m -1 )<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

< 800 nm P()=4x10 15 1.2x10 9 [Wm -2 m -1 ]<br />

> 800 nm P()=5.2x10 9 -4x10 15 [Wm -2 m -1 ]<br />

0.0<br />

200 400 600 800 1000 1200 1400<br />

EQE<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

200 400 600 800 1000 1200 1400<br />

Wavelength (x10 -9 m)<br />

Wavelength (x10 -9 m)<br />

Figure 1. Figure 2<br />

The spectral power density of the solar simulator as a The external quantum efficiency of solar cell<br />

function of the wavelength.<br />

A as a function of the wavelength.<br />

Solar simulators are used to study the performance of solar cells in the lab. A solar<br />

simulator is a lamp which has to simulate the solar spectrum under standard test<br />

conditions (STC). In figure 1, the spectral power density of a solar simulator is shown.<br />

The spectral power density of this solar simulator is given by:<br />

300nm 800nm<br />

800nm 1300nm<br />

P( )<br />

4<br />

10<br />

15<br />

P( )<br />

5.2<br />

10<br />

1.2<br />

10<br />

9<br />

4 10<br />

15<br />

9<br />

<br />

[Wm<br />

[Wm<br />

2<br />

2<br />

m<br />

m<br />

1<br />

1<br />

]<br />

]<br />

Where the wavelength is expressed in meters.<br />

a) What are the standard test conditions (STC) under which the nominal<br />

performance of solar cells are measured?<br />

b) Calculate the irradiance I of the solar simulator. What are the difference(s)<br />

between the spectrum of the solar simulator and the standard test conditions?<br />

c) What is the photon flux of the solar simulator?<br />

In figure 2, the external quantum efficiency (EQE) as a function of the wavelength of<br />

solar cell A under short circuited (V= 0 V) condition is presented.<br />

d) What is the band gap in eV of the absorber layer of the solar cell A?<br />

e) Calculate the short circuit current density J SC in mA·cm -2 if the solar cell is<br />

measured under the solar simulator.<br />

f) Solar cell B has a different absorber layer in reference to solar cell A. Above the<br />

band gap solar cell B has an EQE=0.70 and remains constant. Solar cell B has a


<strong>PHOTOVOLTAIC</strong> <strong>TECHNOLOGIES</strong> (<strong>ET4377</strong>): <strong>INSTRUCTION</strong> 2<br />

LIGHT MANAGEMENT<br />

J SC = 17.8 mA·cm -2 under the solar simulator shown in Figure 1. What is the band<br />

gap of this material?<br />

Question 2:<br />

The Rayleigh film<br />

Figure 3<br />

a) Consider the interface between two media with refractive index n=a and n=b<br />

(Figure 3b). What are the Fresnel coefficients R and T expressed in a and b for<br />

irradiance for light with an incident angle of i =0 (perpendicular)?<br />

b) Consider the situation in Fig. 3b. A third medium with refractive index n = x is<br />

placed between the other two media. What are the effective Fresnel coefficients R<br />

and T expressed in a, b and x for irradiance for light with an incident angle of<br />

i =0 (perpendicular)?<br />

c) Proof that the minimum reflection and maximum transmission is obtained for<br />

x ab . Hint: use the function T(x) derived at question 2b. (Which conditions<br />

should be valid to have a maximum for T(x)?)<br />

Question 3:<br />

The AR coating.<br />

Figure 4


<strong>PHOTOVOLTAIC</strong> <strong>TECHNOLOGIES</strong> (<strong>ET4377</strong>): <strong>INSTRUCTION</strong> 2<br />

LIGHT MANAGEMENT<br />

In Figure 4 the light beam traveling in the z-direction is shown. The interface between<br />

media 1 and 2 is positioned at z=0. The interface between media 2 and 3 is positioned at<br />

z=d. The Fresnel coefficients at the interfaces are t 12 , r 12 , t 23 and r 12 . A light beam<br />

described by:<br />

Ei<br />

(z) E0<br />

cos( t<br />

kz) z 0<br />

is traveling in the z-direction and is incident on the interface at z=0.<br />

a) Give the expression E R<br />

(z a)<br />

for the reflected light beam at z=-a.<br />

b) Give the expression E T<br />

(z b)<br />

for the transmitted light beam at z=b.<br />

c) For which optical thickness is (z a)<br />

minimized?<br />

E R<br />

Question 4: The critical angle<br />

glass<br />

glass<br />

glass<br />

TCO<br />

TCO<br />

TCO<br />

1<br />

•n-a-Si:H<br />

absorber<br />

2<br />

absorber<br />

3<br />

absorber<br />

back reflector<br />

back reflector<br />

back reflector<br />

Figure 5<br />

Consider the thin film silicon solar cells as depicted in Figure 5. The interfaces between<br />

the various layers are not textured but flat. The transparent conductive oxide layer is<br />

Aluminum-doped Zinc-oxide. The back reflector is a magic layer, which reflects all the<br />

light transmitted through the silicon absorber layer under a certain angle r back in to the<br />

cell. The refractive index for Si layer n Si =4.3, transparent conductive oxide n ZnO =1.86,<br />

n glass =1.51 and n Air =1.<br />

a) What is the minimum angle for the refraction at the r to have all light reflected<br />

and the Si-ZnO interface?<br />

b) What is the minimum angle for the refraction at the r to have all light reflected<br />

and the ZnO-glass interface?<br />

c) What is the minimum angle for the refraction at the r to have all light reflected<br />

and the glass-air interface?<br />

d) For which r angles does the light not escape the Si, ZnO and glass?


<strong>PHOTOVOLTAIC</strong> <strong>TECHNOLOGIES</strong> (<strong>ET4377</strong>): <strong>INSTRUCTION</strong> 2<br />

LIGHT MANAGEMENT<br />

Fresnel coefficient<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

r<br />

i<br />

2<br />

t<br />

1<br />

i<br />

2<br />

t<br />

1<br />

p<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

r<br />

t<br />

2<br />

i<br />

1<br />

t<br />

2<br />

i<br />

1<br />

S<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

t<br />

2<br />

i<br />

1<br />

t<br />

2<br />

i<br />

1<br />

S<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

R<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

i<br />

2<br />

t<br />

1<br />

i<br />

2<br />

t<br />

1<br />

p<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

)<br />

cos(<br />

n<br />

R<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

2<br />

1<br />

2<br />

1<br />

p<br />

o<br />

i<br />

n<br />

n<br />

n<br />

n<br />

R<br />

0<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

2<br />

1<br />

2<br />

1<br />

p<br />

n<br />

n<br />

n<br />

4n<br />

T<br />

<br />

<br />

)<br />

n<br />

n<br />

arcsin(<br />

1<br />

2<br />

,critic<br />

i <br />

Snell’s law:<br />

r<br />

i<br />

t<br />

2<br />

i<br />

1 sin<br />

)<br />

(<br />

n<br />

)sin<br />

(<br />

n<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Irradiance, photon flux and short current density<br />

<br />

<br />

<br />

d<br />

)<br />

P(<br />

I<br />

hc<br />

)<br />

P(<br />

)<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

0<br />

d<br />

hc<br />

)<br />

P(<br />

)d<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

0<br />

SC<br />

d<br />

)<br />

EQE(<br />

hc<br />

)<br />

P(<br />

q<br />

)d<br />

)EQE(<br />

(<br />

q<br />

0 V)<br />

(V<br />

J

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!