05.07.2015 Views

Case Studies Identify Induced Gas Flotation as BET - IPEC

Case Studies Identify Induced Gas Flotation as BET - IPEC

Case Studies Identify Induced Gas Flotation as BET - IPEC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Application of <strong>Flotation</strong><br />

In<br />

Produced & W<strong>as</strong>te Water Treatment<br />

<strong>IPEC</strong><br />

Houston 2007<br />

Shaya Movafaghian


OUTLINE:<br />

• Introduction<br />

• Evolution of <strong>Flotation</strong> Separation<br />

• Available <strong>Flotation</strong> Techniques<br />

• WEMCO flotation: History and Adaptation to offshore<br />

applications<br />

• WEMCO flotation: Offshore Performance and<br />

Operating Data


Evolution of <strong>G<strong>as</strong></strong> <strong>Flotation</strong><br />

DGF/IGF<br />

WEMCO<br />

•Oil, Petrochemical<br />

•Multiple stage enclosed tanks, vessels<br />

•Sparger, rotor, eductor, revival of<br />

dissolved g<strong>as</strong> pumps<br />

DAF/IAF/<strong>Flotation</strong><br />

Filters<br />

WEMCO<br />

•Paper, Mining, Food<br />

•Single/Multiple stage Tanks<br />

•Sparger, rotor, eductor<br />

DAF<br />

•Municipal, Potable, Sewage<br />

•Large open b<strong>as</strong>ins, ponds<br />

•Dissolved air pumps<br />

1900s<br />

1930s<br />

1960s<br />

1970s<br />

Today


Available <strong>Flotation</strong> Techniques<br />

Compressed<br />

Air<br />

Skim<br />

Compressed <strong>G<strong>as</strong></strong><br />

Source<br />

Influent<br />

Sludge<br />

Effluent<br />

Saturation-<br />

Retention Tank<br />

From<br />

Process or<br />

other source<br />

To Process Tank


Available <strong>Flotation</strong> Techniques<br />

• Dissolved Air/<strong>G<strong>as</strong></strong> floatation<br />

– Oldest technique<br />

– Lowest bubble size distribution (microbubble)<br />

– Developed for large residence time, zero-velocity process.<br />

– Full flow saturation, Split flow saturation, Partial Recycle<br />

– Typically single stage tank for Fisheries/Fruit/Food/Textile with slow<br />

settling floc.<br />

– Resurrected for oil field recently with 25-50% recycle @ 40-70 psig and<br />


BACKGROUND:<br />

WEMCO and Floatation<br />

• WEMCO h<strong>as</strong> been a leading supplier of g<strong>as</strong> floatation machines<br />

for mineral recovery since 1930s.<br />

• In mid 1960s WEMCO introduced the concept for self-induced<br />

g<strong>as</strong> floatation with first WEMCO (1+1) Depurator.<br />

• In 1969 first g<strong>as</strong> induced technique w<strong>as</strong> adopted for secondary<br />

treatment of produced and w<strong>as</strong>te water in petroleum industry in<br />

collaboration with Gulf Oil Co. (ChevronTexaco).<br />

• Today WEMCO Depurator h<strong>as</strong> become an integral part of any<br />

oil-water/w<strong>as</strong>te-water treatment benchmarking process.


BACKGROUND:<br />

Conventional Depurator


BACKGROUND:<br />

Conventional Depurator


THEORY:<br />

Kinetic Approach (Macro Scale)<br />

• Floatation Kinetic Analysis (FKA) for oil field applications:<br />

The most widely accepted kinetic model for IGF implies:<br />

1. Rate of removal is a pseudo-first-order equation.<br />

2. Rate of removal is a direct function of residence time.<br />

(Churchil et al; Degner et al; Chen et al.)<br />

dC<br />

ln<br />

dt<br />

⎡<br />

⎢<br />

⎣<br />

=<br />

C t<br />

C<br />

0<br />

⎤<br />

⎥<br />

⎦<br />

- KC<br />

= − Kt<br />

………..…...(1)<br />

………..…...(2)<br />

C: Contaminant Concentration<br />

t: Hydraulic residence time<br />

K: Kinetic rate constant (empirically derived)<br />

Co: Initial Concentration @ t = 0<br />

Ct: Concentration @ t


THEORY:<br />

Kinetic Valuation<br />

• Commutative Removal Efficiency:<br />

– Kinetic Model for the “n th ”Cell<br />

⎡ 1<br />

( ) ⎥ ⎤<br />

C.R.E = 100 × ⎢1<br />

−<br />

n<br />

⎣<br />

1 + Kt<br />

⎦<br />

• Determinants of C.R.E:<br />

– Residence time<br />

• Individual cell residence time (t)<br />

• Number of cells (n)<br />

– System Kinetic rate constant (K)<br />

• System chemistry<br />

• <strong>G<strong>as</strong></strong> transfer rate<br />

• Bubble size, population, distribution<br />

• Other (geometric and hydraulic)<br />

Others : Arnold’s m<strong>as</strong>s transfer model (1983)<br />

Cumulative Removal Efficiency [%]<br />

………..…...(3)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

n= 4<br />

n-CELL KINETIC ANALYSIS<br />

(kinetic rate cte.= 1.2)<br />

n= 3<br />

n= 2<br />

n= 1<br />

0<br />

0.00 0.50 1.00 1.50 2.00<br />

Cell Residence Time [min.]


CONVENTIONAL DESIGN:<br />

Kinetic rate verification


CYLINDRICAL DESIGN:<br />

4-Cell (3D)


CYLINDRICAL DESIGN:<br />

Dual-Cell (3D)


CYLINRICAL DESIGN:<br />

Standard Design Subcategories<br />

CYLINDRICAL DEPURATOR<br />

MOTION<br />

FIXED<br />

DUAL CELL<br />

TWO-CELL<br />

FOUR-CELL<br />

n_CELL<br />

5-DC<br />

5-2C<br />

5-4C<br />

Operation Envelope<br />

6-DC<br />

8-DC<br />

6-2C<br />

8-2C<br />

6-4C<br />

8-4C<br />

200000<br />

180000<br />

160000<br />

10-DC<br />

12-DC<br />

10-2C<br />

12-2C<br />

10-4C<br />

12-4C<br />

Rated Cap. [bwpd]<br />

140000<br />

120000<br />

100000<br />

80000<br />

60000<br />

40000<br />

20000<br />

0<br />

12-4C<br />

10-4CX<br />

10-4C<br />

12-2C/DC<br />

8-4C<br />

10-2C/DC<br />

6-4C<br />

8-2C/DC<br />

5-4C<br />

6-2C/DC<br />

5-2C/DC


Performance and Operation Data<br />

• Platform GS Mike Cabinda, Angola (2002-03)<br />

Division of Cooper Cameron Corp.


Gathering Station Mike<br />

Greater Tackula Area, Angola<br />

Courtesy of ChevronTexaco 2002 Supplement to the Annual Report


GS Mike, Cabinda Angola<br />

Pilot Cylindrical Depurator 13 MBWPD


GS Mike Test Results (July-August 2002)<br />

Process Parameters


GS Mike Test Results (July-August 2002)<br />

Four-Cell: Inlet Conditions<br />

Four-Cell Cylindrical Depurator Prototype<br />

Cabinda Angola Platform Gathering Station Mike<br />

20,000<br />

18,000<br />

16,000<br />

Flow<br />

Inlet Contaminant<br />

Outlet Contaminant<br />

250<br />

200<br />

Flowrate [bwpd]<br />

14,000<br />

12,000<br />

10,000<br />

8,000<br />

6,000<br />

150<br />

100<br />

Contaminant [ppm]<br />

4,000<br />

50<br />

2,000<br />

0<br />

0<br />

0 20 40 60 80 100<br />

Test No.


GS Mike Test Results (July-August 2002)<br />

Four-Cell: Efficiency<br />

Four-Cell Cylindrical Depurator Prototype<br />

Cabinda Angola Platform Gathering Station Mike<br />

Removal Efficiency [%]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Removal Efficiency<br />

0.4<br />

Predicted Removal Efficiency<br />

Residence Time<br />

0.2<br />

0.0<br />

0 20 40 60 80 100<br />

Test No.<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

Residence Time [min.]


GS Mike Test Results (July-August 2002) Four-<br />

Cell: Performance Evaluation<br />

Four-Cell Cylindrical Depurator Prototype<br />

Cabinda Angola Platform Gathering Station Mike<br />

(K= 1.2)<br />

105<br />

100<br />

Removal Efficiency [%]<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

Removal Efficiency<br />

Four-Cell Cylindrical Depurator Prototype<br />

Cabinda Angola Platform Gathering Station Mike<br />

(K= 1.2)<br />

65<br />

60<br />

Predicted Removal Efficiency<br />

0 20 40 60 80 100<br />

Test No.<br />

Calculated Removal Efficiency [%]<br />

100<br />

98<br />

96<br />

94<br />

92<br />

90<br />

88<br />

86<br />

84<br />

82<br />

5% Error<br />

-5% Error<br />

80<br />

80 82 84 86 88 90 92 94 96 98 100<br />

Actual Removal Efficiency [%]


GS Mike Test Results (July-August 2002)<br />

Four-Cell: Performance Evaluation<br />

Four-Cell Cylindrical Depurator Prototype<br />

Cabinda Angola Platform Gathering Station Mike<br />

(K= 1)<br />

105<br />

100<br />

Removal Efficiency [%]<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

Removal Efficiency<br />

Predicted Removal Efficiency<br />

0 20 40 60 80 100<br />

Test No.<br />

Calculated Removal Efficiency [%]<br />

Four-Cell Cylindrical Depurator Prototype<br />

Cabinda Angola Platform Gathering Station Mike<br />

(K= 1)<br />

100<br />

98<br />

96<br />

94<br />

92<br />

90<br />

88<br />

86<br />

84<br />

82<br />

4% Error<br />

-4% Error<br />

80<br />

80 82 84 86 88 90 92 94 96 98 100<br />

Actual Removal Efficiency [% ]


Performance and Operation Data<br />

• Typhoon Production Facility GoM (2004-05)<br />

Division of Cooper Cameron Corp.


Typhoon mini TLP, Green Canyon block 237 A<br />

•Courtesy of ChevronTexaco Annual Report, Dec 2002


Specifications - Typhoon, GoM USA<br />

Name<br />

Typhoon<br />

Location Blocks 236 and 237<br />

Green Canyon area of the Gulf of Mexico<br />

Distance from land<br />

Water depths<br />

100 miles off the co<strong>as</strong>t of Louisiana<br />

2000ft<br />

Equity Chevron (operator) 50%<br />

BHP 50%<br />

Peak production<br />

Field life of<br />

Production<br />

Topsides Structural Deck<br />

Major Process Systems (Oil System)<br />

<strong>G<strong>as</strong></strong> System<br />

Produced Water System<br />

40,000 barrels/day of oil<br />

60 million ft3/day of g<strong>as</strong><br />

Six to eight years<br />

Mini TLP<br />

Two levels consisting of a 110’x110’ Main<br />

Deck and a 110’x110’ Production Deck<br />

(nominal dimensions)<br />

40 MBPD<br />

2 stage separation (2 ph<strong>as</strong>e separation in HP<br />

Separator<br />

3 ph<strong>as</strong>e separation in LP Separator)<br />

60 MMSCFD – 2 stage Main <strong>G<strong>as</strong></strong> Compression<br />

system<br />

5 MMSCFD – 2 stage Vapour recovery<br />

compression system<br />

<strong>G<strong>as</strong></strong> separation in both HP and LP separators<br />

<strong>G<strong>as</strong></strong> dehydration system<br />

15 MBPD Hydrocyclones with downstream<br />

Column <strong>Flotation</strong> Unit<br />

•Courtesy of ChevronTexaco Annual Report, Dec 2002


Model 8-DC Cylindrical Depurator<br />

• Unit overall dimensions: 8’-0” dia. X 19’-0” s/s<br />

• Unit required capacity: 20300 bwpd<br />

• Unit required efficiency: 96.6% suspended O&G


Installation at Typhoon (Jan. 2004)


Installation at Typhoon (Jan. 2004)


Typhoon Process Parameters<br />

Snapshot Dec. 2004


Typhoon Test Results (April-Dec. 2004)<br />

Dual-Cell: Sampling stats<br />

Wemco 8-DC<br />

Typhoon Production Facility<br />

Sample Distribution<br />

0.60<br />

0.50<br />

0.40<br />

Total<br />

Insoluble<br />

Soluble<br />

Frequncy<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

0 25 50 75 100 125 150<br />

OIW [ppm]


Typhoon Test Results (April-Dec. 2004)<br />

Dual-Cell: Inlet/Outlet condition<br />

Wemco 8-DC<br />

Typhoon Production Facility<br />

OIW concentration [ppm]<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Samples (4/1/04 to 12/31/04)<br />

Inlet ppm<br />

Soluble Out<br />

Total Out<br />

Inslouble Out


Typhoon Test Results (April-Dec. 2004)<br />

Dual-Cell: Performance vs. predicted eff.<br />

100<br />

Wemco 8-DC<br />

Typhoon Production Facility<br />

Removal Efficiency<br />

Removal Efficiency [ppm]<br />

95<br />

90<br />

85<br />

80<br />

75<br />

Insoluble RE %<br />

96% Efficiency line<br />

70<br />

Apr<br />

Jun<br />

Aug<br />

Sep<br />

Nov<br />

Dec


Typhoon Test Results (March-May 2005)<br />

Dual-Cell: Performance vs. predicted eff.<br />

Wemco 8-DC<br />

Typhoon Production Facility<br />

OIW concentration [ppm]<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Samples (3/17/05 to 5/30/05)<br />

Inlet ppm<br />

Soluble out


Division of Cooper Cameron Corp.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!