05.07.2015 Views

Development and Case Study - IPEC

Development and Case Study - IPEC

Development and Case Study - IPEC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Long Term Monitoring Using<br />

Evolutionary Multiobjective<br />

Optimization<br />

Dennis D. Beckmann, P.E.<br />

<strong>IPEC</strong><br />

October 13, 2004


Authors<br />

• Barbara Minsker, , National Center for<br />

Supercomputing Applications at the<br />

University of Illinois<br />

• Peter Grove, Moire, , Inc.<br />

• Jon Greetis, , Delta Environmental<br />

• Megna Babbar, , UIUC<br />

• Dennis Beckmann, Atlantic Richfield/BP


Agenda<br />

• Introduction<br />

• Background on method<br />

• <strong>Case</strong> <strong>Study</strong> 1 – Michigan site<br />

• Detailed analysis<br />

• <strong>Case</strong> <strong>Study</strong> 2 – New Jersey site<br />

• Brief discussion<br />

• Conclusions


Perspective/Objective<br />

• Environmental business grew up with many rule<br />

of thumb approaches.<br />

• Now becoming more quantitative <strong>and</strong> sophisticated<br />

• Difference between delineation <strong>and</strong> monitoring<br />

• Likely have some redundancy in the data<br />

• Cost of monitoring is very significant<br />

• Waste money collecting redundant data<br />

• Optimize monitoring in a sound manner<br />

• Considering both science <strong>and</strong> math<br />

• Eliminate data redundancies


Background<br />

• What’s important here?<br />

• Statistical approach<br />

• Use of Genetic Algorithm<br />

• Optimize among several variables


LTM Optimization Process<br />

1 2 3<br />

Define objectives<br />

<strong>and</strong> constraints<br />

Create interpolation<br />

model<br />

Create population<br />

of monitoring<br />

desgns<br />

4<br />

Evaluate design using objectives <strong>and</strong><br />

constraints<br />

5<br />

Repeat until<br />

convergence to<br />

optimal solution<br />

Apply Genetic Algorithm operations<br />

to create new population


Optimization Process<br />

• Use genetic algorithms to search for monitoring<br />

designs that best meet the objective functions<br />

<strong>and</strong> constraints<br />

• When more than one objective exists, find optimal<br />

tradeoffs among objectives (e.g., cost vs. errors)<br />

• Optimization process was implemented in Multi-<br />

objective Long Term Monitoring Optimizer<br />

Software (M-LTMO) developed at University of<br />

Illinois <strong>and</strong> Moire<br />

• Automated interpolation model fitting <strong>and</strong> selection<br />

• Multiobjective optimization to find monitoring designs<br />

that best meet objectives


Objectives <strong>and</strong> Constraints<br />

• Identify Decision Variables<br />

Is each well sampled or not?<br />

Optimization problem is to identify which wells are “in”<br />

2 x possible sampling plans:<br />

for 36 wells that is 7x10 10 different plans<br />

• Identify Objective Functions<br />

• Minimize cost: here, that is the just the number of wells<br />

• Minimize the maximum error between actual concentrations <strong>and</strong><br />

those estimated with the subset of wells being considered<br />

• Identify Constraints<br />

• None in this formulation


Error Objective Functions<br />

• Error objective for benzene<br />

• 5 ppb maximum acceptable error<br />

• Error objective for BTEX<br />

• 100 ppb maximum acceptable error<br />

• Locations for measuring error are important<br />

• At monitoring wells only<br />

• Don’t measure error at grid nodes because no data<br />

support (actual values), only modeled values


Interpolation Modeling Process<br />

• Identify key contaminants of concern<br />

• Create spatial grid for interpolating COC<br />

concentrations<br />

• Fit interpolation models<br />

• Such as ordinary kriging, quantile kriging,<br />

inverse distance weighting, etc.<br />

• Test interpolation model fit <strong>and</strong> choose<br />

model with best performance<br />

• Quantile kriging performed best


Interpolation Model Evaluation<br />

• Use cross validation<br />

• Eliminate one well from network<br />

• Interpolate concentration at well using data<br />

from other wells<br />

• Compare actual vs interpolated concentration<br />

• If the error is small, then well is redundant<br />

• Repeat for all wells


<strong>Case</strong> <strong>Study</strong> 1 - Michigan<br />

• Remedial Actions began in 1987 when a leaking pipeline<br />

gasket was discovered<br />

• Catastrophic Release - estimates of the volume released<br />

are in the range of 350K gallons<br />

• 14 years of monitoring data support plume stability<br />

• BTEX concentrations reduced 80-80%<br />

80%<br />

Remediation History<br />

No LNAPL observed after 1993<br />

Groundwater Treatment / Product Skimming * 118,000 gals of LNAPL recovered<br />

No LNAPL observed after 1993<br />

Air Sparging<br />

Groundwater Treatment / Product Skimming * 118,000 gals of LNAPL recovered<br />

Air Sparging<br />

MNA<br />

MNA<br />

1987 1989 1991 1993 1995 1997 1999 2001 2003


LTM Scenario / Drivers<br />

• 36 wells currently being monitored<br />

• 30 years of Post Closure Monitoring<br />

required<br />

• Optimization can be used to identify<br />

redundant data points<br />

• There is a cost penalty for collecting<br />

redundant data<br />

• Spatial <strong>and</strong> temporal analyses are possible<br />

• Only spatial redundancy addressed at this site


N<br />

26<br />

<br />

MW-63<br />

25<br />

<br />

MW-60<br />

36<br />

MW-82D<br />

MW-61<br />

27<br />

<br />

MW-74<br />

24<br />

<br />

<br />

MW-51<br />

MW-75D<br />

35<br />

<br />

MW-81<br />

21<br />

<br />

MW-54<br />

20<br />

MW-53<br />

19<br />

28<br />

18<br />

<br />

MW-49<br />

17<br />

<br />

MW-48<br />

16<br />

<br />

MW-46<br />

<br />

<br />

MW-44<br />

23<br />

15<br />

MW-56<br />

34<br />

<br />

MW-80<br />

12<br />

<br />

MW-41<br />

<br />

7<br />

<br />

MW-28B<br />

MW-28A<br />

6<br />

8<br />

MW-27<br />

22<br />

<br />

MW-55<br />

9<br />

<br />

MW-31<br />

<br />

<br />

<br />

MW-42<br />

<br />

MW-19<br />

4<br />

MW-21<br />

11<br />

13<br />

MW-36<br />

3<br />

5<br />

<br />

MW-25<br />

2<br />

<br />

MW-16B<br />

14<br />

<br />

MW-43<br />

10<br />

<br />

MW-34<br />

29<br />

<br />

33 MW-76 30<br />

31<br />

<br />

<br />

32<br />

MW-79<br />

<br />

MW-77<br />

MW-78A<br />

MW-78B 1<br />

<br />

MW-12A<br />

Legend:<br />

<br />

Current Monitoring Network - 7-Jan-04<br />

14 Interpolation ID<br />

MW-21<br />

Monitoring Well ID<br />

0 100 200 Feet<br />

Site Map<br />

Date:<br />

16 Jan 2004


• Of the 36 wells, the following numbers of wells were<br />

predicted sufficiently accurately during cross-validation:<br />

• Benzene: 17 (within 5 ppb)<br />

• Toluene: 32 (within 100 ppb)<br />

• EthylBenzene: : 28 (within 100 ppb)<br />

• Xylene: 23 (within 100 ppb)<br />

• BTEX: 19 (within 100 ppb)<br />

• Benzene performs quite well, but has a much stricter<br />

acceptability threshold.<br />

• Summing the predictions of the components of BTEX<br />

gives a small boost in accuracy over predicting it directly.


Cross Validation Results of BTEX<br />

(summed from constituents)<br />

Summed BTEX Error<br />

Zoomed In<br />

200<br />

150<br />

Summed BTEX Error (ppb)<br />

100<br />

50<br />

0<br />

36<br />

-50<br />

-100<br />

22<br />

13<br />

25<br />

30<br />

29<br />

1<br />

26<br />

20<br />

15<br />

23<br />

9<br />

3<br />

10<br />

18<br />

7<br />

2500<br />

31<br />

12<br />

Summed BTEX Error<br />

Zoomed Out<br />

-150<br />

2000<br />

-200<br />

Interpolation ID<br />

Interpolation ID (Well ID) sorted by<br />

true concentration<br />

Summed BTEX Error (ppb)<br />

1500<br />

1000<br />

500<br />

0<br />

36<br />

22<br />

13<br />

25<br />

30<br />

29<br />

-500<br />

-1000<br />

1<br />

26<br />

20<br />

15<br />

23<br />

Interpolation ID<br />

9<br />

3<br />

10<br />

18<br />

7<br />

31<br />

12


Optimal Tradeoffs Between Errors<br />

& Sampling Levels<br />

Max Benzene Error (ppb)<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

24 26 28 30 32 34 36<br />

Number of Wells Sampled<br />

Benzene<br />

BTEX<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Max BTEX Error (ppb)


Benzene Concentrations for 30<br />

Well Design<br />

30-Well Predictions<br />

All-Well Predictions<br />

+ = locations that are not sampled<br />

O = locations that are sampled


BTEX Concentrations for 30 Well<br />

Design<br />

30-Well Predictions<br />

All-Well Predictions<br />

+ = locations that are not sampled<br />

O = locations that are sampled


Benzene – 28 Well Design<br />

28-Well Predictions<br />

All-Well Predictions<br />

+ = locations that are not sampled<br />

O = locations that are sampled


BTEX – 28 Well Design<br />

28-Well Predictions<br />

All-Well Predictions<br />

+ = locations that are not sampled<br />

O = locations that are sampled


BTEX Cross Validation<br />

Comparisons<br />

2500<br />

Actual - Predicted (ppb)<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

-500<br />

-1000<br />

0<br />

All 36 Wells<br />

28-Well Design<br />

30-Well Design<br />

10<br />

13<br />

16<br />

21<br />

24<br />

26<br />

29<br />

34<br />

14<br />

22<br />

8<br />

2<br />

9<br />

17<br />

6<br />

30<br />

11<br />

Well ID


Optimization Findings<br />

• Found good predictions at all well locations<br />

using 28-30 wells<br />

• 17 to 22% reduction in sampling costs possible<br />

• 28-well solution has more difficulty interpolating<br />

correctly in the southeast corner, although this<br />

area is of much less concern than the leading<br />

edge of the plume<br />

• M-LTMO software is useful tool for identifying<br />

data redundancies<br />

• Further testing at a New Jersey terminal site with<br />

more wells is underway


<strong>Case</strong> <strong>Study</strong> 2 – New Jersey<br />

• Terminal Facility, now decommissioned<br />

• In the process of being completely removed<br />

• Located on the Delaware River<br />

• Multiple aquifer system<br />

• Only one aquifer considered in this analysis<br />

• You could say this was a PHD project…<br />

• (Push here, dummy)<br />

• That is, it was an automated optimization requiring<br />

no user knowledge of genetic algorithms or<br />

geostatistics…load the data, push the start button.


Interpolated Optimal 80 Well<br />

Solution for Benzene


Interpolated Optimal 66 Well<br />

Solution for Benzene


Conclusions<br />

• Have we approached any regulators with<br />

this technique?<br />

• Not yet…still in development<br />

• But…there appears to be a lot of interest,<br />

especially at the Federal level


• Contact info:<br />

Thank You<br />

Dennis D. Beckmann, P.E.<br />

Atlantic Richfield/ a BP Affilliate<br />

509 S. Boston, N 352<br />

Tulsa, OK 74103<br />

Phone 918.581.3048<br />

Email<br />

beckmadd@bp.com


References<br />

• ASCE Task Committee on the state of the Art in Long Term Groundwater Monitoring Design,<br />

Long Term Groundwater Monitoring: The State of the Art, , ed by Barbara Minsker, , American<br />

Society of Civil Engineers, 2003. Available at<br />

http://www.pubs.asce.org/bookdisplay.cgi?9991614<br />

• Deb, K. Multiobjective Optimization Using Evolutionary Algorithms, , John Wiley& Sons, Ltd., NY,<br />

2001.<br />

• Deb, K., A Fast <strong>and</strong> Elistist Multiobjective Genetic Algorithm: NSGA-II,<br />

IEEE Trans. Evol.<br />

Computation, , 6(2), 182-197, 197, 2002.<br />

• Goldberg, D.E., Genetic Algorithms in Search, Optimization & Machine Learning, , Addison Wesley,<br />

Reading, MA, 1989.<br />

• Goovaerts, , P., Geostatistics for Natural Resources Evaluation, , Oxford University Press, NY, 1997.<br />

• Holl<strong>and</strong>, J.H., Adaptation in Natural <strong>and</strong> Artificial Systems, , University of Michigan Press, 1975.<br />

• Kitanidis, , P.K., Introduction to Geostatistics: : Applications in Hydrogeology, , Cambridge University<br />

Press, NY, 1997.<br />

• Michael, W., Integrating Data Sources to Improve Long Term Monitoring <strong>and</strong> Management: agement: A<br />

hierarchical Machine Learning Approach, , M.S. Thesis, University of Illinois, 2002.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!